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Abstract. The field of difference equations (DEs)has gained considerable prominence in applied analysis. The primary

aim of this research is to conduct a comprehensive analysis on the periodicity of solutions, local asymptotic stability,

and global behavior of DEs

Un+1 = sUn−2 + tUn−5 +
hUn−2 + rUn−5

cUn−5 − e
, n = 0, 1, 2, . . . .

1. Introduction

Lately, there has been a growing interest among academics in nonlinear difference equations

(NLDE). Over the past decade, we have witnessed a notable surge in attention toward these

equations, possibly fueled by their diverse applications beyond mathematics. Fields such as

biology, engineering, ecology, discrete temporal systems, economics, physics, and other math-

related disciplines have found utility in these equations. Anticipating that this research area

will continue to attract more scholars, we expect the allure of intriguing outcomes reported in

studies to contribute to its sustained appeal. One persistent challenge in this field is the difficulty

of obtaining closed-form solutions for NLDEs. Despite common assumptions, scholars actively

engage in attempts to solve NLDEs through various means, as exemplified in references [9,16,34].

It is evident that determining a general solution form for such equations can be exceedingly

complex. Nevertheless, recent efforts have introduced several strategies to transform challenging

NLDEs into linear forms, thereby revealing recognized solution forms. Notably, this approach has

successfully led to the closed-form solutions of a significant class of NLDEs, as demonstrated in

references [5–8]. Many scholars have studied the behavior of equations of difference equations
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(DEs) and investigated the behavior of systems of solved DEs.,for instance : Khaliq and Elsayed [25]

examined the DEs periodic solutions existence and dynamics:

Tn+1 = ζ1Tn−2 +
ζ2T2

n−2

β1Tn−2 + β2Tn−5
.

El-Metwally [11] examined the solutions form for the following systems of DEs:

An+1 =
An−1En

±An−1 ± En−2
, En+1 =

En−1An

±En−1 ±An−2
.

R.P. Agarwal et al. [1] examined solutions for qualitative behavior of the DE:

Qn+1 = α+
aQn−lQn−p

c− eQn−d
,

where α, a, c, e are positive real constants.

A. Gelisken [24] examined behaviors of clearly stated solutions for the system that follows

Sn+1 =
E1Xn−(3p−1)

W1 + C1Xn−(3p−1)Sn−(2p−1)Xn−(p−1)
, Xn+1 =

E2Sn−(3p−1)

W2 + C2Sn−(3p−1)Xn−(2p−1)Sn−(p−1)
,

where n, p ∈ N0, the coefficients E1, E2, W1, W2, C1, C2 and the initial conditions are arbitrary

numbers.

In [14, 15], E.M. Elsayed found the solutions of the following DEs

Tn+1 =
Tn−7

±1± Tn−1Tn−3Tn−5Tn−7
, Tn+1 =

Tn−9

±1± Tn−4Tn−9
.

E. Tasdemir [36] investigatedstudied the global asymptotic stability of the following system of DEs

Xn+1 = u + t
Yn

Y2
n−1

, Yn+1 = u + t
Xn

X2
n−1

,

Kostrov et al. [31] examined the following second order recursive equation to determine if it is

bounded and whether it is stable locally and globally.

wn+1 =
η+ κwn−1

γwn + αwnwn−1 + wn−1
.

In [13], Zayed et al. examined some of the solutions qualitative characteristics for the NLDE

Xn+1 = EXn + CXn−p + RXn−k + FXn− j +
αXn−p + βXn−k

γXn−p + λXn−k
, n = 0, 1, . . .

References [1]- [39] contain further results on systems and rational difference equations that are

related.

Differential equations and discrete difference equations serve as means to depict the dynamic

characteristics of population systems, where the former is employed for species with overlapping

generations, and the latter for those with non-overlapping generations.

In practical scenarios, tests and observations can be directly utilized to formulate a discrete

model. When confronted with the numerical solution of a differential equation, particularly when

an explicit solution is unattainable, it becomes beneficial to propose a finite-difference scheme.

The most suitable difference equation approximation is the one where the solution coincides with
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the differential equation at discrete points [6]. However, meeting these criteria proves challenging

unless both equations can be explicitly solved.

When a differential equation originates from a difference equation, it is generally preferred to

retain the dynamical properties of the associated continuous-time model, includes maintaining

equilibrium points, as well as analyzing their stability both locally and globally, along with study-

ing bifurcation phenomena. El-Metwally et al. [12] examined the asymptotic tendencies of the

population model:

Xn+1 = γ+ αXn−1e−Xn ,

The generalized Beverton–Holt stock recruitment model has been examined in [4]:

Xn+1 = αXn +
rXn−1

1 + dXn−1 + eXn
.

