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ABSTRACT. A realistic version of the modified successive overrelaxation (MSOR) with four relaxation parameters is 

introduced (MMSOR) with application to a representative matrix partition. The one-dimensional Poisson’s equation 

with fuzzy boundary values is the standard source problem for our treatment (it is sufficient to introduce all the 

concepts in a simple form). The finite difference method with RedBlack (RB)-Labelling of the grid points is used to 

introduce a fuzzy algebraic system with characterized fuzzy weak solutions (corresponding to black grid points). We 

introduce the algorithmic structure and the implementation of MMSOR on the de-fuzzified linear system. The choice 

of relaxation parameters is based on the minimum Spectral Radius (SR) of the iteration matrices. A comparison with 

SOR (one relaxation parameter) and MSOR (two relaxation parameters) is considered, and a relation between the three 

methods is revealed. Assuming the same accuracy, the experimental results showed that the MMSOR runs faster than 

the SOR and the MSOR methods.  

 

1. Introduction 

The problem of solving large linear systems is one of the oldest classical problems that 

appear in many scientific and engineering applications. Iterative methods for solving linear 

systems began in 1823 by Gauss, Jacobi 1853, Seidel 1878, and many others. In 1950 Young 

introduced the fascinating successive overrelaxation (SOR) method. Due to the coefficient matrix 

structure, obtained from the discretization of Poisson’s equation, Young introduced the modified 
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successive overrelaxation MSOR. Poisson's equation is a partial differential equation of 

comprehensive utility in many fields, such as theoretical physics and engineering applications. 

In 1998, M. Friedman et al [1] introduced the first systematic, algorithmic treatment of fuzzy linear 

systems. Accordingly, many publications utilize different iterative techniques for solving fuzzy 

linear systems. Fuzzy linear systems appear in many applications; for example, Eng Jeng H et al. 

in propose an image editing method based on a Laplacian operator to discretize Poisson's 

equation [2]. Consequently, a linear system is attained and solved by the linear solver MSOR 

applying the RB-Labelling. The conclusions revealed that MSOR can solve the Poisson image 

blending problem effectively, requiring fewer iterations and less computational time than other 

methods. A review of fuzzy differential equations offers a sequential study of fuzzy differential 

equations (FDEs) of integer and fractional orders focusing on fuzzy derivatives of fuzzy number-

valued functions [3]. The structure of the linear system (Sparse, Toeplitz, Symmetric, block 

structure, etc.)  affects the solution technique considered, especially for large linear systems that 

appear in the discretization of differential equations. Such sparse systems are the key source for 

the presence of iterative techniques such as the SOR (successive over-relaxation) and gradient 

approaches and their varieties. The situation is more convenient when the linear system includes 

some fuzzy parameters.  A frequent model for solving an arbitrary n × n FLSE whose coefficient 

matrix is crisp, and its right-hand side contains a fuzzy number vector was introduced by 

Friedman et al. [1]. They offered an embedding method where the original n × n FLSE is re-

established by a 2n × 2n crisp linear system. Furthermore, another embedding method was 

introduced by Allahviranloo et al [4]. It considers the replacement of the n × n FLSE by two n × n 

crisp linear systems. In both stated embedding techniques, the size of the computational work is 

at least doubled. Solving such crisp, large linear systems is a problem consequently, the utilization 

of iterative techniques becomes incredibly valuable. The iterative techniques for solving fuzzy 

linear systems are investigated in ([5], [6], [7], [8]). In this paper, the block structure of the system 

that appears in the discretization of boundary value problems is considered, and this block 

structure is further extended due to the appearance of fuzzy parameters. We consider boundary 

value problems with fuzzy boundary conditions. A general model is established for solving an n 

× n FLSE whose coefficients are crisp with a fuzzy right-hand side and consists of two key steps. 

First, employing an embedding approach to the FLSE produces a 2n× 2n de-fuzzified linear 

system. Second, applying to the resulting de-fuzzified matrix three different iterative methods, 
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the Successive Over Relaxation (SOR), the Modified Successive Over Relaxation (MSOR), and the 

new Multi-Parameter SOR (MMSOR). The later iterative technique applies SOR with a new block 

structure, and the solution is generated for three different partitions of the de-fuzzified matrix. 

