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Abstract. We are interested in studying the affine and the affine polarized k−symplectic manifolds exploiting the action

of the polarized k−symplectic group Sp(k, n; R), especially when it acts properly and discontinuously without fixed

point in order to construct a particular class of affine polarized k−symplectic manifolds of odd dimension 2k
′

+ 1 with

k
′

∈N∗ which will be a generalization of the case of dimension 3 studied in [8].

1. Introduction

Physical and mathematical considerations led to the introduction of the notion of polarized

k-symplectic structure [3, 4, 10], indeed, polarized k-symplectic geometry is a generalization of

polarized symplectic geometry formalizing the mechanics of Numbu like symplectic geometry

which formalizes Hamiltonian mechanics.

An affine manifold is a manifold provided with an atlas whose map changes are affine transfor-

mations. Map changes of an affine manifold of dimension m are affine transformations x→ Ax + B
of Rm. When we impose on the matrix A to belong to a subgroup of GL(m, R), we obtain a par-

ticular class of affine manifolds. One can cite for example the flat Riemannian manifolds: A is

orthogonal; flat Lorentz manifolds: A ∈ O(m− 1, 1); flat affine manifolds with a parallel volume

(we also say unimodular): A ∈ SL(m, R) . Thus from the point of view of related manifolds, this

work can be considered as an enrichment of the classes of manifolds studied. We will see that the

study of affine polarized k−symplectic manifolds leads naturally to the study of affine transfor-

mations x→ Ax + B with A being an element of the polarized k−symplectic group Sp(k, n; R), and
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by the end we manage to construct a particular class of affine polarized k−symplectic manifolds

of odd dimension 2k
′

+ 1 with k
′

∈ N∗ which will be a generalization of the case of dimension 3

developed in [8].

2. Preleminaries

2.1. Polarized k−symplectic manifolds. Let M be a differentiable manifold of dimension n(k + 1).

Definition 2.1. [7] We say that the triple (M,ω,F) is a polarized k−symplectic manifold, if:

(1) ω is a differential 2−form over M with values in Rk: ω ∈ A2(M) ⊗Rk.
(2) ω is closed and non degenerate.
(3) F is a foliation of codimension n and ω(X, Y) = 0 ∀X, Y ∈ T (F) (X, Y tangent to F).

Remark 2.1. Let E be the sub-bundle of TM defined by the vectors tangent to the leaves of F, then the
couple (ω, E) is called a polarized k−symplectic structure on M.

Definition 2.2. [7] Let (M,ω,F), (N,θ,F′) two polarized k−symplectic manifolds and ϕ : M→ N.
We say that ϕ is a polarized k−symplectomorphism if ϕ is a diffeomorphism of M on N that exchanges

the polarized k−symplectic structures (ω,F) and (θ,F′),
i.e:

ϕ∗θ = ω and ϕ (F) = F′

2.2. The polarized k−symplectic group. Let V be a vector space of dimension n(k + 1) over K,

and let (ω; E) with ω ∈ A2(M) ⊗Rk be a polarized k−symplectic structure on V and ϕ be an

endomorphism of V.

Definition 2.3. [5] We say that ϕ preserves the polarized k−symplectic structure (ω; E) if it leaves
invariant both the form ω and the subspace E.

The set of all automorphisms of V leaving (ω, E) invariant, is a Lie group, denoted by Sp(k, n; V)

and called polarized k−symplectic group of V.

Let Sp(k, n; R)be the group of all matrices of polarized k−symplectic automorphisms of V expressed

in the polarized k−symplectic basis (epi , ei) 1≤p≤k,1≤i≤n. The group Sp(k, n; R) consists of the matrices

of the type: 
T 0 · · · 0 S1

0
. . .

...
...

. . . T Sk

0 · · · 0 (T−1)t


= [(T, S1, . . . , Sk)] ,

with T ∈ GLn(R), S1, ..., Sk ∈ gln(R) and SpTt
∈ Sn(R) for each p(p = 1, . . . , k).