Elettreby and El-Metwally [10] examined certain qualitative characteristics of the following discrete

model system in the field of economy

Wn+1 = (1− E)Wn + PWn(1−Wn)e−(Wn+Hn), Hn+1 = (1− E)Hn + PHn(1−Hn)e−(Wn+Hn).

Khaliq et al. [26] examined dynamical analysis of the discrete-time Lotka-Volterra model system

with two predators and one prey was conducted.

Xn+1 =
aXn − bXnYn − cXnZn

1 + dXn
, Yn+1 =

eYn + rXnYn − sYnZn

1 + mYn
, Zn+1 =

αZn + hXnZn − gYnZn

1 + wZn
.

The authors in [27] studied local dynamics in a discrete-time COVID-19 epidemic model using

topological classifications, bifurcation analysis, and chaos management.See also [33]- [38]. This

research work aims to study the following new rational difference equation (RDE).

Un+1 = sUn−2 + tUn−5 +
hUn−2 + rUn−5

cUn−5 − e
, n = 0, 1, 2, . . . , (1.1)

constants s, t, h, r, c and e are positive real numbers and U−5, U−4, U−3, U−2, U−1 and U0 are arbitrary

real numbers.

2. Linearized Stability of Eq.(1)

This section shows that, under specific conditions, Eq. (1) has two equilibrium points (EQPs)and

is asymptotically stable (AS). Eq. (1) fixed points is provided by

Ū(1− s− t) =
hŪ + rŪ

cŪ − e
,

then

cŪ2(1− s− t) − Ū(e(1− s− t) + h + r) = 0,

from which we can obtain the following two EQPs :

Ū1 = 0, Ū2 =
h + r

c(1− s− t)
+

e
c

.
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Theorem 2.1. If Ū1 = 0 is the first EQP of Eq.(1), it is locally asymptotically stable (LAS) if

| − h− r| < e(1− s− t).

Proof. Let ψ : (0,∞)2
−→ (0,∞) be a continuous function defined by:

ψ( f , g) = s f + tg +
h f + rg
cg− e

(2.1)

The following step is to locate the partial derivatives

∂ψ( f , g)
∂ f

= s +
h

cg− e
,
∂ψ( f , g)
∂g

= t−
(ch f + re)
(cg− e)2 , (2.2)

After that, calculating these partial derivatives at the EQP results in

∂ψ(Ū1, Ū1)

∂ f
= s−

h
e
= −p1,

∂ψ(Ū1, Ū1)

∂g
= t−

r
e
= −p2

About the EQP Ū1, the relevant linearized DE of Eq. (1) is given by

Sn+1 + p1Sn + p2Sn−1 = 0.

The fixed point of Eq. (1) is AS , if

|p1|+ |p2| < 1.

This could be expressed as

|s−
h
e
|+ |t−

r
e
| < 1,

this implies,

|se− h + te− r| < e,

| − h− r| < e(1− s− t).

The proof is complete.

Theorem 2.2. If
|hγ− (h + eγ)γ| < h + r− s− t.

Where γ = (1− s− t), then the second EQP Ū2 of Eq. (1) locally asymptotically stable .

Proof. Substituting Ū2 = h+r
cγ + e

c into Eq. (6). We get

∂ψ(Ū2, Ū2)

∂ f
= s +

hγ
h + r

= −K1,
∂ψ(Ū2, Ū2)

∂g
= t−

(h + eγ)γ
h + r

= −K2

Where γ = (1− s− t). So, the linearized Eq. (1) about Ū2 is

Sn+1 + K1Sn + K2Sn−1 = 0.

Ū2 of Eq.(1) is asymptotically stable if

|K1|+ |K2| < 1.

Thus,
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|s +
hγ

h + r
|+ |t−

(h + eγ)γ
h + r

| < 1,

thus,

|s + hγ+ t− (h + eγ)γ| < h + r.

Therefore,

|hγ− (h + eγ)γ| < h + r− s− t.

The proof is completed.

3. Global Attractivity Results

We will examine the global stability of the equilibrium points in this section.

Theorem 3.1. The EQPs Ū of Eq. (1) is globally asymptotically stable (GAS) if
(i) se + tc + r > h + te + e
(ii) e + h + r > c

Proof. Suppose that a and b be real numbers and assume ψ(a, b)2
−→ (a, b) is a function that

defined by

ψ( f , g) = s f + tg +
h f + rg
cg− e

.