The paper is organized as follows: Section 2 introduces the suggested framework for applying 

fuzzy iterative methods. Section 3 examines the model on some numerical examples of a fuzzy 

boundary value problem. The discussion of the results of the numerical examples is offered in 

Section 4, and finally, the conclusion is presented in Section 5. 

 

2. Material and Methods 

One of the fundamental sources of the structured large linear system is the discretization 

of Poisson’s Equation. To exemplify the performance of iterative methods, two examples are 

studied. The first example is a Poisson boundary value problem with two fuzzy boundary 

conditions, and the second is the same problem with one fuzzy boundary condition and one crisp 

boundary condition. The proposed technique starts by transforming the n × n FLSE into a crisp 

2n × 2n linear system and next applying the suggested iterative techniques. The structure of the 

resulting crisp 2n × 2n linear system encourages us to modify the MSOR method. A few 

algorithms are introduced to adopt the computational work with an application on two examples.  

2.1 Fuzzy Linear Systems  

The basic concepts of fuzzy numbers and FLSE are given in ([1], [9 - 13]), and we reintroduce the 

essential material to complete our work. 

Definition 1   

Given an FLSE 𝐴𝑥 = 𝑦 where the coefficient matrix A = (𝑎𝑖𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛   is a crisp n × n 

matrix and 𝑦𝑖 ∈ 𝐸1, 1 ≤ 𝑖 ≤ 𝑛. A fuzzy number vector (𝑥1, 𝑥2, … , 𝑥𝑛 )
𝑇 given by 

(𝑥𝑖(𝑟), 𝑥𝑖(𝑟)) , 1 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑟 ≤ 1, 

is termed a solution of the FLSE if: 

{
∑ 𝑎𝑖𝑗 𝑥𝑗(𝑟)

𝑛
𝑗=1 = ∑ 𝑎𝑖𝑗 𝑥𝑗

𝑛
𝑗=1 (𝑟) = 𝑦𝑖 (𝑟),   𝑖 = 1,… , 𝑛

∑ 𝑎𝑖𝑗 𝑥𝑗(𝑟)
𝑛
𝑗=1 = ∑ 𝑎𝑖𝑗 𝑥𝑗

𝑛
𝑗=1 (𝑟) = 𝑦𝑖 (𝑟),   𝑖 = 1,… , 𝑛   

                                                               (2.1) 

If, for some i, 𝑎𝑖𝑗 > 0, 1 ≤ 𝑗 ≤ 𝑛,  then 

∑ 𝑎𝑖𝑗
𝑛
𝑗=1  𝑥𝑗 = 𝑦𝑖 , 𝑖 = 1,… , 𝑛     and    ∑ 𝑎𝑖𝑗

𝑛
𝑗=1  𝑥𝑗 = 𝑦𝑖 , 𝑖 = 1,… , 𝑛       

In general, an arbitrary equation for either 𝑦𝑖 or 𝑦𝑖  may incorporate a linear mix of  𝑥𝑗’s and  

𝑥𝑗’s. Thus, a crisp 2𝑛 ×  2𝑛 linear system with a right-hand side column, 
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 (𝑦1, 𝑦2, ⋯ ,  𝑦𝑛  ,−𝑦1 , −𝑦2 , ⋯ ,−𝑦𝑛)𝑇 needs to be solved. 

Definition 2 

 A De-fuzzified Linear System of Equations (DFLSE) SX = Y  of an n × n FLSE A x =

y can be formed where S is 2𝑛 ×  2𝑛 crisp matrix that is initialized with zeros and updated from 

the coefficient matrix A as follows:  

𝐼𝑓 𝑎𝑖𝑗 ≥ 0 →  𝑠𝑖𝑗 = 𝑠𝑖+𝑛,𝑗+𝑛 = 𝑎𝑖𝑗                                                                                         

           𝐼𝑓  𝑎𝑖𝑗 < 0 →  𝑠𝑖,𝑗+𝑛 = 𝑠𝑖+𝑛,𝑗 = −𝑎𝑖𝑗                                                                                    (2.2)  

The matrix S  can be written in block structure as  S = [
𝑆1 𝑆2

𝑆2 𝑆1
] ,  S = (𝑆𝑖𝑗) ≥ 0, 1 ≤ 𝑖, 𝑗 ≤ 2𝑛. The 

matrix S1 is an n × n crisp matrix that includes the nonnegative elements of matrix A, and S2 is an 

n × n crisp matrix that includes the absolute values of the negative elements of A where A=𝑆1 −

𝑆2. The right-hand side column 𝑌 =  (𝑦1 , 𝑦2 ,   ⋯ , 𝑦𝑛  ,−𝑦1 , −𝑦2 ,⋯ ,−𝑦𝑛) 𝑇. Therefore, the solution 

vector should be X =  (𝑥1 , 𝑥2 ,   ⋯ , 𝑥𝑛  ,−𝑥1 , −𝑥2 ,⋯ ,−𝑥𝑛)𝑇. 

