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Abstract. This paper establishes a break-even point theorem concerning a set of mappings adhering to an Edelstein-

type contractive criterian within intuitionistic fuzzy metric domains. It explores the break-even analysis within a

straightforward total cost-revenue model applicable to dynamic businesses. Utilizing the coincident point theorem

within intuitionistic fuzzy metric space, the study demonstrates the inclination of profit-sensitive (or loss-sensitive)

dynamic businesses towards their respective break-even points.

1. Introduction

The idea of hesitation was proposed by Atanassov [1] in the form of intuitionistic fuzzy sets,

which are expansions of classical fuzzy sets. The study conducted by Abbas et al. [2] investigated

the optimum coincidence point outcomes in partially ordered non-Archimedean fuzzy metric

spaces. This research shed light on the relationship between order structure and metric features.

The influential research conducted by Banach in 1922 [3] focused on the examination of oper-

ations inside abstract sets and their utilisation in integral equations, so establishing fundamental

concepts for contemporary functional analysis. The supply function auction model for linear asym-

metric oligopoly was presented by Dolmatova et al. [4], therefore making a valuable contribution

to the comprehension of market dynamics and balance results.
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Edelstein’s [5] investigation of fixed and periodic points under contractive mappings laid the

groundwork for the development of fixed point theory, which has applications across various

branches of mathematics and beyond. George and Veeramani’s [6] exploration of fuzzy metric

spaces expanded the scope of metric spaces by incorporating fuzzy logic, enabling the modeling of

imprecise and uncertain information. Hussain et. al [7] study on pentagonal controlled fuzzy met-

ric spaces addressed dynamic market equilibrium, offering insights into stability and convergence

properties in economic systems. Jeyaraman et al. [8] demonstrated the versatility of fixed point

theory in various metric settings by discussing fixed point theorems in generalized IFMS using

contractive conditions of integral type. Jeyaraman et al. proposed common fixed point theorems

for (φ − ψ)-weak contractions in intuitionistic generalized fuzzy cone metric spaces, providing

tools for analyzing fixed point properties in more general metric spaces.

Jungck et al. [10] discovered the common fixed point theorems for weakly compatible pairings

on cone metric spaces. These theorems have implications for the research of metric spaces under

geometric restrictions. The scholarly work of Jungck [11] has had a lasting impact on the field

of dynamical systems and functional analysis, particularly in the areas of periodic and fixed

points and commuting maps. The development of fuzzy metric and statistical metric spaces by

Kramosil and Michalek [12] broadened the scope of metric spaces to include areas characterised

by ambiguous or inaccurate data.

Meznik’s work [13] underscored the interdisciplinary significance of fixed point theory by

linking Banach’s Fixed Point Theorem with market stability, thereby bridging mathematics and

economics. Fuzzy metric spaces and Mihet’s work [14] on fuzzy contractive mappings provide

useful tools for studying stability and convergence in fuzzy systems. Mustafa et al. [15] into co-

incidence point results for generalised (ψ,φ) -weakly contractive mappings in ordered G-metric

spaces contributed significantly to the comprehension of fixed point theory within ordered met-

ric spaces. Park’s introduction [16] of IFMS presented a framework for effectively modelling

uncertainty and vagueness within metric spaces, with practical applications in decision-making

and pattern recognition. The proposal by Shukla et al. [17] of a new class of fuzzy contractive

mappings and associated fixed point theorems expanded the analytical toolkit for studying fixed

point properties within fuzzy metric spaces. Shukla et al. [18] investigate coincidence points of

Edelstein type mappings in fuzzy metric spaces and their application. Gupta et al. [20] presented

a common fixed point theorem for pair of self mappingsin partially ordered fuzzy metric spaces.

Recently Mani et al. [19] have produced some fixed point results in fuzzy b- metric spaces by

using two different t- norms, see also [21, 22]. Zadeh’s seminal work [23] on fuzzy sets marked a

revolutionary advancement in the field of fuzzy logic, opening avenues for applications in artificial

intelligence and decision-making under conditions of uncertainty.
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2. Preliminaries

This part provides essential background information for the rest of the argument by outlining a

number of definitions and a major finding.

Definition 2.1. (Jungck [10, 11] ). Consider a nonempty set Λ with mappings η, % : Λ → Λ. We define
a coincidence point of η and % as an element α ∈ Λ where %(α) = η(α), and this shared value is termed
the corresponding point of coincidence. The set comprising all coincidence points of η and % is denoted by
CP(η, %), while P(η, %) represents the set of all points of coincidence.A common fixed point of η and % is
recognised as α if α ∈ CP(η, %) and η(α) = %(α) = α, where α is identical to itself. The maps between η
and % are considered weakly compatible if the equationη(%(α)) = %(η(α)) is satisfied for everyα ∈ CP(η, %).

Jungck [11], along with numerous other scholars, explored the periodic points of Picard sequences arising
from a mapping. In this context, we introduce the concept of periodic points that pertain to a pair of
mappings.

Definition 2.2. A point $n is deemed a periodic point of mappings η and % with period p if p is the minimal
natural number such that $n+p = $n.

Proposition 2.1. [2,11] In the context of a nonempty set Λ and weakly compatible self-mappings η and
% on Λ, if η and % share only one point of intersection $ = η(α) = %(α), then $ stands as the unique
common fixed point of η and %.