Now, we consider two cases

Case (i). Suppose that ψ( f , g) is increasing in f and g . Then, assume (Q, q) is a solution of the

following system

Q = ψ(Q, Q),

q = ψ(q, q),

So,

Q = sQ + tQ +
hQ + rQ

cQ− e
,

q = sq + tq +
hq + rq
cq− e

,

this gives,

cQ2γ− eQγ = Q(h + r), (3.1)

cq2γ− eqγ = q(h + r), (3.2)

where γ = (1− s− t) after subtracting (8) from (7). We get

(Q2
− q2)cγ− (Q− q)eγ− (Q− q)(h + r) = 0,

this implies,

(Q− q){(Q + q)cγ− eγ− (h + r)} = 0.

Thus, when e + h + r > c,

Q = q.
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The EQPs Ū of Eq.(1) is a global attractor. The proof is completed.

Case (ii) Let ψ( f , g) be increasing in f and decreasing in g. Then, assume (Q, q) is a solution of

the following system

Q = ψ(Q, q),

q = ψ(q, Q),

So,

Q = sQ + tq +
hQ + rq

cq− e
,

q = sq + tQ +
hq + rQ
cQ− e

,

this implies,

Q(1− s)(cq− e) − tq(cq− e) − hQ− rq = 0, (3.3)

q(1− s)(cQ− e) − tQ(cQ− e) − hq− rQ = 0. (3.4)

Now, subtracting (10) from (9). We get

(Q− q){se− e + tc(Q + q) − te− h + r} = 0.

Therefore, when se + tc + r > h + te + e

Q = q.

The EQPs Ū of Eq. (1) is a global attractor. The proof is completed.

4. Existence of Periodic Solutions

We shall discuss a principal theorem in this section that establishes the existence of periodic two

solutions to Eq. (1).

Theorem 4.1. Eq.(1) has solution of period two if and only if

e(1− s− t) + h + r , 0 (4.1)

Proof. . Assume that Eq. (1) has a solution of period two

. . . η, ζ, η, ζ, . . . ,

with η , ζ

η = sη+ tη+
hη+ rη
cη− e

,

ζ = sζ+ tζ+
hζ+ rζ
cζ− e

.
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So,

cη2(1− s− t) − eη(1− s− t) = η(h + r), (4.2)

cζ2(1− s− t) − eζ(1− s− t) = ζ(h + r), (4.3)

Subtracting (9) from (10) gives

c(1− s− t)(η2
− ζ2) − e(1− s− t)(η− ζ) = (h + r)(η− ζ),

this implies,

c(1− s− t)(η+ ζ) − eη(1− s− t) = (h + r),

η+ ζ =
e(1− s− t) + h + r

c(1− s− t)
. (4.4)

Again, adding (9) and (10). We get

c(1− s− t)(η2 + ζ2) = {e(1− s− t) + (h + r)}(η+ ζ). (4.5)

By using (11),(12), and the relation (η+ ζ)2 = η2 + 2ηζ+ ζ2, we obtain

c(1− s− t){(η+ ζ)2
− 2ηζ} = {e(1− s− t) + (h + r)}(η+ ζ).

then,

2c(1− s− t)ηζ = c(1− s− t)(η+ ζ)2
− {e(1− s− t) + (h + r)}(η+ ζ),

2c(1− s− t)ηζ =
(e(1− s− t) + h + r)2

c(1− s− t)
− {e(1− s− t) + h + r}(

e(1− s− t) + h + r)
c(1− s− t)

.

Thus,

ηζ = 0. (4.6)

Hence, based on equations (11) and (13), it can be deduced that η and ζ represent the two distinct

roots of the quadratic equation

λ2
− (η+ ζ)λ+ ηζ = 0. (4.7)

This is,

λ2
− (

e(1− s− t) + h + r
c(1− s− t)

)λ = 0.

then,

c(1− s− t)λ2
− (e(1− s− t) + h + r)λ = 0.

so,

(e(1− s− t) + h + r)2 > 0.

If (e(1− s− t) + h+ r) , 0, the condition (8) is satisfied. Conversely, assuming that condition (8)

holds true, we will illustrate that Eq.(1) possesses a periodic solution with a prime period (PP) of

two. Set

U−5 = U−3 = U−1 = P =
e(1− s− t) + h + r

c(1− s− t)
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U−4 = U−2 = U0 = Q = 0

Now, we want to show that

U1 = P, U2 = 0.

It follows Eq. (1) that

U1 = sP + tP +
hP + rP
cP− e

,

so,

U1 = (s + t)(
e(1− s− t) + h + r

c(1− s− t)
) +

(h + r)( e(1−s−t)+h+r)
c(1−s−t) )

c( e(1−s−t)+h+r)
c(1−s−t) ) − e

,

= (s + t)(
e(1− s− t) + h + r

c(1− s− t)
) +

(h + r)(e(1− s− t) + h + r)
c(h + r)

= (s + t)(
e(1− s− t) + h + r

c(1− s− t)
) +

(e(1− s− t) + h + r)
c

= (
e(1− s− t) + h + r

c
)(1 +

(s− t)
(1− s− t)

) =
e(1− s− t) + h + r

c(1− s− t)
= P,

U2 = sQ + tQ +
hQ + rQ

cQ− e
= 0 = Q.

