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Abstract. This article deals with some existence results for a class of boundary value problem with three-point boundary
conditions involving a nonlinear 6-Caputo fractional proportional integro differential equation. By means of some
standard fixed point theorems, sufficient conditions for the existence of solutions are presented. Additionally, some

applications of the main results are demonstrated.

1. INTRODUCTION

Various definitions of fractional-order differential operators, including as the Caputo,
Hadamard, Riemann-Liouville, Riesz, and Grunwald-Letnikov operators, have been presented
in the literature. Because fractional calculus operators are nonlocal, they can be used to describe
nonlocal effects found in non-regular real-world events or long-term memory. One can see for
example, [1] for several applications of fractional calculus in the fields of physics, mechanics,
biology, engineering, and signal processing, [2] for several real-world applications in science and
engineering, [3] for fractional models in bioengineering, and [4] for modeling of viscoelastic sys-
tems.

The conformable derivative is an interesting derivative that was introduced by Khalil et al. [5] in
2014. Subsequently, some researchers argued that due to its lack of memory feature, this derivative
could not be classified as a fractional derivative. The classical derivative appears to be a logical

extension of this new notion. Unfortunately, there is an issue in this new definition: as the order
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gets closer to zero, it fails to lean toward the original function. By using proportional derivatives,
Anderson and Ulness [6,7] suggested a modified conformable derivative. Subsequently, a new
generalized proportional derivative was introduced by Jarad et al. [8]. It is well-behaved and has
many advantages over classical derivatives, including the ability to generalize previously known
derivatives from the literature. See [9-14] for recent developments related to fractional differential
equations via generalized proportional derivatives.

In this paper, we use a recently introduced concept of generalized Caputo proportional fractional
derivative to study the following boundary value problem for a nonlinear fractional integro-

differential equation with integral boundary conditions

Cpre¥y(t) = £(t,x(t), (Bx)(t)), a<t<h1<g<2, (1.1)
x(a) =c1x(&), x(b) = c2x (&), (1.2)

where o € (0,1], 1 < ¢ <2, c1,c0 € R, E € (a,6), f : [a,6) xYxY — R, ¥(t) is a strictly
increasing continuous function on [a,b], and % 70 denotes the Caputo fractional proportional

derivative with respect to the function ¥ of order ¢, for K : [a, 6] X [a, 6] — [0, o),

t
(B?c)(t):fW(t,r)x(r)dr.

Applications for integral boundary conditions can be found in many applied domains, including
population dynamics, chemical engineering, blood flow issues, thermoelasticity, and underground
water flow. A recent study [15] provides a thorough explanation of the integral boundary con-
ditions. See [16-18] and the references therein for further information on nonlocal and integral
boundary conditions.

The paper is organized as follows: In section 2, we mention some preliminary definitions,
lemmas, and theorems that are used in other sections of the paper. Section 3 contains existence and
uniqueness results for problem (1.1)-(1.2). These results are new and rely on Banach’s contraction
mapping principle, a Schaefer-type fixed point theorem, and Krasnoselskii’s fixed point theorem.
In section 4, we prove several auxiliary results about stability of the stated problem. The paper

concludes with section 5, in which five detailed examples are offered.

2. PRELIMINARIES

In this section, we present basic definitions, theorems, lemmas, and corollaries needed for our

findings in this paper [19].

Definition 2.1. For p € (0,1], a € C with Re(a) > 0, ¥ € C([a, b], R) satisfying ¥ (t) > 0, we define the
Riemann Liouville fractional proportional integral of f : [a,b] X R — R with respect to 9 as

p-1

@l SO0 (3(4) - 9(2))* () (1) .

pT(a)

(oI f) () =
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Definition 2.2. For p > 0, « € C with Re(a) > 0, and § € C([a, b], R) satisfying 9’ (t) > 0, we define the
left fractional derivative of f : [a,b] X R — R with respect to 9 as

(D F) (£) =D"P2 0 (1)
D”,PS t p-1 sz
e B R CORED e ORI
where n = [Re(a)] +1,
and
D"® = pPPDPY | DPY.

n-times
Definition 2.3. For p € (0,1], @ € C with Re(a) > 0, 9 € C([a, ], R) satisfying 9’ (t) > 0, we define the
left derivative of Caputo type starting at a by

(S0 £) () =al02 (D" (1)

T [T (3(0) - s(pye DR ) (1)

where n = [Re(a)] +1,

Proposition 2.1. Let a, f € C be such that Re(a) > 0and Re(B) > 0. Forany p > 0andn = |Re(a)] +1,
the following hold:

(1)
T (3(3) = 6 ) = e (5(0) = ()

(2) If Re(B) > n, then

S
o
Yy
<
—~
~
SN—
|
<
Yo
N
N—
N—
T
T
?