Definition 2.3. [9] A binary operation, denoted by ⊗̂ : [0, 1] × [0, 1] → [0, 1], qualifies as a continuous
t-norm (CTN) if it meets the following criteria:

(1) ⊗̂ adheres to both associativity and commutativity properties.
(2) ⊗̂ needs to be continuous.
(3) For every δ ∈ [0, 1], it holds that δ⊗̂1 = δ.
(4) For any δ,α, ς, υ ∈ [0, 1], if δ ≤ ς and α ≤ υ, then δ⊗̂α ≤ ς⊗̂υ.

Definition 2.4. [9] A binary operation, denoted by ⊕̂, is defined as follows: It maps the interval [0, 1]× [0, 1]

to the interval [0, 1]. A continuous t-conorm (CTCN) is specified by the following conditions:

(1) ⊕̂ adheres to both associativity and commutativity properties
(2) ⊕̂ needs to be continuous
(3) For every δ ∈ [0, 1], it holds that δ⊕̂0 = δ.
(4) For any δ,α, ς, υ ∈ [0, 1], if δ ≤ ς and α ≤ υ,, then δ⊕̂α ≤ ς⊕̂υ.

Definition 2.5. [16] A five-tuple (Λ, G̃,H, ⊗̂, ⊕̂) is termed an Intuitionistic Fuzzy Metric Space (IFMS)
if Λ is a nonempty set, ⊗̂ represents a CTN, ⊕̂ denotes a CTCN, and G̃, H̃ : Λ ×Λ × (0,∞) → [0, 1] are
the fuzzy sets that satisfy the following conditions:

(i) G̃(α,$, ξ) + H̃(α,$, ξ) ≤ 1

(ii) G̃(α,$, ξ) > 0;
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(iii) G̃(α,$, ξ) = 1⇔ α = $;
(iv) G̃(α,$, ξ) = G̃($,α, ξ);
(v) G̃(α, σ̆, ξ+ v) ≥ G̃(α,$, ξ)⊗̂G̃($, σ̆, v);

(vi) G̃(α,$, ) : (0,∞)→ [0, 1] is continuous;
(vii) H̃(α,$, ξ) < 1;

(viii) H̃(α,$, ξ) = 0⇔ α = $;
(ix) H̃(α,$, ξ) = H̃($,α, ξ);
(x) H̃(α, σ̆, ξ+ v) ≤ H̃(α,$, ξ)⊗̂G̃($, σ̆, v);

(xi) H̃(α,$, ) : (0,∞)→ [0, 1] is continuous;

for all α,$, σ̆ ∈ Λ and v, ξ > 0.

In an IFMS (Λ, G̃, H̃, ⊗̂, ⊕̂), a sequence {αn} is said to converge to α ∈ Λ if, for all ξ > 0, the

limits as n approaches infinity satisfy: lim
n→∞
G̃(αn,α, ξ) = 1

lim
n→∞
H̃(αn,α, ξ) = 0 In such a scenario, we designate α as the limit of {αn}. The space (Λ, G̃, H̃, ⊗̂, ⊕̂)

is termed compact if every sequence in Λ possesses a convergent subsequence within Λ. A

mapping η : Λ→ Λ is termed continuous at α ∈ Λ if, for any convergent sequence {αn} in Λ with a

limit of α, the sequence {%̃(αn)} converges to η̃(α). Moreover, η is considered continuous on Ω ⊆ Λ

if it displays continuity at every point within Ω. If η : Λ → Λ is a continuous function and Ω is a

compact set, then the image of Ω under η, denoted as η(Ω), is also a compact set.

Definition 2.6. In the context of an IFMS(Λ, G̃, H̃, ⊗̂, ⊕̂), where Ω ⊆ Λ and η : Ω → Ω is a mapping,
η is termed Edelstein contractive on Ω if:

G̃(α,$, ξ) < G̃(η(α), η($), ξ)

H̃(α,$, ξ) > H̃(η(α), η($), ξ)

for all α,$ ∈ Ω,α , $, ξ > 0.

3. Main Results

In this section, we begin by introducing the concept of Edelstein %-contractive mappings within

the context of IFMSs. Following that, we aim to present two noteworthy findings: a theorem

regarding coincidence points and another concerning common fixed points..

Definition 3.1. Consider an IFMS (Λ, G̃, H̃, ⊗̂, ⊕̂), where Ω ⊆ Λ is a subset, and η, % : Ω→ Ω are two
mappings. We define η to be an Edelstein %-contractive mapping on Ω if:

G̃(%(α), %($), ξ) < G̃(η(α), η($), ξ)

H̃(%(α), %($), ξ) > H̃(η(α), η($), ξ)

 (3.1)

for all α,$ ∈ Ω, %(α) , %($), ξ > 0. It is clear that every Edelstein contractive mapping η on Ω also
satisfies the criteria for being Edelstein %-contractive on Ω, with % being the identity mapping JΩ on Ω.
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Example 3.1. Let Λ = (0,∞),λ⊗̂α = max{λ,α} for all λ,α ∈ [0, 1] and the fuzzy sets
G̃, H̃ : Λ ×Λ× (0,∞)→ [0, 1] be defined by:

G̃(α,$, ξ) =
min{α,$}
max{α,$}

H̃(α,$, ξ) = 1−
min{α,$}
max{α,$}

for all α,$ ∈ Λ. Then (Λ, G̃, H̃, ⊗̂, ⊕̂) is an IFMS. Consider the mappings η, % : Λ→ Λ defined by
η(α) = α2 + 2 and %(α) = α2 + 1 for all α,$ ∈ Λ. If α < $, then α2+1

$2+1 <
α2+2
$2+2 and 1− α2+1

$2+1 > 1− α2+2
$2+2 ,

i.e., G̃(%(α), %($), ξ) < G̃(η(α), η($), ξ) and H̃(%(α), %($), ξ) > H̃(η(α), η($), ξ). The inequality
remains valid when $ < α, thus indicating that η maintains Edelstein %-contractivity on Λ. However, η is
deemed Edelstein contractive over Λ since equation (3.1) fails to satisfy conditions for α = 1 and $ = 2.