Definition 3 

For arbitrary fuzzy numbers  𝑢 = (𝑢(𝑟), 𝑢(𝑟)) and 𝑣 = (𝑣(𝑟), 𝑣(𝑟))  ∈  𝐸1, the amount 

                 𝐷1(𝑢, 𝑣) =  ∫ (|𝑢(𝑟) − 𝑣 (𝑟)| + | 𝑢(𝑟) − 𝑣 (𝑟)|)𝑑𝑟
1

0
,                            (2.3) 

is the distance between 𝑢 and 𝑣. The function 𝐷1(𝑢, 𝑣)  is a metric in  𝐸1. It is indicated that 

(𝐸1, 𝐷1) is a complete metric space. 𝐷1 can be used to define the error between successive 

calculations of fuzzy solutions in iterative methods, where the goal is to maximize the likelihood 

of exact solutions and the estimated solutions' nearness. 

Definition 4 

 Let  𝑋 = {(𝑥𝑖(𝑟), −𝑥𝑖(𝑟)) , 1 ≤ 𝑖 ≤ 𝑛}  be a set of fuzzy numbers that denotes the 

unique solution for the system 𝑆𝑋 = 𝑌 of the 2𝑛 ×  2𝑛 linear system of equations. The fuzzy 

number vector U = {(𝑢𝑖(𝑟), 𝑢𝑖(𝑟)) , 1 ≤ 𝑖 ≤ 𝑛}  𝑖𝑠 described by: 

          𝑢𝑖(𝑟) = min  {(𝑥𝑖(𝑟), 𝑥𝑖(𝑟), 𝑥𝑖(1) )},                                                       

  𝑢𝑖(𝑟) = max  {(𝑥𝑖(𝑟), 𝑥𝑖(𝑟), 𝑥𝑖(1) )}                                                                                             (2.4) 

and known as the fuzzy solution of, 𝑆𝑋 = 𝑌. For a fuzzy number 𝑥, [𝑥]1 = (𝑥(1), 𝑥(1)), the 

utilization of 𝑥𝑖(1) is intended to remove the likelihood of fuzzy numbers whose related triangles 

possess an angle greater than 90.  If (𝑥𝑖(𝑟), 𝑥𝑖(𝑟) ) , 1 ≤ 𝑖 ≤ 𝑛 are all fuzzy numbers then 

          𝑢𝑖(𝑟) = 𝑥𝑖(𝑟),   𝑢𝑖(𝑟) = 𝑥𝑖(𝑟),  1 ≤ 𝑖 ≤ 𝑛,                                                                               ( 2.5) 
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and U is called a strong fuzzy solution. Otherwise, U is a weak fuzzy solution; (for more details, 

see [1], [13]). 

2.2 Finite Difference Approximation and RB-Labelling  

Consider the following one-dimensional Poisson equation: 

 − 𝑢′′(𝑡) =  𝑓(𝑡) ,  𝑎 ≤ 𝑡 ≤ 𝑏 with fuzzy boundary conditions, 𝑢(𝑎) = 𝛼, 𝑢(𝑏) = 𝛽.          ( 2.6) 

Where 𝛼 and 𝛽 are given triangular fuzzy numbers. The continuous domain is superimposed 

with a discrete grid with equally spaced grid points shown in Fig. 1. The grid spacing ℎ is the 

distance between any two consecutive grid points.  