(D037 (5(x) = s(a)yt) (1) = LB
(3) Fork=0,1,...,n—1, we have
(gD“'P'SePT_lS(X) (3(x) - S(a)k)) (f) = 0.
In particular, (ED""PePT_lS(x)) (t) = 0.

Theorem 2.1. If p € (0,1] , Re(a) > 0, and Re(B) > 0. Then, for f : [a,b] x R — R is continuous
function and defined for t > a, we have

AP0 (PO F) () = o2 (VPO ) (1)
= (I*PPOf) (1)

Theorem 2.2. Let 0 < m < [Re(a)] +1and f : [a,b] X R — R be integrable function in each interval
[a,t],t > a, then

DL (ula,p,Sf) (t) _ (ala—m,p,\‘)f) (t)
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Corollary 2.1. Let 0 < Re(B) < Re(a), m—1 < Re(B) <mand f : [a,b] xR — R. Then we have
(DPPR 1P (1) = 197FPP £ (1),

Theorem 2.3. For p > 0,n = |Re(a)] +1,and f : [a,b)] X R — R, we have

o (Dheof) () o1 (o(1)-
IapS(CDapSf Z kk' (t) —S(a))ke 0 (3(1) S(”)).

k=0

Next, the following fixed point theorems plays a crucial role in our main results.

Theorem 2.4. (Schaefer’s Fixed Point Theorem [20]). Suppose A : X — X is continuous and compact.
Assume further that the set
{ueX|u=AA(u) forsome0 < A <1},

is bounded. Then A has at least a fixed point.

Theorem 2.5. (Karasnoselekii’s Fixed Point Theorem [21].) Let X be a bounded, closed, convex, and
nonempty subset of the Banach space Y. Let @1, @2 be operators mapping X into M, such that

(1) p1x1 + @2ax2 € X whenever x1,x3 € X;

(ii) @1 is compact and continuous;

(iii) ¢y is a contraction mapping.

Then there exists x3 € X such that x3 = @Q1x3 + @2x3.

In what follows, we convert the linear variant of the problem (1.1)-(1.2) into integral equations
and will be used to define a fixed point problem associated with (1.1)-(1.2).

Lemma 2.1. Let 4 € C[a, 6] and 1 < q < 2. Then the problem

Cgae¥y(t) = 4(1), a<t<b, 2.1)
x(a) = ax(&), x(6) = c2x(€), (2.2)
equivalent to
. o7 (H()-¥(a))
x(t) = I94(1) + A
[((F() = F(@) c2 - c1eT FOFD) o ((8) - F(@))e T FOTO Yoty @I

A = anpax —axnap #0,

-1 1§y
a1 = 1- ClelT(‘P(g)_T(u)), (2.4)

a1y = _Cl(lif(é) _@r(a))e%(‘i’(é)—‘i’(u)),
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oy = —cpe’7 (HO-F@) | 7 (H(0)-F(a)

3 Ny clig -¥(a N Ny (¢ -¥(a
an = (¥(6) =¥ (a))e 7 "D — o (F(£) = F(a))e 7 O
By = al"*¥4(e),

By = ol g(&) = 192 (5).

~

Proof. Applying the Riemann-Liouville fractional proportional integral of order q to both sides of
equation (2.1), and using Theorem 2.3, we get the general solution

x(8) = POV (8) + [ag + an (¥ () — ¥ (a))]e’s FO-H), 2.5)

where ag, a1 € R. Using (2.5) in the boundary conditions (2.2) , we obtain
14 § a ~ =l @i\ _g &
" (1—cleT(‘Y(é)—‘Y(a)))+al (_cl(q,(g) ()R ‘I’(a))) _ ooty
-1 g s o-1 s . . o1 e @ . . [
ap (E(T(‘Y(ﬁ)_\y(a)) - CQET(‘Y(E)_‘Y(Q))) + o ((‘Y(E) - T(a))e 0 (Y(6)-¥(a)) _ CZ(T(E) _ ‘I’(a))elf) (Y(&) ‘i’(a)))

= o170 ¥4() ~ 1707 46).
(2.6)
We use (2.4) in (2.5) and (2.6) we find the system

aoa11 + arap = By,
2.7)
aody1 + aaxp = By.