From the example above, it’s evident that η(Λ) ⊂ %(Λ). Thus, it’s always feasible to formulate a
Jungck(JK ) sequence for the ordered pair (η, %) with some initial value α0 ∈ Λ (e.g., one can choose
α0 = 1), while η and % lack coincidence points and periodic points (as for any {$n} ∈ JΛ(η, %), $n+p , $n

for all p ∈ N). In the following proposition, we establish that if η and % lack coincidence points, they also
lack periodic points. Furthermore, we’ll determine the conditions under which η and % will have coincidence
point.

Proposition 3.1. Consider (Λ, G̃, H̃, ⊗̂, ⊕̂) within the framework of IFMS, where Ω ⊆ Λ, and two
mappings η, % : Ω→ Ω are specified such that JΛ(η, %) , ∅. For η to be Edelstein %-contractive on Ω, it is
necessary to have either a coincidence point between % and η or the lack of a periodic point between them.

Proof. Let {$n} ∈ JΛ(η, %) with an initial value of α0. It’s worth noting that any periodic point of

order 1 serves as a coincidence point of η and %. Therefore, we assume the absence of a periodic

point of order 1. We assert that there exists no n ∈N such that for any p ≥ 2, $n+p = $n. Suppose

to the contrary that there exist n ∈N and p ≥ 2 such that $n+p = $n. Then, as there is no periodic

point of order 1, by condition (3.1) we have: for all ξ > 0.

G̃
(
$n+p,$n+p−1, ξ

)
= G̃

(
η
(
αn+p

)
, η

(
αn+p−1

)
, ξ

)
> G̃

(
%
(
αn+p

)
, %

(
αn+p−1

)
, ξ

)
= G̃

(
$n+p−1,$n+p−2, ξ

)
.

H̃
(
$n+p,$n+p−1, ξ

)
= H̃

(
η
(
αn+p

)
, η

(
αn+p−1

)
, ξ

)
< H̃

(
%
(
αn+p

)
, %

(
αn+p−1

)
, ξ

)
= H̃

(
$n+p−1,$n+p−2, ξ

)
.

Proceeding in similar way, we obtain

G̃
(
$n+p,$n+p−1, ξ

)
> G̃ ($n+1,$n, ξ)

H̃
(
$n+p,$n+p−1, ξ

)
< H̃ ($n+1,$n, ξ)

 (3.2)
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for all ξ > 0.

Again,

G̃ ($n+1,$n, ξ) = G̃
(
$n+1,$n+p, ξ

)
= G̃

(
η (αn+1) , η

(
αn+p

)
, ξ

)
> G̃

(
% (αn+1) , %

(
αn+p

)
, ξ

)
= G̃

(
$n,$n+p−1, ξ

)
= G̃

(
$n+p,$n+p−1, ξ

)
.

H̃ ($n+1,$n, ξ) = H̃
(
$n+1,$n+p, ξ

)
= H̃

(
η (αn+1) , η

(
αn+p

)
, ξ

)
< H̃

(
% (αn+1) , %

(
αn+p

)
, ξ

)
= H̃

(
$n,$n+p−1, ξ

)
= H̃

(
$n+p,$n+p−1, ξ

)
.

The stated inequality, when combined with equation (3.2), leads to a contradiction, therefore

validating the claim. �

Lemma 3.1. In the context of (Λ, G̃, H̃, ⊗̂, ⊕̂) being an IFMS, with Ω ⊆ Λ, and η, % : Ω→ Ω being two
mappings, if η satisfies the Edelstein %-contractive condition on Ω and % is continuous on Ω, then η is also
continuous on Ω.

Proof. If Ω = ∅, the result is trivial. Supposeα ∈ Ω and {αn} is a sequence in Ω converging toα. Due

to the continuity of %, the sequence
{
% (αn)

}
converges to %(α), implying lim

n→∞
G̃ (% (αn) , %(α), ξ) = 1

and lim
n→∞
H̃ (% (αn) , %(α), ξ) = 0 for all ξ > 0. Since η is Edelstein %-contractive on Ω by (3.1), we

have:

lim
n→∞
G̃ (η (αn) , η(α), ξ) ≥ lim

n→∞
G̃ (% (αn) , %(α), ξ) = 1

lim
n→∞
H̃ (η (αn) , η(α), ξ) ≤ lim

n→∞
H̃ (% (αn) , %(α), ξ) = 0

for all ξ > 0. Thus,
{
η (αn)