 

Fig. 1:  RB-Labelling of a grid with 𝑛 points 

In the RB-Labelling, excluding the boundary points 𝑥 = 𝑎 and 𝑥 = 𝑏, the internal grid 

points are colored with minimum colors (two) such that any two consecutive points take different 

colors so the neighbors of any black points will be red points and vice versa. Then numbering the 

red points consecutively from 1 up to 𝑛1, where 𝑛1= ceil (𝑛/2) then the black points from (𝑛1 + 1) 

to 𝑛. Using the well-known central difference approximation for the second-order derivative  

𝑢′′(𝑡) =  
𝑢(𝑡+ℎ)−2 𝑢(𝑡)+𝑢(𝑡−ℎ)

ℎ2                                                                (2.7) 

The given boundary value is equivalent to the following structured linear system (matrix 

equation) 

                                          𝐴 𝑥 = 𝑦, where  A = [
𝐷1 𝐵

𝐵𝑇 𝐷2
],                                                      (2.8) 

 where D1 is an 𝑛1 × 𝑛1 diagonal matrix, D2 is an (𝑛 − 𝑛1) × (𝑛 − 𝑛1) diagonal matrix and B is a 

rectangular matrix of order   𝑛1 × (𝑛 − 𝑛1), 𝑦 is a column vector of dimension 𝑛 with fuzzy data.  

D1 =

[
 
 
 
 
2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2]

 
 
 
 

, D2 = [

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

], B =

[
 
 
 
 
−1    0    0    0
−1 −1    0    0
  0 −1 −1    0
  0    0 −1 −1
  0    0     0 −1]

 
 
 
 

, |B| =

[
 
 
 
 
1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1]

 
 
 
 

.                   (2.9) 

In the classical crisp, all red points are updated before the black points. Updating a red point only 

requires data from the black points, and vice versa. Therefore, the order in which points in each 

set are updated does not make a difference. Hence, we may think that the update is divided into 

two updates: a red update and a black update, and this is helpful in the convergence analysis and 
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in the implementation development. The structure of the mentioned submatrices (2.8) will be 

stated explicitly in the specific case: 𝑛 = 9 , 𝑛1 = 5, and are used in the numerical examples below. 

2.3 The Block Structure 

The associated crisp (2𝑛 × 2𝑛) linear system is the DFLSE  𝑆 𝑋 = 𝑌 

                                  S =  

[
 
 
 
𝐷1 𝑂
𝑂     𝐷2

𝑂 |𝐵|

|𝐵𝑇| 𝑂
𝑂 |𝐵|

|𝐵𝑇| 𝑂

  𝐷1 𝑂
  𝑂   𝐷2]

 
 
 
 .                                                                 (2.10) 

The structure of the coefficient matrix 𝐒, suggests the use of four relaxation parameters instead 

of two for the original matrix A.  𝜔1 for the first 𝑛1 equations (part 𝑃1), 𝜔2 for the next (𝑛 − 𝑛1) 

equations (part 𝑃2), 𝜔3 for the next 𝑛1equations (part 𝑃3) and 𝜔4 for the last (𝑛 − 𝑛1) equations 

(part 𝑃4). We call the SOR with four relaxation parameters MMSOR. The MMSOR will coincide 

with the SOR if the four parameters assume the same value, and it will coincide with the MSOR    

if 𝜔1 = 𝜔2 and 𝜔3 = 𝜔4. The algebraic system with the above-mentioned coefficient matrices A  

or 𝐒 admits a unique solution, due to the diagonal dominance and positive definiteness.    

2.4 SOR, MSOR, and MMSOR Iterative Methods  

The DFLSE SX = Y of size 2𝑛 × 2𝑛 where S ∈ 𝑅2𝑛×2𝑛, Y ∈ 𝑅2𝑛 can be written in the component 

form as:   

∑  𝑠𝑖𝑗   
2𝑛
𝑗=1 𝑥𝑗   = 𝑦𝑖 , 𝑠𝑖𝑖  ≠ 0, 𝑖 = 1,… , 2𝑛.                                                                       (2.11)   

The component form of the SOR method is: 

𝑥𝑖
[𝑚+1]

= 𝑥𝑖
[𝑚]

+ 
𝜔

𝑠𝑖𝑖
(𝑦𝑖 − ∑  𝑠𝑖𝑗   

𝑖−1
𝑗=1 𝑥 𝑗

[𝑚+1]
 − ∑  𝑠𝑖𝑗   

2𝑛
𝑗=𝑖 𝑥 𝑗

[𝑚]
) , 𝑖 = 1,… , 2𝑛                   (2.12)               

The efficient use of the SOR method depends on the appropriate choice of the relaxation 

parameter,  0 < ω < 2. For each problem, there is an optimal choice for ω depending on the SR of 

the corresponding iteration matrix. In general, one can use different values for a vector ω with 

length g. i.e.,  (k), 𝑘 = 1, …, g. In this work, the equations corresponding to the red points are 

updated first. 