Solving the system (2.7) for ap and a4, we find

1

a = % (axB1 —a12B7),
-1

= (a21B1 —a11By),

which, on substituting in (2.5), yields the solution (2.3).

The following section is devoted to establishing the existence and uniqueness results for problem
(1.1)-(1.2). O
3. MAIN RESULTS

In view oflemma 2.1, we transform the problem (1.1)-(1.2) into on equivalent fixed point problem
as x = gzc, Whereg : C — C defined by

) CL(¥(1)-¥(a))
C(x)(t) = 179¥ £ (t, (1), Ba(t)) + A

[((F() = F(@) (e2 - c1eT FOFD) e ((8) = F(@))e T FOFO o 4 (e, (), Br(2))

e

o1 g & 0-1 /g

~ (&)~ (@) T O (¥(0) ¥ (a)) (1 —ereT T 016, 2(6), Be(5) |
(3.1)
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Here, (Y, ]l.|l) is a Banach space, and C = C([a, 6],Y) denotes the Banach space of all continuous
functions from [a, 5] — Y equipped with a topology of uniform convergence with norm |[.||c.
We present now the uniqueness of solutions for the problem (1.1)-(1.2) via Banach contraction
mapping principle.
In the forthcoming analysis, we require the following assumptions.
(H1) f : [a,b] x Y x Y — Y isjointly continuous and maps bounded subsets of [a, b] X Y X Y into
relatively compact subsets of Y.
(Hp) Forallt € [a,b],x,y € Y, there exist 07, 0y > 0 such that

If (t, x(t), Bx(t)) = £(, y(t), By(t))] < Tillx — yll + B2l|Bx — Byll.

(H3) K : [a, 6] X [a, 6] — [0, 00) is continuous with Ky = max {K (¢, 1) : (t, 1) € [a, 6] X [a, 6]}.

(Ha) If (t, (1), (Bx) ()] < p(t), forall (¢ x, (Bx)) € [a,b] x Y x Y, where i € L' ([a, b], RT).

(Hs) There exists an increasing function ¢ € C([a,b],Y). and there exists A, > 0 such that for any
tea,bl.

199¥ 9 (t) < App ().

Theorem 3.1. If the assumptions (Hy)-(Hs) and the condition

[( T+ TaKo(b—a))|[IAInT + 1, 676: + 1l 67 <1, (3.2)
with
~ ~ ]- —
(T1+T2Ko(b ~a)) < 5 [1AIn" + 0, 6}0 + T (3.3)

are holds, then the problem (1.1)-(1.2) has a unique solution on [a,b).
Proof. Setting 7 = supy. |, If (,0,0)], selecting
1
02 (A + 0,010 + 1,0y )
We show that g’ﬁ c €, where€, = {x € C: |lx]| £ t}. For x € €, we have
F(t (1), Bx(t))l = [F(t, x(t), Bx(t)) = £(,0,0) + £(%,0,0)]
<IF(t (1), Ba(t)) = £(£,0,0)1 + (1, 0,0)l

<Tillall + BBl + 7
< (B1 +TaKo(b—a))i+ 7,

(3.4)

using (H;) and (3.4), we have
IGxll = sup [Gx(t)