}
converges to η(α), implying that η is also continuous at α ∈ Ω for all

α ∈ Ω. �

Theorem 3.1. Let (Λ, G̃, H̃, ⊗̂, ⊕̂) denote an IFMS, where Ω is a nonempty compact subset of Λ, and
η, % : Ω → Ω are two mappings satisfying η(Ω) ⊆ %(Ω). Assuming η is an Edelstein %-contractive
mapping and % is continuous, then P(η, %)∩ %(Ω) contains only one element. Furthermore, for each initial
value α0 ∈ Ω, there exists {$n} ∈ JΩ(η, %) such that $n = η (αn−1) = % (αn) for n ∈N, converging to the
unique element of P(η, %)∩ %(Ω). In this context, P(η, %) refers to the set of coincidence points between the
mappings η and %, defined as follows:

P(η, %) = {x ∈ Ω : η(x) = %(x)}
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Proof. Let ξ > 0 be given. We introduce two mappings ϕ and χ defined on Ω into the interval

(0, 1]:

ϕ(c)(ξ) = G̃(%(c), η(c), ξ)

χ(c)(ξ) = H̃(%(c), η(c), ξ), for all c ∈ Ω.

As % is continuous on Ω, according to Lemma (3.1), η is also continuous on Ω. Additionally, since

G̃ and H̃ are continuous on Λ × Λ × (0,∞) (as stated in [31]), and % and η are continuous, the

functions ϕ and χ are continuous as well. Therefore, they attain their maximum and minimum

values in Ω respectively.

Suppose ζ ∈ Ω and for ξ > 0 the following holds:

ϕ(ζ)(ξ) = max
c∈Ω

ϕ(c)(ξ)

χ(ζ)(ξ) = min
c∈Ω

χ(c)(ξ)

We claim that ζ ∈ CP(η, %). Suppose the contrary, that is, η(ζ) , %(ζ). Since η(Ω) ⊆ %(Ω), there

exists β ∈ Ω such that η(ζ) = %(β) , %(ζ). Given the Edelstein %-contractive property of η, for each

ξ > 0, we obtain:
ϕ(β)(ξ) = G̃(%(β), η(β), ξ) = G̃(η(ζ), η(β), ξ)

> G̃(%(ζ), %(β), ξ) = G̃(%(ζ), η(ζ), ξ)

= ϕ(ζ)(ξ).

χ(β)(ξ) = H̃(%(β), η(β), ξ) = H̃(η(ζ), η(β), ξ)

< H̃(%(ζ), %(β), ξ) = H̃(%(ζ), η(ζ), ξ)

= (ζ)(ξ).

This contradicts the definition of ι. Therefore, we must have η(ζ) = %(ζ), implying ζ ∈ CP(η, %)

and %(ζ) ∈ P(%, %). The uniqueness of the point of coincidence %(ζ) follows from the contractive

condition (3.1). Thus, P(η, %)∩ %(Ω) = {%(ζ)}.

Let α0 ∈ Ω. We construct a sequence {$n} ∈ JΩ(η, %) with initial value α0 as follows:

Since η (α0) ∈ η(Ω) ⊆ %(Ω), there exists α1 ∈ Ω such that η (α0) = % (α1) = $0. Similarly, since

η (α1) ∈ η(Ω) ⊆ %(Ω), there exists α2 ∈ Ω such that η (α1) = % (α2) = $1. Continuing this process,

we obtain $n = η (αn−1) = % (αn) for all n ∈ N, i.e., {$n} ∈ JΩ(η, %) with an initial value α0. We

consider the following cases I and II:

Case I: If during the sequence construction, we encounter a term equal to %(ζ) at

any stage, denoted by some n0 ∈ N, we can set αn0 = ζ since ζ ∈ Ω. Conse-

quently, we have $n0−1 = η (αn0−1) = %(ζ). Additionally, as η(ζ) ∈ η(Ω) ⊆ %(Ω) and

ζ ∈ CP(η, %), implying %(ζ) = η(ζ), we can then choose αn0+1 = ζ. Consequently,

$n0 = η (αn0) = % (αn0+1) = η(ζ) = %(ζ). Continuing in a similar manner, we find that
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the sequence {$n} eventually becomes constant (i.e., $n0+i = %(ζ) for all i ∈ N), converging to

%(ζ).

Case II: Let’s assume that $n−1 = η (αn−1) = % (αn) , %(ζ) for all n ∈N.

We define G̃n(ξ) = G̃ ($n, %(ζ), ξ) and H̃n(ξ) = H̃ ($n, %(ζ), ξ) for all n ∈N∪ {0} and ξ > 0. Then,

for each ξ > 0, we have:

G̃n(ξ) = G̃ ($n, %(ζ), ξ) = G̃ (η (αn) , η(ζ), ξ)

> G̃ (% (αn) , %(ζ), ξ)

= G̃ ($n−1, %(ζ), ξ)

= G̃n−1(ξ).

H̃n(ξ) = H̃ ($n, %(ζ), ξ) = H̃ (η (αn) , η(ζ), ξ)

< H̃ (% (αn) , %(ζ), ξ)

= H̃ ($n−1, %(ζ), ξ)

= H̃n−1(ξ).