The MSOR method is a variant of the SOR method, its effective use appears when the coefficient 

matrix can be arranged in 2 × 2 block form where the diagonal blocks are non-singular diagonal 

matrices. The matrix S can be arranged in this form, figure 3.  When the equations are divided into 

two partitions 𝑃1 and 𝑃2 (red and black) then we apply a relaxation parameter for the red 

equations and another relaxation parameter for the black equations (see [1], [14]). We are using 
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𝜔1(k), for the equations of P1 and using 𝜔2 (k) for P2, where 𝑎𝑙𝑙 ω′𝑠 repeating the application over 

the given range, 𝑘𝑑=1, …, g and d=1,2. The component form updates of the MSOR method are: 

𝑥𝑖
[𝑚+1]

= 𝑥𝑖
[𝑚]

+ 
𝜔1(𝑘1)

𝑠𝑖𝑖
(𝑦𝑖 − ∑  𝑠𝑖𝑗   

𝑖−1
𝑗=1 𝑥 𝑗

[𝑚+1]
 − ∑  𝑠𝑖𝑗   

𝑛
𝑗=𝑖+1 𝑥 𝑗

[𝑚]
− 𝑠𝑖𝑖  𝑥𝑖

[𝑚]
) , 𝑖 = 1,… , 𝑛                      

𝑥𝑖
[𝑚+1]

= 𝑥𝑖
[𝑚]

+ 
𝜔2(𝑘2)

𝑠𝑖𝑖
(𝑦𝑖 − ∑  𝑠𝑖𝑗   

𝑖−1
𝑗=1 𝑥 𝑗

[𝑚+1]
 − ∑  𝑠𝑖𝑗   

2𝑛
𝑗=𝑖+1 𝑥 𝑗

[𝑚]
− 𝑠𝑖𝑖  𝑥𝑖

[𝑚]
) , 𝑖 = 𝑛 + 1,… , 2𝑛          

  0 <  𝜔1, 𝜔2 < 2 .                                                                                                                              (2.13) 

The MMSOR method is a new variant of the SOR or MSOR method which can be defined 

by considering four relaxation parameters for the new four partitions that appear in the S matrix. 

Two groups of equations are related to the red equations and the other two are related to the 

black equations.  

MMSOR:  The equations of S are divided into four partitions using 𝜔1(𝑘𝑑), for the equations of 

P1, 𝜔2 (𝑘𝑑) for P2, 𝜔3(𝑘𝑑) for P3 and 𝜔4(𝑘𝑑), for P4, 𝑘𝑑=1, …, g and d=1,2,3,4 , see figure 3 

The component form updates of the MMSOR method are: 

𝑥𝑖
[𝑚+1]

= 𝑥𝑖
[𝑚]

+ 
𝜔1(𝑘1)

𝑠𝑖𝑖
(𝑦𝑖 − ∑  𝑠𝑖𝑗   

𝑖−1
𝑗=1 𝑥 𝑗

[𝑚+1]
 − ∑  𝑠𝑖𝑗   

2𝑛
𝑗=𝑖+1 𝑥 𝑗

[𝑚]
− 𝑠𝑖𝑖  𝑥𝑖

[𝑚]
) , 𝑖 = 1,… , 𝑛1,                    

𝑥𝑖
[𝑚+1]

= 𝑥𝑖
[𝑚]

+ 
𝜔2(𝑘2)

𝑠𝑖𝑖
(𝑦𝑖 − ∑  𝑠𝑖𝑗   

𝑖−1
𝑗=1 𝑥 𝑗

[𝑚+1]
 − ∑  𝑠𝑖𝑗   

2𝑛
𝑗=𝑖+1 𝑥 𝑗

[𝑚]
− 𝑠𝑖𝑖  𝑥𝑖

[𝑚]
) , 𝑖 = 𝑛1 + 1,… , 𝑛,   

𝑥𝑖
[𝑚+1]

= 𝑥𝑖
[𝑚]

+
𝜔3(𝑘3) 