The product in Sp(k, n; R) is given by:

[(T, S1, . . . , Sk)] × [(Q, R1, . . . , Rk)] =
[(

TQ, TR1 + S1(Q−1)t, . . . , TRk + Sk(Q−1)t
)]



Int. J. Anal. Appl. (2024), 22:93 3

2.3. Group action and quotient manifold.

Definition 2.4. [11] A group Γ acts properly and discontinuously on a manifold M if:

(1) Every point p ∈M has a neighborhood U such that:

card {g ∈ Γ; gU ∩V , 0} < ∞

(2) If p, q ∈M are not in the same -orbit, there exist neighborhoods U of p and V of q such that:

U ∩ ΓV = φ

Remark 2.2. [12] When the action is free, the condition (1) is equivalent to:
Every point p ∈M has a neighborhood U such that:

gU ∩U , φ⇒ g = identity o f Γ.

Recall that, if G is a Lie group and Γ a discrete subgroup, then Γ acts properly and discontinuously

on G. In addition, a complete locally affine manifold M of dimension n is the quotient of Rn by a

subgroup of the affine group A(n) of Rn, which acts properly and discontinuously without fixed

point on Rn. Thus

M = Rn/Γ, Γ = π1(M)

Furthermore, two compact complete locally affine manifolds are homeomorphic if and only if

their fundamental groups are isomorphic.

3. Affine manifolds

Let M be a real smooth manifold of dimension n. We say that M admit an affine structure if there

exists a smooth atlas
{
(Uα,ϕα)α∈I

}
of M such that the coordintes changes are affine transformations

of Rn.

Definition 3.1. A manifold equipped with an affine structure is called an affine manifold.
This means that a manifold is affine if it admit a smooth atlas A =

{
(Uα,ϕα)α∈I

}
such as for all α,β ∈ I

with Uα ∩Uβ , ∅, there exists an affine transformation σαβ ∈ GA (Rn) such that:(
ϕβ ◦ϕ

−1
α

)
|ϕα(Uα∩Uβ)

= σaβ|ϕα(Uα∩Uβ),

where GA (Rn) is the affine group of Rn [2].

We denote by Γ(TM) the space of differentiable vector fields over the manifold M. The tensors

of curvature and torsion a given connection ∇, are given by: [1]

R(X, Y) = ∇X∇Y −∇Y∇X −∇[X,Y]

T(X, Y) = ∇XY −∇YX − [X, Y]

for all X, Y ∈ Γ(TM).

A characterization of affine manifolds is given by the following classical theorem.
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Theorem 3.1. An affine structure on M is equivalent to a given connection

∇ : Γ(TM) × Γ(TM)→ Γ(TM)

without curvature and torsion.

Proof. Let A be an affine structure on M. There is a unique connection ∇ on TM whose Christoffel

symbols vanish on each (U; (x1, · · · , xn)) ∈ A. This connection is given on U by:

∇XY = X(Yi)
∂
∂xi

where X, Y = Yi ∂
∂xi
∈ X (U).

Conversely, Let ∇ be a flat torsion free connection on M. The set A of coordinates, for which the

Christoffel symbols of ∇ vanish, gives an affine structure on M. In fact, the existence of these local

coordinates is ensured by the existence of normal coordinates, see for example [9].

Now, let (U; (x1, · · · , xn)),
(
U′;

(
x′1, · · · , x′n

))
∈ A. The transformation laws of Christoffel symbols

of ∇ on U ∩U′ give:

Γ
′u
ij =

∂x′u
∂xr

∂2xr

∂x′i∂x′j
+
∂x′u
∂xr

∂xk

∂x′j

∂xl

∂x′i
Γr

lk.

Since Γ
′u
ij = 0 = Γr

lk, then ∂2xr
∂x′i∂x′j

= 0, consequently, xr = ai
rx′j + br, where

(
ai

r

)
=

(
∂xr
∂x′j

)
∈ GL(n, R) and

br ∈ R.

�

Example 3.1. The circle S1 can be equipped by an atlas whose mappings of transition are affine.
Let α be the parametrization: t −→ α(t) = (cos t; sin t).
We remark that α|]0;2π[ and α|]−π;π[ are respectively homeomorphisms on

V1 = S1
−

{
(1; 0)

}
and V2 = S1

−
{
(−1; 0)

}
.