Therefore,
{
G̃n(t)

}
forms an increasing sequence and

{
H̃n(t)

}
is a decreasing function in (0, 1], with

both being convergent. Let’s assume:

lim
n→∞
G̃n(ξ) =M(ξ) ∈ (0, 1] and lim

n→∞
H̃n(ξ) =M

′(ξ) ∈ (0, 1]

for each ξ > 0

Since %(α) , %(ζ), by (3.1) we obtain

G̃ (%(α), %(ζ), ξ0) =M (ξ0)

= lim
i→∞
G̃ ($ni , %(ζ), ξ0) = G̃ (η(α), η(ζ), ξ0)

> G̃ (%(α), %(ζ), ξ0) .

H̃ (%(α), %(ζ), ξ0) =M
′ (ξ0)

= lim
i→∞
H̃ ($ni , %(ζ), ξ0) = H̃ (η(α), η(ζ), ξ0)

< H̃ (%(α), %(ζ), ξ0) .

This contradiction shows that

M(ξ) = lim
n→∞
G̃n(ξ) = lim

n→∞
G̃ ($n, %(ζ), ξ) = 1 and

M
′(ξ) = lim

n→∞
H̃n(ξ) = lim

n→∞
H̃ ($n, %(ζ), ξ) = 0 for all ξ > 0. Consequently, {$n} converges to

%(ζ). �

Remark 3.1. If the mappings η and % are weakly compatible in the above theorem, then according to
Proposition (2.1), they possess a unique common fixed point.
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4. Break-even Analysis

The break-even analysis model is a structured method for determining the point at which

total costs equal revenue, known as the break-even point. This calculation involves finding the

contribution per unit sold, which is the selling price minus the variable cost per unit. By dividing

fixed costs by the unit contribution, one can identify the number of units needed to cover all fixed

costs. It’s important to note that the break-even point isn’t fixed; it fluctuates as costs and prices

change over time.

Break-even analysis is a vital tool for business owners as it pinpoints the point where total costs

match revenue, termed the break-even point. This figure indicates the minimum level of sales

required to cover operating expenses. At this juncture, no profit is made, yet no losses are incurred

either. This metric serves as a crucial indicator for both budding enterprises, gauging the feasibility

of their ventures, and established businesses, helping to pinpoint operational shortcomings.

Components of Break-even Analysis:
The three components of Break-even Analysis are as follows:

Fixed Costs: Fixed costs, also referred to as overhead costs, are the expenses that a company

must cover regardless of its level of production. These costs remain stable and do not fluctuate

with changes in production volume. Examples of fixed costs include rent or mortgage payments,

equipment expenses, salaries, taxes, insurance premiums, and other ongoing operational expenses

that remain consistent over time.

Variable Costs: Variable costs are expenses that fluctuate in direct proportion to changes in

production output. As production increases, variable costs also rise, and conversely, they decrease

when production decreases. Examples of variable costs include expenses such as packaging

costs, wages for production workers, raw material costs, and other expenses directly tied to the

production volume.

Total cost = Fixed cost + Variable cost
Selling Price: The selling price represents the amount that a seller or company charges customers

in exchange for their products or services. This price is determined based on various factors such

as the cost of raw materials used in production, labor wages, fixed expenses, and other relevant

costs associated with bringing the product or service to market. The selling price plays a crucial

role in determining profitability and competitiveness in the market.

Limitations:

(1) The challenges in determining the break-even point in many cases are due to the potential

fluctuations in market conditions over the projected capacity range.

(2) The total cost line, which combines variable costs and fixed costs, is ideally represented as

a straight line, but in reality, actual costs often do not vary in direct proportion.

(3) Additionally, the break-even analysis chart becomes more complex when a company pro-

duces a variety of products.
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Figure 1. Break-even chart

5. Application to a Profitable Business

In this segment, we leverage Theorem (3.1) to establish that, given certain favorable conditions,

a business currently operating at a loss can be transitioned into a profitable enterprise.

A company’s total cost and revenue cost structure should be considered. On the P (vertical)

axis, we show the several phases of a company’s development, while on the Q (horizontal) axis,

we show the product’s sales volume and its price (total cost and revenue cost). Both the revenue

cost function (RC) and the total cost function (TC) represent the sales volume (q) in terms of the

price (p), respectively, and these functions entirely characterise these types of organisations. FC

stands for the constant function that represents fixed cost. Both the total cost function TC and the

revenue cost function RC are growing given typical business circumstances (refer to Figure 2).

In practical scenarios, we operate under the assumption that the sales volume, total cost, and

revenue cost prices of a product are non-negative finite values. These aspects are modeled as

continuous functions of the quantity q. We stipulate that the quantity (RC or TC) always falls

within the range [0,λ], while the corresponding prices vary within [0,α], where both λ and α are

non-negative constants. Additionally, we assert that for each price p within [0,α], there exists a

specific quantity corresponding to the revenue q within [0,λ], and the same holds true for total

cost. For practical applicability, with appropriate selection of functions, we can assume that both

p and q lie within the interval [0,λ] (see Remark 2 below). Throughout the discussion, we denote

this interval as J = [0,λ].

Definition 5.1. The sensitive index of a business within an interval [u, v] ⊆ J is denoted by ı(u, v) and is
defined as follows:

ı(u, v) =
|TC(u) −TC(v)|

|RC(u) −RC(v)|
, u , v.
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Figure 2. RC: Revenue line, TC: Total cost line

A business is considered profit-sensitive if ı(u, v) < 1 for all u, v ∈ J, indicating that:

|TC(u) −TC(v)| < |RC(u) −RC(v)| for all u, v ∈ J with u , v. (5.1)

According to the previous criteria, a profit-sensitive company is one in which the total revenue changes
more quickly than the total cost of the product in response to a specific change in the quantity.