𝑠𝑖𝑖
(𝑦𝑖 − ∑  𝑠𝑖𝑗   

𝑖−1
𝑗=1 𝑥 𝑗

[𝑚+1]
 − ∑  𝑠𝑖𝑗   

2𝑛
𝑗=𝑖+1 𝑥 𝑗

[𝑚]
− 𝑠𝑖𝑖  𝑥𝑖

[𝑚]
) , 𝑖 = 𝑛 + 1,… , 𝑛 + 𝑛1    

𝑥𝑖
[𝑚+1]

= 𝑥𝑖
[𝑚]

+ 
𝜔4(𝑘4)

𝑠𝑖𝑖
(𝑦𝑖 − ∑  𝑠𝑖𝑗   

𝑖−1
𝑗=1 𝑥 𝑗

[𝑚+1]
 − ∑  𝑠𝑖𝑗   

2𝑛
𝑗=𝑖+1 𝑥 𝑗

[𝑚]
− 𝑠𝑖𝑖  𝑥𝑖

[𝑚]
) , 𝑖 = 𝑛 + 𝑛1 + 1,… ,2𝑛.  

             (2.14) 

If 𝛚𝟏 = 𝛚𝟐, the MSOR method reduces to the SOR method, Furthermore, if ω1 = ω2 = 1 

the MSOR method reduces to the counterpart Gauss–Seidel method. Similarly, if ω1 = ω2 and 

ω3 = ω4 , the MMSOR method reduces to the MSOR method. From definition 2, it follows that 

the solution vector X = (𝑥1 , 𝑥2 ,   ⋯ , 𝑥𝑛  ,−𝑥1 , −𝑥2 ,⋯ ,−𝑥𝑛)𝑇 is a 2𝑛 × 1 solution vector. The 

experiments are based on the three iterative methods with the same range of values for 𝛚, i.e., ω ∈

(0, 2)  as shown in the algorithms.  

2.5 Algorithmic Treatment 

 Given a FALSE, six self-explained algorithms are introduced to show the algorithmic 

treatment of the problem. In Algorithm 1, using each equation in the equation set EQset (size 2n) 

the function Update updates the solution x at iteration according to the assumed RB-Labelling 

given in Fig. 1 where the iteration 𝑚 =1, …, maxiter. Finally, construct the solution vector X using 

the computed solution x by collecting the lower and upper parts of the fuzzy solution using the 
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RB-Labelling. The complexity for computing the defuzzification matrix is O(n2), and the 

complexity is O(n2) for each iteration in the iterative methods under consideration. 

Algorithm 1 X=RB_Update (EQset, m) 

Inputs: EQset is an Equation set to be updated at the iteration number (m) 

Output:  the solution vector X 

Procedure:  

for j = 1: i-1 

      check if R/B point   then Update Sol xi             

for j = i+1: size (EQset) 

     check if R/B point   then Update Sol xi             

RB-Labelling= [1   𝑛1 + 1    2   𝑛1 + 2    3…  𝑛 − 1  𝑛1 − 1    𝑛    𝑛1  ]                        

for i=1: n     %Construct solution vector X 

       X (i, m) = x (RB-Labelling(i))             %the lower part of solution 

      X (i+n, m) = x (RB-Labelling(i)+n)    %the upper part of solution  

 

Algorithm 2 applies SOR (2.12) on each equation of EQset of S which is of size 2𝑛 and outputs the 

fuzzy solutions and SOR SR. This algorithm, as shown in the pseudocode, is applied on S using 

each value  (k), k=1, …, g of the relaxation parameter vector.  The complexity of algorithms 2, 3, 

and 4 is O(n2) for each iteration for all iterative methods. 

Algorithm 2 (SOR) 

Input: Matrix S 

Output: Fuzzy solution vector u, SR  

Procedure: apply SOR on S given the relaxation parameter vector (k), k=1, …, g then: 

while (1)  

          for i=1 to 2n  

    X= RB_Update (S, m)                           

          m=m+1 

          perform convergence test: if ((error(m) <= tol)) or (m>=maxiter) break 

u=Construct_Fuzzy_Solutions (X, Exit_iteration) 

SR=Compute_SpectralRadius(S, 𝜔) 
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Algorithm 3 applies MSOR (2.13) on each equation of the two sets of equations, two partitions P1 

and P2 of S, each of size 𝑛 and outputs the fuzzy solutions and MSOR SR. This algorithm, as 

shown in the pseudocode, is applied on the partitions P1 and P2 using the two relaxation 

parameter values 𝜔1(𝑘𝑑),𝜔2(𝑘𝑑), where 𝑘𝑑=1, …, g and d=1,2.  