Denote by ϕ1 and ϕ2 their inverse homeomorphisms.
Note that V1

⋂
V2 has two connected components V+ and V−. Therefore:

ϕ1(V1

⋂
V2) = ϕ1(V+)

⋃
ϕ1(V−) =]0;π[

⋃
]π; 2π[

and

ϕ2 ◦ϕ
−1
1 = t if t ∈]0;π[ or t− 2π if t ∈]π; 2π[.

In fact, S1 is the only unique affine sphere, according to the proposition below.

Let M and N two affine manifolds of the same dimension n.

A mapping f : M → N is called affine if for any affine charts (V,ψ) of N and (U,ϕ) of M,

ψ ◦ f ◦ϕ−1 is the restriction of an affine transformation of Rn. Such a mapping is obviously a local

diffeomorphism.

Let p : M̃−→ M be a universal covering of a connected manifold M. If M admits an affine

structure, then there exists a unique affine structure on M̃ for which p is a morphism of affine
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manifolds. Moreover, there exists a canonical affine mapping D : M̃ → Rn, called developing of

M, and a representation h : π1(M)→ GA (Rn) such that:

D ◦ γ = h(γ) ◦D,

for all γ in π1(M). The mapping h is called a representation of holonomy of M. We recall the

construction of the developing of an affine manifold M as follows: let x0 be a fixed point of M and let

x ∈M. We fix a continuous path (xt)0≤t≤1 joining x0 to x1 = x. Also, we cover this path by domains

of affine charts Ui, 0 ≤ i ≤ n, and let real numbers 0 < a1 < b0 < a2 < b1 < · · · < an < bn−1 < 1 < bn,

such that, xt ∈ Ui, for all t ∈]ai, bi]. We denote by ψi : Ui → Rn the affine coordinates and let σi the

unique affine transformation of Rn such as σi◦ψi and ψi−1 coincide on the connected component

of Ui ∩Ui−1 containing the curve (xt)(ai<t<bi−1)., we take

D(x) = σ1σ2 · · · σn−1σnψ(x) ∈ Rn.

We verify that D is well defined, i.e. D(x) does not depend on the cover (Ui) nor the chosen path

(xt)0≤t≤1.

We give here a direct consequence of the existence of a developing mapping.

Theorem 3.2. If M is simply connected compact manifold, then M does not admit an affine structure.

Proof. By above results, if M admits an affine structure, then it admits a developing mapping

D : M→ Rn which is a local diffeomorphism. As M is compact, D(M) would be an open compact

of Rn, which is absurd.

�

3.1. Complete affine manifolds and crystallographic groups. A geodesic of an affine manifold

M is an affine application R→M. The manifold M is said to be complete if any segment of

a geodesic can be extended into a geodesic or equivalently if the universal covering M̃ of M is

affinely diffeomorphic to Rm. It is then known (see [13]) that the fundamental group π1(M) of M
acts on Rm as a group Γ of affine transformatios, that this action is properly discontinuous and

without fixed points and thus that the manifold M is the quotient M = Rm/Γ.

For non-complete affine manifolds the situation is more delicate. Giving oneself an affine

structure amounts to giving oneself a homomorphism h : π1(M)→ A f f (Rm) and an immersion

D : M̃→ Rn equivariant, i.e.

D ◦ γ = h(γ) ◦D,

for all γ ∈ π1(M). The immersion D is called the development of the affine manifold M and h its

holonomy.
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4. Affine polarized k−symplectic manifolds

Let Ak(k, n; R) be the group of all affine transformations of Rn(k+1) leaving invariant the canonical

polarized k−symplectic structure of Rn(k+1). Then:

Ak(k, n; R) = {X 7−→ AX + B; A ∈ Sp(k, n; R)}

with X ∈ Rn(k+1) and B a column vector. [6]

Furthermore, let M be a differentiable manifold of dimension n(k + 1). M is a complete connected

affine polarized k−symplectic manifold,

then:

M = Rn(k+1)/Γ, with π1(M) = Γ

where Γ is a subgroup of Ak(k, n; R) acting properly and discontinuously without fixed point on

Rn(k+1).

4.1. Case where the foliation F is of codimension 1. Let Hp(k, n; R) be the group of all matrices

In S1 R1
. . .