On the contrary, a company is deemed to be loss-sensitive if, when there’s a change in quantity, the total
product cost fluctuates more rapidly than the revenue of the product. If the ratio t(u, s), where u, s ∈ J,
exceeds 1 for all instances, then the company is mathematically categorized as loss-sensitive.

|RC(u) −RC(s)| < |TC(u) −TC(s)| for all u, s ∈ J with u , s. (5.2)

Theorem 5.1. In the context of a profit-sensitive business, stability is maintained consistently, ensuring
continuity in its operations. Additionally, within this framework, there exists a sequence of prices denoted
as

{
pn

}
∈ JKJ(TC,RC), which converges towards the break-even price pB.

Proof. Let q denote a quantity within the range J. Considering the price corresponding to this

quantity, associated with the total cost as TC(q), and since each price has a specific quantity linked

with the revenue cost, there exists another quantity q′ ∈ J such that p = RC (q′). This implies that

the set of prices determined by total cost, TC(J), is a subset of those determined by revenue cost,

RC(J).
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Given that the business is profit-sensitive, we have:

|TC(α) −TC($)| < |RC(α) −RC($)| for all α,$ ∈ Jwith α , $.

The inequality described above remains valid for any α and $ belonging to J, given that

RC(α) , RC($).

Let’s define fuzzy sets G̃ and H̃ on R×R× (0,∞) as follows:

G̃(α,$, ξ) =
ξ

ξ+ |α−$|
, and H̃(α,$, ξ) =

|α−$|
ξ+ |α−$|

, for all α,$ ∈ J.

Then, it is evident that (R, G̃, H̃, ⊗̂, ⊕̂) forms an IFMS, where ξ1⊗̂ξ2 = max{ξ1, ξ2} and ξ1⊕̂ξ2 =

min{ξ1, ξ2} for all ξ1, ξ2 ∈ (0,∞). Moreover, given RC(α) , RC($), as |TC(α) −TC($)| < |RC(α) −

RC($)|, we deduce:

G̃(RC(α),RC($), ξ) =
ξ

ξ+ |RC(α) −RC($)|
<

ξ

ξ+ |TC(α) −TC($)|
= G̃(TC(α),TC($), ξ).

H̃(RC(α),RC($), ξ) =
|RC(α) −RC($)|

ξ+ |RC(α) −RC($)|
>
|RC(α) −RC($)|

ξ+ |TC(α) −TC($)|
= H̃(TC(α),TC($), ξ).

In the standard metric space (R, | · |), J is compact. For any sequence {qn} in J such that

lim
n→∞
G̃ (qn, q, ξ) = 1 and the limit of the set {H (qn, q, ξ)} as n→∞ is zero, given that lim

n→∞

∣∣∣qn − q
∣∣∣ = 0,

holds for all {qn} sequences in R and q not in it. Thus, J is a small subset of the IFMS collection

(R, G̃, H̃, ⊗̂, ⊕̂).

Everything stated in Theorem (3.1) holds because Λ = R, Ω = J, η ≡ TC, and % ≡ RC. According

to Theorem (3.5), the JK sequence {pn} ∈ JKJ(TC,RC) holds for all starting values q0 ∈ J. And

the sequence converges to the unique point where TC and RC coincide, satisfying the condition

TC (qn) = RC (qn−1) for all n ∈ N. This unique point of coincidence is pB = TC (qB) = RC (qB).

Thus, the break-even price pB of the company is constant. �

Theorem 5.2. An organisation that is loss-sensitive maintains consistent stability, and it generates a
sequence of prices denoted as the JK sequence, represented by

{
pn

}
., within the framework of RC and TC,

that converges to the break-even price pB in a decreasing order of value.

Proof. Let’s consider the relationship between price, p, and quantity, q, defined by the revenue

cost function RC for q within the feasible set J. Given that each price corresponds to a specific

quantity of total cost, denoted by q′ ∈ J, where p = TC (q′), it becomes evident that the set of

prices generated by RC is a subset of those generated by the total cost function TC. Considering

the business’s sensitivity to losses, this implies,

|RC(α) −RC($)| < |TC(α) −TC($)|, for all α,$ ∈ Jwith α , $.

The inequality mentioned above applies to all pairs of quantities α,$ ∈ J where TC(α) , TC($).

We then examine the fuzzy sets G̃ and H̃ defined on R ×R × (0,∞), along with the CTN ⊗̂ and
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CTCN ⊕̂ as outlined in the proof of Theorem 2.

Given that |RC(α) −RC($)| < |TC(α) −TC($)|whenever TC(α) , TC($), we can conclude that,

G̃(TC(α),TC($), ξ) =
ξ

ξ+ |TC(α) −TC($)|
<

ξ

ξ+ |RC(α) −RC($)|
= G̃(RC(α),RC($), ξ).

H̃(TC(α),TC($), ξ) =
|TC(α) −TC($)|

ξ+ |TC(α) −TC($)|
>
|TC(α) −TC($)|

ξ+ |RC(α) −RC($)|
= H̃(RC(α),RC($), ξ).