So, by induction we get:

U2n = Q, U2n+1 = P

for all n ≤ −5. Hence, Eq.(1) has two solutions P and Q.where P and Q represent the different

quadratic roots Eq.(14).

5. Numerical Examples

The purpose of this section is to verify the theoretical work we did in the previous sections.

Example 1. This example demonstrates behavior of Eq.(1) tends to Ū1 = 0 when we assume that

s = 0.2, t = 0.1, h = 0.4, r = 0.4, c = 1, e = 3, U−5 = 5, U−4 = 0.4, U−3 = 0.4, U−2 = 5, U−1 = 5,

and U0 = 0.4. See Figure 1.

Example 2. Figure 2 shows how Eq. (1) behaves as it approaches the second equilibrium point. Ū2

is seen in figure 2 when we take the supposition that s = 0.1, t = 0.2, h = 0.3, r = 2, c = 1, e =

1, U−5 = 7, U−4 = 3, U−3 = 3, U−2 = 2, U−1 = 2, and U0 = 1.

Example 3. Figure 3 illustrates Eq. (1) unstable behavior. We presuppose that s = 0.1, t =

0.13, h = 0.5, r = 2, c = 3, e = 2, U−5 = 12, U−4 = −5, U−3 = 2, U−2 = 5, U−1 = 5, and U0 = −3.

Example 4. Figure 4 illustrates how Eq. (1) behaves globally in terms of stability. The behavior

of Eq. (1) clearly tends to the fixed point Ū1 when we assume s = 0.6, t = 0.2, h = 4, r = 2, c =

3, e = 1, U−5 = −8, U−4 = 2, U−3 = 5, U−2 = 3, U−1 = 6, and U0 = −1.

Example 5. Figure 5 illustrates the fixed point Ū2 behavior in terms of global stability when

s = 0.1, t = 0.2, h = 0.3, r = 2, c = 1, e = 1, U−5 = 7, U−4 = 3, U−3 = 3, U−2 = 2, U−1 = 2, and

U0 = 1.
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Example 6. Eq. (1) has a prime period two solution, as shown in Figure 6, when s = 0.1, t =

0.2, h = 0.3, r = 2, c = 1, e = 1, U−5 = P, U−4 = Q, U−3 = P, U−2 = Q, U−1 = P, and U0 = Q
where P and Q satisfied Theorem 4.

Figure 1.

Figure 2.
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Figure 3.

Figure 4.
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Figure 5.

Figure 6.
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6. Conclusion

This research explores the dynamics of NLDE (1). In Section 2, we demonstrate that when the

LAS condition described in Theorems 1 and 2, | − h − r| < e(1 − s − t) is satisfied, the behavior

converges towards the stability state of the EQP Ū1 = 0 . While, the EQP Ū2 achieves LAS if

|hγ − (h + eγ)γ| < h + r − s − t. The global solution of the EQPs is presented in Section 3. Section

4 examines the necessary and sufficient conditions for obtaining periodic solutions of Eq.(1). To

validate our theoretical analysis, numerical examples are provided in Section 5, with Figures 1-6

confirming the results.
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[32] A.S. Kurbanlı, C. Çinar, İ. Yalçinkaya, On the behavior of positive solutions of the system of rational difference

equations xn+1 = xn−1
ynxn−1+1 , yn+1 =

yn−1
xn yn−1+1 , Math. Comput. Model. 53 (2011), 1261–1267. https://doi.org/10.1016/j.

mcm.2010.12.009.

[33] C.Y. Ma, B. Shiri, G.C. Wu, D. Baleanu, New Fractional Signal Smoothing Equations With Short Memory and

Variable Order, Optik 218 (2020), 164507. https://doi.org/10.1016/j.ijleo.2020.164507.

[34] B. Ogul, D. Simsek, On the Recursive Sequence, Dynamics of Continuous, Discrete Impuls. Syst. Ser. B Appl.

Algorithms. 29 (2022), 423–435.

[35] J. Tariboon, S.K. Ntouyas, P. Agarwal, New Concepts of Fractional Quantum Calculus and Applications to Impul-

sive Fractional q-Difference Equations, Adv. Differ. Equ. 2015 (2015), 18. https://doi.org/10.1186/s13662-014-0348-8.
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