tela,b]
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s [0 ¥ @) o), B (0
+ (el (#(€) = #(@)e T HOTD 1 (9(5) = ¥(a)) 1 - 1T HOHN)
X qul(q) f b(‘T’<b) = ¥(0)" £ (7, 2(), Bx(1))I¥ (7)d7)
<& %Z(}(f’q)—”))‘” [ (1)~ ¥(0) T ()
+ ﬁ[((‘i’(b) ~¥(a))lez - ere 7 O Ly () - xif(a»e%(‘f’(ﬁ)—‘i’(u»)
« L0 ‘”Zj’rb )it f Y (1) d
+ (el (F(8) — F(@)e T FEF +<w<5>_qf< D - 7 FE¥oN)
« [((91—1-(922;(}}7 a))t+ 7] e 1‘1”( i
< (Tl + TaKo(b - a) L+-I[ ‘7Fq~|—1
+%{((‘i’(5)—‘i’( D) (lea = cre’T TEHED)) 41 (¥ (5) - ‘i’(a))e@%(‘?(w—‘if(a)))(‘i’;fr)(;E(la)))q
+ (leal((2) (@)™ O 4 ((8) - (a1 - cle%l(‘m“i’(“”l)—(qj@(fr)(; f(f)))qn
<& +;§Z;°f1_)2|)1 Sl [1AI(% () - ¥(a)"
(O - ¥k~ cﬂ”‘“ PHD el ((5) = ¥ (@)e T O () - $ ()
+ (Icﬂ TEHOFD) L ((5) —F(a))l1 - Cle%(‘?(a—‘if(a))l)(q,(b) ()]
<t +;12~Z;0f 1>f2,) D (6) — )
+ |C1|((‘i’(5) —W(a) (¥(8) - W(a))le T VO L (§(8) =¥ (a)) (F(6) - ¥(a))te T O >>)

oo —cre’ 7 YOI (5) - (a)) (9() - (o))
1= e T OO Y (5) ¥ (a)) () - F(a))']

(01 + TaKo(b—a))i +7)
b oT(q+1)IA|

" (|C2 _ Cle%(\?(ﬁ)—%m - cle%(‘i’(é)‘@(“”l)(‘?( 5) _xfr(a))q—H]

[1AI0¥(6) = ¥(2))7 + 2erl(¥(6) = ¥(a) (£ (2) - ()

<[( T2 +T2Ko(b =)+ T8l + 0l 570¢ + 0l 0,07 ),
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where
& = (¥(r)-¥(a)),
. S S = B R o R R | T
T = AT+ 1) = Al (g + 1) v T |AIAT (g + 1)
Then

Gl < [ T1 +TaKo(b—a))] 1Al + i, 570 + 0, .60 Je+ AT +nf, 6756 +nf, 0,87 ]
S
S 2l 2L = [.

Now, for x1, 2 € C and for each ¢ € [a,b], we obtain

IS — Gxall = Sl{l}; G (t) = Gaa ()]

1
<
0T (q)

+ (40 - #@)ler =1 FHOFO e (8 (6) - (@) T HOH)

b
f (¥(0) =¥ ()" 1f (7, (1), Br(1)) - f(1, (1), Bau (1)) [¥' (v)dr

i [ (O =¥ (5 (o), B0 - 5 m (0] B ()

X 7T
< (Oille — all + 0218 - 3mll)[w

o-1

+ L (906) = ¥(@))e2 = ereFHOFO) ey (5) — (a7 FO4 ) L H)

IA] oI (q+1)
N %(A( )-¥(a)) - ¢ B %( (&)-¥(a)) (\F(b)—‘lf(a))‘i
(&) - ¥(@)e T O 4 (#(5) (@1 - cre T O

. (01 + Tk (b -a))
T (q+1)|A]
o1

+((¥(6) = ¥(@) ez = e1e T FO ) ey (8 (6) = (a))e T O )b () ~ (o)1

e - wlf181(¥(5) - ¥ (a))"

A

+ (m(@(a) ~¥(a))eT FOFE) | (§(5) ~ ¥ (a))1 - cle%‘f’@)-‘“”m)(‘%(b) ~¥(a

< (T;l +%7(0(b — a))
0T (g + 1)|A|

+ (|Cz O (O Cle%(‘?(é)_‘?(a))l)(l?(ﬁ) —¥(a))7"!

~—

~—

)
ed

a

lle — ?ﬁll[lAl(‘T’(ﬁ) —¥(a))? + 2lc1| (¥ (6) =¥ (a)7(F (&) - F(a))

< [( 1+ TaKo(b—a))] AT +nl, 6765 +nl, 60 il — all

<l = xll,
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therefore g is a contraction. Thus, by Banach Contraction Principle, we conclude that g admits

a unique fixed point which is a solution to problem (1.1)-(1.2). m|
Theorem 3.2. Assume that (H,),(Hy) holds and
((T1+TaKo(b—a))) (0,830 + 11t 8 ) <1 (3.5)
Then, the problem (1.1)-(1.2) has at least one solution on [a,b).