Therefore, with Λ = R, Ω = J, η ≡ RC, and % ≡ TC, all the conditions outlined in Theorem (3.1) are

fulfilled. Consequently, according to Theorem (3.5), for any initial value q0 ∈ J, the JK sequence{
pn

}
∈ JKJ(RC,TC), where pn = RC (qn) = TC (qn−1) for n ∈ N, converges to the unique point

where TC and RC coincide. Denoting this unique point as pB = RC (qB) = TC (qB), we identify pB

as the break-even price of the business, signifying its stability. �

Convergence for profit and loss-sensitive businesss: Let’s begin by examining a firm that is

focused on maximising profits. In reality, the price of a good or service does not correspond to

the cost of equilibrium. At first, the price p0 is seen as a constant expense. Assume that the price

p1 is not equal to pB, specifically p1 is more than pB (if p1 is less than pB, the same reasoning will

apply). Currently, p1 is equal to the function TC(q1). By utilizing the provided price p1, we can

determine a specific revenue cost, represented by q0, by drawing a line parallel to the quantity

axis and passing through the point (0, p1), as illustrated in Figure 2. In essence, this implies that

p1 = TC(q1) = RC(q0).

Figure 3. A profit-sensitive business
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Referring to Figure 3, it becomes apparent that q0 < q1, indicating that the revenue generated

is less than the total cost incurred for the product. Consequently, there exists a surplus of the

commodity amounting to q1 − q0. Consequently, business owners respond by increasing the price

to a level denoted as p2. This price p2 is directly related to the total cost accumulated from selling

q2 units, represented as p2 = TC(q2). This series of actions propels the company towards greater

success. The initial price p2 surpasses the break-even point, represented as pB. At this stage, the

total cost is q2 and the revenue cost is q1, with q1 being less than q2. In other words, p2 equals both

the total cost TC(q2) and the revenue cost RC(q1). Consequently, the difference between q2 and

q1 signifies the quantity of excess goods sold. These consecutive outcomes drive the company to

higher levels of achievement.

For every stage of the company, we establish a sequence of pricing
{
pn

}
, where

pn = TC(qn) = RC(qn−1), for all n ≥ 0.

The progression of prices adheres to a specific sequence known as the JK sequence of the

ordered pair (TC, RC). In simpler terms,
{
pn

}
∈ JK1(TC, RC). The eventual recovery of the total

cost of production as profit, even with a fifty percent selling price, underscores its susceptibility

to changes in profitability. It’s important to note that, due to the business being profit-sensitive,

Theorem (5.1) necessitates the convergence of theJK sequence. The limit of this sequence signifies

the break-even point for the functions TC and RC, essentially representing the break-even price

for the business. Presently, the business is not undergoing significant alterations. Anything sold

beyond that point is considered profit.

Alternatively, for a loss-sensitive company, if the initial price is p1 , pB and p1 < pB (similar

explanation applies if p1 > pB). In this scenario, let’s assume that p1 corresponds to the result of

applying the function RC to q1. Given a price p1, there exists a specific quantity, denoted as q0,

which can be determined by drawing a line parallel to the P axis intersecting with the total cost

curve and a line parallel to the Q axis passing through the point (0, p1) (see Figure 3). In essence, p1

equals the total cost function RC evaluated at q1, which is also equivalent to the total cost function

TC evaluated at q0.

Based on Figure 4, it becomes apparent that the quantity q1 exceeds q0, indicating an excess of the

product amounting to q1 − q0. In response, producers increase the price of the product, reaching

p2. At this price, the corresponding revenue cost amount is q2, represented as p2 = RC (q2). This

sequence of events propels the company to the subsequent level.

At the initial stage of the business, the price p2 is lower than the break-even price, i.e., p2 < pB.

At this point, the quantity of revenue cost is q2, while the quantity of total cost is q1, with q1 < q2.

Thus, there is a shortage of product amounting to q2 − q1. Subsequently, producers raise the price

to a value p3, such that the corresponding quantity of revenue cost is q3, i.e., p3 = RC (q3). Given

that there is a specific quantity of total cost corresponding to this price p3, denoted as q2, i.e.,

p3 = RC (q3) = TC (q2), this process drives the business to the next stage.
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Figure 4. A loss-sensitive business

Similarly, for each stage of the business, we derive a sequence of prices
{
pn

}
, where

pn = RC (qn) = TC (qn−1) for all n ≥ 0.

The sequence of prices clearly forms a JK sequence of the ordered pair (RC,TC), meaning

that
{
pn

}
belongs to the set JKJ(RC,TC)." However, if the costs used in making a product are

only recovered by selling more than the intended amount, it leads to a financial loss, suggesting a

high sensitivity to losses. Furthermore, given the business’s vulnerability to losses, Theorem (5.2)

requires the JK sequence to converge. The limit of this series corresponds to the point at which

the functions TC and RC intersect, indicating the price at which the market reaches a break-even

point. Based on this study, it is evident that the firm is maintaining stability at the break-even

threshold. Nevertheless, any sales made below this threshold lead to financial losses.

Remark 5.1. In practical situations, there may be cases where the quantities of total cost (or revenue cost)
are within the range [0,λ], while the corresponding product prices fall within [0,α], where α , λ. To handle
such scenarios, a technique called "scaling" is employed. We illustrate this method using the example of a
profit-sensitive business, although the same approach can be applied to a loss-sensitive business:

Let TC,RC : [0,λ] → [0,α] be functions satisfying |TC(α) − TC($)| < |RC(α) − RC($)| for all
α,$ ∈ [0,λ] with α , $. Assume TC([0,λ]) ⊆ RC([0,λ]) and RC is continuous.

