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ABSTRACT. A mathematical modelling of an oscillatory chemical reactions based on diffusion is discussed. Analytical 

solutions have been found for the system of nonlinear diffusion equations of second order in the model. Nonlinear 

oscillation partial differential equations can be solved accurately and efficiently using the He's variational iteration 

method. He's variational iteration method can be used to obtain approximate analytical solutions to the system. 

Analytical approximation is compared with numerical simulation as well. 

 

1. Introduction 

The periodic property plays a critical role in a variety of oscillatory problems of science 

and engineering, from oscillations of molecules to earthquakes, as nonlinear oscillations occur 

everywhere [1-3]. A nanofiber membrane attachment oscillator was developed for controlled 

manufacturing [4], a water collection oscillator was developed by Fangzhu [5], a harmonic 

oscillator was developed for micro/nanostructures [6] and a release oscillator was designed for 
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delivering ions [7]. Researchers have recently focused attention on nonlinear oscillators, 

especially after microelectromechanical systems were invented [8-10]. 

Analytical solutions to oscillation problems are difficult in engineering sciences because 

most of them are nonlinear. A wide range of physical and chemical sciences have recently 

examined nonlinear oscillator models. Numerous approximate analytical and numerical methods 

have been investigated because of the limitations of existing exact solutions. The nonlinear 

differential equations can be applied to a variety of real-life problems in both pure and applied 

science [11-13]. This means that analytical/numerical methods are necessary for solving these 

nonlinear equations. There have been a number of researchers working on analytical methods in 

the last decade to solve nonlinear oscillation systems [14-16].  

A significant amount of computing experience has been gained in the last several years, 

and certain situations have been analyzed using several numerical methods. Different techniques 

have been used to develop these approximate analytical methods, including Modified differential 

transform method [17], Taylor series method [18,19], homotopy perturbation method [20,21], 

Green function method [22,23], Adomian decomposition method [24], Akbari –Ganji method [25] 

and variation iteration method [26].  The system of oscillation equations is solved using the 

variational iteration method in this paper. A wide variety of nonlinear and linear problems 

arising in various fields have been addressed by He's Variational iteration method [27-29].  

The oscillation systems studied by Ganji et al. [30] had nonlinearities such as rigid rod 

rocking motion. The equations describing nonlinear oscillations of viscoelastic pipelines 

conveying fluid were developed by Khudayarov and Turaev [31]. As far as we are aware, 

oscillation problems do not have an exact analytical expression. These problems are difficult to 

solve precisely, however. An oscillation problem in engineering sciences was analyzed in this 

paper by obtaining approximate analytical expressions. 

 

2. Mathematical formulation of the problem 

A periodic oscillatory chemical reaction in a homogeneous environment has the following 

kinetic scheme [13]:  

0 1 2

1 2P X Y P
  

→ → →         (1) 
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where
0 1 2, ,   are constant rates and 

1 2, , ,P P X Y  are the concentrations of the corresponding 

substances. As shown above 
1P  reacting with

0  to form X , and X  reacting with 
1 to form Y . 

Finally, Y  with
2  reacts with 

2P .  

Considering this chemical reaction as taking place in a very small volume, we can write it 

as follows 

).(),( tYYtXX ==

         

(2) 

The equations that describe the reaction are written as differential equations 

,10 YX
dt

dX
 −=

         

(3) 

,21 YYX
dt

dY
 −=
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The above equations reduced into the form as follows [13]: 
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where the coefficients  and  are expressed in terms of constant rates. 

We solve above differential equations (6) & (7) by taking into account the initial and boundary 

conditions are as follows: 
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where
0x and

0y are constant numbers. 
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3. Analytical expressions of concentration of the species using variational iteration method 

In recent years, several authors have recently demonstrated that the VIM can be 

effectively used to solve physics and engineering problems with nonlinear structures [32-36]. A 

boundary value and initial value problem can be defined by the set of expressions in equations 

(6) & (7). The applicability, accuracy, simple and efficiency of this method make it unique.  