Proof. Let us fix
> gl (18177 + 18,630 + 18,20 ), (3.6)

and consider €, = {x € C : [|x]| < t}. We define the operators 5 and J on €, as

- 1 e -9 (0) e . B -
(3x)(1) = 7T f e o YOO (g () — ¥ (1)) 1 (1, 1 (1), Bx () (7)dT

(
(090 = #(a)) (c2 ~ ™ FOHD) ey (#(5) = F(a))e 7 O 0% (g, (), B (6))

~(c1(#(0) = F(@)e T FOO) 4 ((t) =¥ (a)) (1 - cre T T e (5, 1(8), B(5) |
For all 1, y € €, we find that

152 + Tyl = sup [5x(¢) + Ty(¢)l

tela,b]
< i [ T 0T @0 = @) (), Se()I (e
T |i_|[(<‘if(b) ~¥(a))le2 - C1e%1(‘i’(5)—‘i’(a))| el (¥ (6) —‘IJ(a))e%(‘F(E)_Y(a)))
1 < R .
o) f (¥(&) =¥ ()1 (z, y(v), By(7)) ¥ (v)d
(el (F(8) — F(@)e T HETD 1 (9(5) ~F(@)1 - creT T
1 b . A
o) f (F(6) =¥ ()" (7, y(1), By(1)) ¥ (7)d7]
b
) Q”;;”@ IRCOR OO
+ %[((‘i’(b) - Y (a))lc2 - cle%( ( )—‘?(a))| + |C1|(‘i’(5) _\i;(a))e%(‘l’(b)—‘lf(u)))
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. . L (F (5 (a - - (Y (E)—¥(a
+(IC1I(‘I’(5) ~¥(a))e s TED L (¥(6) - F(a))1 - cre 7 >>|)

e (o (19 (g
x il [ e v ]

< lull: AT 4 1l 6l0s + 1721,626Z+1] <L
Thus, 5x + Jy € €,. It follows from the assumption (Ha) that °J is a contraction mapping for

~ ~ 1
(( 1+ TaKo (b~ ))) (1, 0306 + 1, 0] ) < 1.
Continuity of f implies that the operator 3 is continuous. Also, 3 is uniformly bounded on €, as
(¥(6) - ¥(a))?

¢r(g+1)
Now we prove the compactness of the operator 5. In view of (Hy), we define

32 < [lgella

sup |f(t,x(t), Bx(t)) = £, Q = [a,b] x€, x€,.
(t,x,Bx)eQ)

Let t1,t; € [a,b], 11 < t2, and consequently we have

150)(0) - Gt <~ [ [0 =¥ - (¥(0) ~ ¥, 1(0), B e
[ 0) - ¥ a) B (0
L[ [ - - (¥ - ¥ ) ¥ (e
+ ft " (k) — ¥ (0) 1 (1) dT}
< S (20— ¥+ (H(e) = ¥~ (¥(0) - )}

(3.7)

The right hand side of the inequality (3.7) tend to zero as t» — t; independent of x. Thus,

5 is equicontinuous on €,. Therefore, by Arzela-Ascoli Theorem, 3 is relatively compact on €,.
Consequently, by the conclusion of Theorem 2.5, there exists a solution of the problem (1.1)-
(1.2). ]

The next result is based on Schaefer’s fixed point theorem.
Theorem 3.3. Assume that (Hy) hold and there exists a constant /> 0 such that
If (t, x, (Bx)) Il <A (3.8)

forall (t,x, (Bx)) € [a,b] x Y x Y.
Then there exists at least one solution for the problem (1.1)-(1.2) on [a, b].
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Proof. The proof will be given in several steps. In the first step, it will be shown that the operator

g is continuous. Let {x,} be a sequence such that x, — x in C. Then for each t € [a, b]

b
1G(x:) (1) = G(x) ()] < qu}(q) f (¥ () =¥ ()" f (7, (1), Bau (7)) = f(1, x(7), Bx(7))[¥' (1)dT
I

% 9‘71}( [l (¥(&) = ¥(0)"M1f (7, %(7), B (7)) = £ (7, (1), B (1)) [¥' (1)dt

Py

vy \ CL¥(&)-%(a o S Ly —Y(,
+(|Cl|(\lj(€) —Y(a))e ? FE=H@) 4 (Y(6)—Y(a))1 —clegs) (¥(&)-¥( ))|)