...
...

0 In Sk Rk

0 · · · 0 In Q
0 · · · 0 0 1


where S1, · · · , Sn ∈ S(R) and R1, . . . , Rk, Q are column vectors of length n.

We denote by (S, Q, R) the matrices of the previous form where S = (S1, . . . , Sk) , R = (R1, . . . , Rk).

Then, we have the following proposition:

Proposition 4.1. [6] if M is a differentiable manifold of dimension (k + 1). M is a complete connected
affine polarized k−symplectic manifold, implies that:

M = R(k+1)/Γ, with π1(M) = Γ

where Γ is a subgroup of Hp(k, 1; R) acting properly and discontinuously without fixed point on R(k+1).

4.2. A particular class of affine polarized k-symplectic manifolds. Based on the proposition

above, and by following the same approach in our article [8], we manage to construct a class of

affine polarized k−symplectic manifolds of odd dimension 2k
′

+ 1 with k
′

∈ N∗ which will be a

generalization of the case of dimension 3. by constructing a family of subgroups of Hp(2k
′

, 1; Z)

which act freely and properly discontinuously on R2k
′
+1.
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The group Hp(2k
′

, 1; Z) is formed by the matrices of the form:

1 a1 c1

0
. . .

...
...

0 1 a2k′ c2k′

0 · · · 0 1 b
0 · · · 0 0 1


We denote by (A, b, C) the matrices above, where

A = (a1; a2 . . . ; a2k′ ), C = (c1; c2; . . . ; c2k′ ) ∈ Z2k
′

and b ∈ Z

For all g = (A, b, C), g
′

= (A
′

, b
′

, C
′

) ∈ Hp(2k
′

, 1; Z), as in [8], we have:

gg
′

= (A + A
′

,b + b
′

, b
′

A + C + C
′

)

gn = (nA,nb, Pnb + nC)

where n ∈ Z and Pn =
n(n−1)

2 .

g−1 = (−A,− b, bA−C)

[
g, g

′
]
= (0, 0, b

′

A− bA
′

).

which allows us to generalize the same propositions of the 3− dimensional affine polarized

2−symplectic manifolds to the case of the affine polarized k−symplectic manifolds of odd di-

mension where n = 1 and k = 2k
′

with k
′

∈N∗. Therefore:

Proposition 4.2. The subgroups Γ of Hp(2k
′

, 1; Z) of the type:

Γ =< (A0,0, C0), (miA0, 0, Ci), . . . , (A2k
′

, b2k′ , C2k
′

) >

with A0, C0, Ci, A2k
′

, C2k
′

∈ Z2k
′

, b2k′ ∈N∗, m ∈ Q, and 1 ≤ i < 2k
′

satisfying:

det(C0, Ci) , 0, det(A0,Ci) = mi det(A0, C0)

and their subgroups are the all subgroups of Hp(2k
′

, 1; Z) act freely and properly discontinuously without
fixed point on R2k

′
+1.

Proposition 4.3. For all A0, C0, Ci, A2k
′

, C2k
′

∈ Z2k
′

, b ∈N∗, m ∈ Q, and 1 ≤ i < 2k
′

satisfying:

det(C0, Ci) , 0, det(A0,Ci) = mi det(A0, C0)

we denote by M(A0, C0, Ci, A2k
′

, C2k
′

) the quotient manifold:

M(A0, C0, Ci, A2k
′

, C2k
′

) = R2k
′
+1/ < (A0, 0, C0), (miA0, 0, Ci), . . . , (A2k

′

, b2k′ , C2k
′

) >.
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- The quotient M(A0, C0, Ci, A2k
′

, C2k
′

) is a locally affine compact and complete polarized 2k
′

−symplectic
manifold, and its fundamental group is given by:

π1(M(A0, C0, Ci, A2k
′

, C2k
′

)) =< (A0, 0, C0), (miA0, 0, Ci), . . . , (A2k
′

, b2k′ , C2k
′

) >

- The manifold M(A0, C0, Ci, A2k
′

, C2k
′

) is homeomorphic to the torus T2k
′
+1 if and only if A0 = 0

Z2k′ .
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