Solving the equation (6) and (7) using variational iteration method, we can obtain the 

concentration of substances for small time as follows: 
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Figure1.Comparison of numerical result with our analytical results using Eq. (11) for the values 

of 2,3,2,104.1,,1,1 5

2100 ====== − nDDyx   and 10=l . 
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Figure 2. Comparison of numerical result with our analytical results using Eq. (12) for the values 

of 2,3,2,104.1,,1,1 5

2100 ====== − nDDyx   and 10=l . 
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Table 1. Analyzing the concentration of species x analytically and numerically using Eqn. (11) is compared with the results for different 

values of t  and 2,3,2,104.1,,1,1 5

2100 ====== − nDDyx   and 10=l . 

x  

01.0=t  1.0=t  3.0=t  5.0=t  
Numeric

al 

Result 

Our 

Result 

% of 

deviatio

n 

Numeric

al 

Result 

Our 

Result 

% of 

deviation 

Numerical 

Result 

Our 

Result 

% of 

deviation 

Numeric

al 

Result 

Our 

Result 

% of 

deviation 

0 0.9352 0.9333 0.20 0.3824 0.3880 1.46 -0.0554 -0.0540 2.44 -0.1409 -0.1500 6.46 

2 0.2809 0.2884 2.69 0.1158 0.1191 2.86 -0.0164 -0.0167 1.51 -0.0439 -0.0464 5.50 

4 -0.7381 -0.7550 2.30 -0.3100 -0.3139 1.25 0.0436 0.0437 1.29 0.1169 0.1213 3.80 

6 -0.7392 -0.7551 2.16 -0.3103 -0.3139 1.17 0.0435 0.0437 0.41 0.1169 0.1214 3.82 

8 0.2832 0.2883 1.80 0.1156 0.1198 2.89 -0.0168 -0.0167 0.42 -0.0448 -0.0463 3.33 

10 0.9352 0.9333 0.20 0.3823 0.3880 1.49 -0.0554 -0.0540 2.44 -0.1409 -0.1500 6.46 

 

Average percentage error:   

1.56 Average percentage error:   1.76 Average percentage error:   1.94 

Average percentage error:    4.89 

 

Table 2. Analyzing the concentration of species y analytically and numerically using Eqn. (12) is compared with the results for different 

values of t  and 2,3,2,104.1,,1,1 5

2100 ====== − nDDyx   and 10=l . 

x  

01.0=t  1.0=t  3.0=t  5.0=t  
Numerica

l 

Result 

Our 

Result 

% of 

deviatio

n 

Numeric

al 

Result 

Our 

Result 

% of 

deviatio

n 

Numerical 

Result 

Our 

Result 

% of 

deviation 

Numeric

al 

Result 

Our 

Result 

% of 

deviation 

0 1.0540 1.0325 2.04 1.3820 1.3445 2.71 1.3470 1.3615 1.08 1.9830 2.1026 6.03 

2 0.3149 0.3191 1.33 0.4120 0.4093 0.64 0.4081 0.4208 3.11 0.5850 0.6198 5.95 

4 -0.8283 -0.8352 0.84 -1.0910 -1.0715 1.79 -1.1100 -1.1015 0.77 -1.6370 -1.7010 3.91 

6 -0.8284 -0.8353 0.84 -1.0910 -1.0716 1.77 -1.0790 -1.1016 2.10 -1.5660 -1.6012 2.25 

8 0.3148 0.3189 1.30 0.4118 0.4091 0.65 0.4076 0.4206 3.18 0.6798 0.6994 2.89 

10 1.0540 1.0325 2.04 1.3870 1.3445 3.06 1.3470 1.3616 1.08 1.9830 2.1026 6.03 

 
Average percentage error:       

1.41 

Average percentage error:  

1.77 
Average percentage error:     1.89 

Average percentage error:     4.51 
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4. Numerical simulations 

Numerical methods are used to solve the nonlinear partial differential equations (6)&(7) 

with initial and boundary conditions (8)-(10). Using SCILAB/MATLAB software, we can solve 

this equations (6)&(7) using function pdex4 which solves the initial and boundary value problem. 

According to Figs 1 and 2, its numerical solution gives satisfactory results for short periods of 

time when compared with variational iteration method. The SCILAB/MATLAB program is also 

given in Appendix B. 