1 b . B g
X FINE) fu (F(0) =¥ ()T Yf (1, (1), Bxa(7)) = f(1, x(7), B (7)Y’ (7)d7]
< (( D1+ Ko (b —a))) (IAlT +nl 6lo: + qZchéZ“)“;ﬁl —xlle.
(3.9)
Then
1§6) =Gl < (( T +TaKo(b =) (I8l + 1,80 + 1l 0 Dl = alle-— (310)

Therefore, n goes to infinity, we have §(x,) converges to §(x), which means that § is continuous at
x, and therefore g is continuous.

In the second step, we show that the operator § maps bounded sets into bounded sets in C. In
fact, it is sufficient to prove that for any ¢ > 0, there exists a positive constant C such that for each
x €€ = {x € C:llxllc < d}, we have [I§(x)llc < C. By (H2) and (3.8), we have for each t € [a, b]

16!l = sup [Gx(t)]

te(ab]
<AMIAIT + 12,0600 + 1867
<¢
where
C = MIAIT + 1l 606 + r)Zl(SZH).
The third step, we prove that the operator § maps bounded sets into equicontinuous sets of C.
Let 1,1t € [a,b], 11 < fp,€, be abounded set of C, and let x € €,. Then

N
|(§) () = (§x) (1)] < T 1)
+ 0 _lz(a))qﬂ‘?(tz) -¥(t) (|C2 —ope'T FOF @) g cle%(‘?(é)_@(”))l)]l

which tends to zero independent of x as f, — t;. Therefore, g is equicontinuous on [a,b]. So,

by Arzela-Ascoli Theorem, the operator § is completely continuous.

Finally, we need prove that the set

K= {zCEC:x:Ag;cforsome/\e (0,1)},
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for x € k, t € [a,b], we have

x(t) = AG(t).
As before, we can obtain |x(t)| < MIART + ¢, 0006 + nZlézH) < VYxex, telabl. Soxis
bounded.

As a consequence of Schaefer’s fixed point theorem, we deduce that § has a fixed point which
is a solution of the problem (1.1)-(1.2). ]

4. STABILITY ANALYSIS

In this section, we study Hyers-Ulam and generalized Hyers-Ulam, Rassias stabilities for the

solutions to the problem (1.1)-(1.2) by considering its equivalent integral equation:

Define a continuous nonlinear operator § : C — C by

Sk = Care¥x(t) - £(4, & (1), Br(t)).

Definition 4.1. The problem (1.1)-(1.2) is called Ulam-Hyers stable if for every & > 0 and for each solution
xeCof
IS%Il < &, (4.2)

there exists a solution x € C of (1.1), (1.2) such that ||x — x|| < Qi€ for positive real numbers i and &(&).

Definition 4.2. If there exists a function v € C (R™,R™) and for each &€ > 0 and for each solution ¥ € C of
(4.2) there exists x € C of (1.1) and (1.2) with |7¢(t) - Eﬁ(t)| <v(&),t € [a,b]. Then, the problem (1.1)-(1.2)

is called generalized Ulam-Hyers stable.

Definition 4.3. The problem (1.1)-(1.2) is said to be Ulam-Hyers-Rassias (UHR) stable with respect to
¢ € C([a,b], RT) if there exists a real number i such that for each solution 3 € C([a, b],R) of

S2(8)] < Ep(t), t € [a,b], 43)
there exists a solution x € C of (1.1) and (1.2) such that
|x(t) - 2(t)| < Aep(t),t € [a,b],

Definition 4.4. The problem (1.1)-(1.2) is said to be generalized Ulam-Hyers-Rassias (GUHR) stable with
respect to o € C ([a, b], R™) if there exists a real number f such that for each solution i € C([a, b],R) of

ISx())| < p(t),t € [a,b], (4.4)
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there exists a solution x € C of (1.1) and (1.2) such that
|x(t) = &(t)| < Ap(t),t € [a,b],

Theorem 4.1. If (Hy) and the condition (3.2) (see Theorem 3.1) are satisfied, then the problem (1.1)-(1.2)
is both Ulam-Hyers and generalized Ulam-Hyers stable.