If α ≤ λ (i.e., [0,α] ⊆ [0,λ]), then TC,RC are self-mappings of [0,λ]. Consequently, following a similar
process to the proof of Theorem (5.2), one can ensure that TC,RC have a point of coincidence, denoted by
ζ (= qE) ∈ [0,λ], such that TC(ζ) = RC(ζ). However, if λ < α (i.e., [0,α] ⊃ [0,λ]), then TC,RC are not
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self-mappings of [0,λ], rendering the same procedure inapplicable, and the existence of a point of coincidence
cannot be determined.

To create self-mappings on [0,λ] with the specified properties, we utilize the “scaling" technique on
TC,RC to enable the determination of a coincidence point in a manner akin to the proof of Theorem (5.1).
Suppose λ < α, and consider the functions:

TC1(q) =
λ
α
TC(q),RC1(q) =

λ
α
RC(q) for all q ∈ [0,λ].

Then, we notice that TC1,RC1 : [0,λ]→ [0,λ]. Moreover, for α,$ ∈ [0,λ], where α , $, we have:∣∣∣TC1(α) −TC1($)
∣∣∣ = ∣∣∣∣∣λαTC(α) − λαTC($)

∣∣∣∣∣ < λ
α
|RC(α) −RC($)|

=
λ
α

∣∣∣∣αλRC1(α) −
α
λ
RC1($)

∣∣∣∣
=

∣∣∣RC1(α) −RC1($)
∣∣∣ .

Since TC([0,λ]) ⊆ RC([0,λ]), we have

TC1([0,λ]) =
{
λ
α
TC(q) : q ∈ [0,λ]

}
⊆

{
λ
α
RC(q) : q ∈ [0,λ]

}
= RC1([0,λ]).

Thus,TC1 andRC1 both map from [0,λ] to [0,λ]. By employing a procedure similar to the proof of Theorem
(5.1), one can establish the existence of the break-even point ofRC1 andTC1. Let ζ (= qE) ∈ BE (TC1,RC1).
It’s worth noting that ζ ∈ BE (TC1,RC1) if and only if ζ ∈ BE(TC,RC); thus, we have established the
desired result.

6. Differentiating Profit-Sensitive and Loss-SensitiveMarket Strategies: Concluding

Perspectives

In this section, we examine two strategies devised for profit-sensitive and loss-sensitive busi-

nesses, drawing comparisons with the approach outlined in [13].

The preceding discussion highlights that to evaluate the stability of a business, it suffices to

focus on the convergence behavior of the JK sequence pn of prices. If this sequence converges,

it does so to the break-even price, indicating business stability. Furthermore, in profit-sensitive

businesses, when the product price deviates from the break-even point, producers adjust the price

until the total cost quantity aligns with the revenue cost quantity from the previous stage, termed

as a “total cost-based" strategy. Consequently, for effective control of profit-sensitive businesses,

producers should adopt a total cost-based approach. Conversely, in loss-sensitive businesses,

price adjustments aim to match the supplied quantity with the demanded quantity from the prior

stage, known as a “profit-based" strategy. Thus, to effectively manage loss-sensitive businesses,

producers should employ a profit-based strategy.

The implications of these strategies are illustrated in Figures 2 and 3. Representing profit-

sensitive businesses in Figure 2, the converging price sequence pn forms a descending staircase

leading towards the break-even price pB. Conversely, in Figure 3, illustrating loss-sensitive busi-

nesses, the sequence forms an ascending staircase converging towards pB. Failure to adhere to the
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prescribed strategies, such as employing a “loss-based" strategy for a loss-sensitive business (or a

“profit-based" strategy for a profit-sensitive business), results in a divergent staircase, preventing

the attainment of the business’s break-even state.

Figure 5. Failure of convergence

If the business doesn’t satisfy either condition (5.1) or (5.2)—in other words, if it’s neither

profit-sensitive nor loss-sensitive—then it might lack stability. In such scenarios, the discussed pro-

cedures, especially regarding the sequences of prices, may fail to converge, making the break-even

point unreachable. For example, if at any given stage, |TC(qn−1) − TC(qn)| = |RC(qn−1) − RC(qn)|

for some qn−1, qn ∈ J (where the sensitivity index ı(qn−1, qn) = 1) with qn−1 , qn, then both

discussed procedures fail to converge, as depicted in Figure 4.

In such cases, both profit-based and loss-based strategies yield a staircase-like sequence of prices

where the price repeats after each consecutive stage. Mathematically, these cases display periodic

points (prices) in the JK sequence, denoted by p0 = p2 = · · · , thus hindering convergence for

business operations. Conversely, if either condition (5.1) or (5.2) is satisfied, Proposition (3.1)

guarantees that such obstacles are overcome, maintaining stability in the business.

7. Conclusion

This paper introduced a new theorem for finding break-even points IFMS. It explored how

businesses analyze costs and revenue, focusing on dynamic environments. By using this theorem,

the study shown how businesses naturally move toward their break-even points, whether they’re
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profit-sensitive or loss-sensitive. This research highlights the importance of understanding finan-

cial equilibrium in dynamic business settings, providing useful insights for both practitioners and

researchers.
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