 

5. Graphical representation and result Discussion 

An approximation of the analytical solution of the system of nonlinear partial differential 

equations has been compared with numerical result to determine the applicability, accuracy and 

efficacy of the proposed method.It is used to solve the initial value and boundary value problems 

using the SCILAB/MATLAB function pdex4 (Fourth order Runge-Kutta method).In Figure 1, 

shows the numerical solution and an approximate solution we obtained using VIM to 

demonstrate the concentration versus time for the oscillation problem (Eqs. (11&12)).For various 

values of the parameter t, the figures 1& 2 shows plot the approximate analytical solution from 

Equations (11) & (12) using variational iteration method (solid block line) was compared to the 

computational solution obtained using MATLAB (red dots) for various time t = 0.01, 0.1, 0.3, 0.5. 

From the figure, it is observed that figure shows a comparison between the numerical solution 

and our analytical results in Tables 1&2 and Figures 1&2 for a short time when 5.0t .The 

amplitude also depends upon the initial conditions, as shown in Figures 1 and 2.  Other nonlinear 

related ODE/PDE problems can be studied using the present concept as a paradigm. 

 

6. Conclusion 

An oscillatory chemical reaction system based on diffusion is constructed and 

investigated using second order nonlinear partial differential equations.A numerical solution and 

VIM can also be used to obtain the results. Based on the comparison of approximate analytical 

solutions with numerical solutions, its accuracy has been verified. In figures, constant parameters 

are also shown to have an effect on the response of the system for an approximate solution. VIM 

is a powerful and simple tool for solving nonlinear differential equations, especially those in 

which nonlinear equations play a large role in science and engineering. 
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Appendix A: Solution of the Eqs. (6) and (7) using variational iteration method. 

To illustrate the basic idea of He’s variational iteration method [9-11], we consider the 

following nonlinear functional equation: 

)()()( =+ gNxLx                                                                                                   (A1) 

where )(Lx  is a linear operator, )(Nx a nonlinear operator and )(g  an inhomogeneous term. 

He et al.[26] suggested a method of general Lagrange multiplier. Then, we can construct a correct 

functional as follows: 
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To solve Eqns.(6) and (7) by variational iteration method, we will have 
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This yields the stationary conditions 

0)s(' =           (A5) 
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          (A6) 

Eqn.(A6) is called Lagrange Euler equation, and Eqn. (A6) natural boundary condition.   

The general Lagrange multipliers, therefore, can be identified as 1)(1 −=s and 1)(2 −=s : 
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When n=0, in Eqn. (A4) 
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Appendix B: Matlab program for the numerical solution of nonlinear Eqns. (6) and (7) 

function pdex4 

m = 0; 

x = linspace (0,10); 

t= linspace (0,0.01); 

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u1 = sol(:,:,1); 

u2 = sol(:,:,2); 

figure 

plot(x,u1(end,:)) 

title('u1(x,t)') 

xlabel('Distance x') 

ylabel('u1(x,2)') 

figure 

plot(x,u2(end,:)) 

title('u2(x,t)') 

xlabel('Distance x') 

ylabel('u2(x,2)') 

function [c,f,s] = pdex4pde(x,t,u,DuDx) 

c = [1; 1]; 

D1=1; 

D2=1; 

f = [D1; D2] .* DuDx; 

q=3; 

w=2; 

F = -2*q*u(1)-(w^2/(2*q))*u(2); 

F1 =2*q*u(1); 

s=[F;F1]; 

function u0 = pdex4ic(x) 
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x0=1;y0=1;n=2;l=10;pi=3.1415; 

u0 = [x0*(cos(((n*pi)/l)*x));y0*(cos(((n*pi)/l)*x))]; 

function[pl,ql,pr,qr]=pdex4bc(xl,u1,xr,ur,t) 

pl = [0; 0]; 

ql = [1; 1]; 

pr = [0; 0]; 

qr = [1; 1]; 

 

NOMENCLATURE and UNITS 

 

Symbols Name Unit 

x  Concentration of species X 3−cmmol  

y  Concentration of species Y 3−cmmol  

1 2, , ,P P X Y  
concentrations of the substances 3−cmmol  

210 ,,   Constant rates cm/s 

2

01

2

2

,2 



 ==  Constant rates cm/s 

21, DD  Diffusion coefficient cm2/s 

u Spatial coordinate cm 

t time s 

l  Narrow tube length cm 

n ,a and b Constant numbers None 
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