Proof. Recall that x € Cis a unique solution of (1.1) by Theorem 3.1. Let ¥ € C be an other solution
of (1.1) which satisfies (4.2). For every solution % € C (given by (4.1)) of (1.1), it is easy to see that §
and § — I are equivalent operators. Therefore, it follows from §% = % and (4.2) and the fixed point

property of the operator § given by (3.1) that

| (t) = 2(1)] = 16 (t) = Gx(t) + Cx(t) — % (1)] < IGx(t) — Cx(£)] + 0% (£) — % (t)]
< (( T +TaKo(b— ) (1AI7 + 0, 6]6¢ + 1, 67 ) llx — &l + &,

which, on taking the norm for t € [a,b] and solving for ||x — x|, yields

&
1= [( T3 +T2Ko (b - a)) (1Al + 1f, 570 +nf, .67 ]
where & > 0 and (3.2). Letting

llx —xll <

- g
E= ,
1-[( B1 +TaKo (b — )] [|AIn7 + nf, 870¢ + 1, 0,60 ']
and i = 1, the Ulam-Hyers stability condition holds true. Furthermore, one can no-

tice that the generalized Ulam-Hyers stability condition also holds valid if we set v(&) =
&
. O

1-[( T1+T2%Ko (b—0))] 1Al +n{, 810e+n!, )00 ]

Remark 4.1. A function x € C([a,b],R) is a solution of the inequality (4.3) if and only if there exist a
function h € C([a, b], R) (where h depends on solution % ) such that

(i) |h(t)| < Ep(t) forall t € [a, b],

(ii) Cpre¥ & (t) = f(t,%(1), BR(1)) + h(t), t€ [a,b]

Lemma 4.1. Consider x € C([a, b], R) is solution of the following problem
Copre¥y(t) = £(t, x(t), (Bx) (1) +h(t), a<t<h1<g<2 (4.5)
x(a) = &(a) = c1x(&),  x(6) = &(6) = c22(¢), (4.6)
then % satisfy
1X(t) = G(%) (D] < EApp(H).

Proof. Indeed, by Remark 4.1, we have that

Copre¥z(t) = £(t, X(1), BR(t)) +h(t), te]a,b]
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In view of Theorem 3.1, and using Remark 4.1, we have

x(t) =C(%) () + ¢V h(t) 4.7)

which completes the proof. m]

Theorem 4.2. Assume that (Hy),(Hy) and (Hs) hold. If (4.3) is satisfied and [( 07 + 0y Ko(b —
a)][lAnT + 0l 0l0s + T]ZLCZ(SZH] # 1, then the problem (1.1)-(1.2) is Ulam-Hyers-Rassias stable and

Generalized Ulam-Hyers-Rassias stable.
Proof. For any solution x € C([a,b],R), and a unique solution x of the problem (1.1)-(1.2), we have
1) —x(OIl = N17() =Gl = Iz (t) - Gx(t +§7c = Ga(t)
< lz(t) = GrI+1Gx () — Ga(t)

By applying Lemma 4.1, we obtain

1Z(t) = x(DI < EApp(t) + [( T+ TaKo(b - a))][1AIN7 + 676 + 1y ¢,07 ME(E) = G (t)
therefore
1
I%() - x(D) < ENop(t).
1= [( T1 4+ TaKo (b~ a))] 1Al + 0, 6}0e + 1,67
_ Ao ) .
Letn = Ry TR [ O P el then the problem (1.1)-(1.2) is UHR stable. In case
& = 1, the solution to the problem (1.1)-(1.2) is GUHR stable. m|
5. EXAMPLES
Example 5.1. Consider the following problem:
—t
Co2 1 _al 1 f
P22t x(t — e s)ds,
0 5t ) il Er S 51)
1
x(0) = =x(01) ,x(1) = 7x(0.1),
with ‘i’( ) = t‘2 + 1, q = %, 0o = %, 0 = 67,(:2 = 117,5 = 0.1, and f(t,x,Bx) =
et t _ — _
g + & [ e (s)ds, Blx) = & [ eV als)ds, with K (t,s) = de ¢ for 0 < s <.
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Using the given data, we have |f (¢, x, B(x)) — f (£, 4, B(y))| < Fllx — yll + |Bx — Byll. In this case, the
(Ha) hypothesis is satisfied with 07 = %, Ty =1,Ky = %. Furthermore, we have

[( Ty +TaKo(b - a))][1Al7 + nf 10+l ,677] = 0.9882113384 < 1.

Thus, all assumptions of Theorem 3.1 are satisfied, so the problem (5.1) has a unique solution. Also, by
Theorem 4.1 the problem (5.1) is both Ulam-Hyers and generalized Ulam-Hyers stable.
Let p(t) = e, forall t € [0,1]. Then

31 B N ()m \/_
I p(t)—LS N

— efer t\2

= elerf(tV2) -2 =

< 0.7385358700¢"
< 0.7385358700¢(1).

Thus, the hypothesis (Hs) is satisfied with A, = 0.7385358700 > 0. Here, for & = %, if x € C([0,1],R)

satisfies
1,
S%(8)] < —6 te[0,1],
there exists a solution x € C([0,1],R) such that
1
[e(t) = %(1)| < 50e", £ e [0,1],

where

A
A= — i — - > 62.64798287 > 0.
1- [( b1+ bZ«U(b - a))] “AW + nc16b65 + ’Icméh ]

Thus, the problem (5.1) is UHR stable. Finally, taking & = 1, then the problem (5.1) is GUHR.

Example 5.2.
Co ¥ 1 I ffcos(z(s—t))
G) 272 t) = . ds,
) E192 T+l Jy g1 L)ds 52)
1 1
1(0) = Zx(01) |, x(1) = 5x(0.1),

ZUZth ‘AII( ) - tz + 1 1= 617/C2 - 11_719 = %/Q = % and (E = 01/ B({) = j(;t COS(ZsLt))X‘(S)dS, wzth

7(.(1[/5) _ cos(%g —t)).

| | t COS
Here, f(t,x,Bx) = t+9 T T fo x(s)ds.
A direct computation gives

1
If(t,x,Bx) — f(t,y,By)| < 8—1||7c—y|| + IBx - Byll.
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In this case, the (Hy) hypothesis is satisfied with
— 1 -
b1 = — =1
1 31 s V2 ’
moreover

Using Theorem 3.2, we determine that

[( Ty +T2Ko (b —a))] [l 70 + 1l ,67 '] = 0.1508000574 < 1.

Thus, all assumptions of Theorem 3.2 are satisfied, so the problem (5.2) has a unique solution.

Example 5.3.
0 t —(s—t)
Crr3 1% 1 e
@2r2:;ct — +f ?csds,
( ) 7€t+5(1 + |7C|) 0 18 ( ) (53)
1 1
7(-(0) - 57((01) /7(,(1) = ﬁ?((o.l),

If (t, ¢, B(x)) = £(t, 4, B(y))| < 75 llx — yll + 1Bx — Byll, since x = C([0,1],R) so, x is bounded. Let

lx(t)] < M, Vt € [0,1].

Moreover,
1 M(e-1)
’ /B < -5 - 15
(e 2 Bl < 75 + — 73
Let N = % + M(fs_l) is a constant sincee — 1 < 2, let « = max (6_5,M) . Then

32a 16
<= =—a
If (¢, x, Bx) 76 = a3%
So, we can take
16
N=—=a.
63"

Thus, all assumptions of Theorem 3.3 are satisfied, so the problem (5.3) has a unique solution.

6. CONCLUSION

This paper has delved into the study of fractional proportional boundary value problems and
the uniqueness of their solutions through the application of key theorems in fractional differential
equations. By leveraging the Uniqueness Theorem for Fractional Differential Equations, Kras-
noselskii’s Theorem, and Schaefer’s Fixed Point Theorem, this study has systematically examined
three specific examples of such problems. Through rigorous proofs and detailed analysis, the
paper has successfully established the conditions under which these fractional differential equa-
tions possess unique solutions. The exploration of these theorems across diverse boundary value
scenarios highlights their practical utility in ensuring solution uniqueness in fractional differential

equations. The examples presented in this paper showcase the effectiveness of these theorems in
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proving the existence and uniqueness of solutions, underscoring their significance in this domain.
In summary, the application of these pivotal theorems reaffirms their crucial role in validating
the uniqueness of solutions for fractional proportional boundary value problems. This study
contributes to the broader understanding of fractional differential equations and emphasizes the
importance of these theorems in establishing rigorous mathematical proofs related to solution

uniqueness.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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