Algorithm 3 (MSOR) 

Input: Matrix S 

Output: Fuzzy solution vector u, SR 

Procedure: S is divided into the partitions P1 = S (1: n,1:2n) and P2 = S (n+1:2n, 1:2n) then apply MSOR 

on P1 and P2 where 𝜔1(𝑘𝑑),𝜔2(𝑘𝑑), where 𝑘𝑑=1, …, g and d=1,2 then: 

while (1)  

    for i = 1: n 

                     X(i)= RB_Update (P1, m)         

    for i = n+1: 2n 

                    X(i) = RB_Update (P2, m)          

   m=m+1 

   perform convergence test: if ((error(m) <= tol)) or (m>=maxiter) break 

u=Construct_Fuzzy_Solutions (X, Exit_iteration) 

SR =Compute_SpectralRadius(S, (𝜔1, 𝜔2 )) 

Algorithm 4 applies MMSOR (2.14) on each equation of the four sets of equations either of sizes 

𝑛1 or 𝑛 − 𝑛1. In the previous two iterative methods and after the final iteration, the fuzzy solutions 

are constructed, and the MMSOR SR is computed. The given relaxation parameter vectors are 

𝜔1, 𝜔2, 𝜔3, 𝜔4 for the four partitions P1, P2, P3, and P4 of S. As shown in the pseudocode below, the 

algorithm is applied on the partitions P1 … P4 using the four-relaxation parameter vectors 

𝜔1(𝑘1),… , 𝜔4(𝑘4)  where 𝑘𝑑=1, …, g, d=1,…,4. 

Algorithm 4 (MMSOR) 

Input: Matrix S 

Output: Fuzzy solution vector u, SR 

Procedure: S is divided into four partitions, 

use 𝜔1(𝑘1), for the first partition P1 = S (1: n1,1:2n) rows, 

use 𝜔2(𝑘2), for the second partition P2 = S (n1+1: n, 1:2n) rows, 

use 𝜔3(𝑘3), for the third partition P3 = S (n+1: n+n1, 1:2n) rows, 
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use 𝜔4(𝑘4), for the fourth partition P4 = S (n+n1+1:2n, 1:2n) rows where 𝑘𝑑=1, …, g, d=1,…,4, then: 

while (1) 

    for i = 1: n1                   

              X(i)  = RB_Update (P1, m)        

    for i = n1+1: n 

              X(i)  = RB_Update (P2, m)        

    for i = n+1: n+n1 

              X(i)  = RB_Update (P3, m)        

    for i = n+n1+1:2n 

              X(i)  = RB_Update (P4, m)       

    m=m+1 

    perform convergence test: if ((error(m) <= tol)) or (m>=maxiter) break  

u=Construct_Fuzzy_Solutions (X, Exit_iteration) 

SR=Compute_SpectralRadius (S, (ω1,  ω2, ω3, ω4)) 

Algorithm 5 shows the pseudo-code of the Construct_Fuzzy_Solutions function that constructs the 

final solutions; the solutions are collected using the lower and upper parts of the calculated 

solutions in vector X after the exit iteration for an iterative method.  

Algorithm 5  u= Construct_Fuzzy_Solutions (X, Exit_iteration) 

Input: Solution vector X, Exit iteration  

Output: Fuzzy Solution vector u= [u1…un+2] 

Procedure 

Li = Lower part of a fuzzy number,  

Ui = Upper part of a fuzzy number, 

% u1= 𝛼, the left fuzzy boundary condition, 0 ≤ 𝑟 ≤ 1,                             

u1= L1 + U1 * r             

                                    %The n-computed solutions, u2…un+1 after function Update 

for i=2: n+1 

      Li =obtain the straight-line equation given the variables (r, X (i-1, Exit_iteration)) 

      Ui= obtain the straight-line equation given the variables (r, -X (i-1+n, Exit_iteration)) 

      ui = Li + Ui *r 

end 

%un+2= 𝛽, the right fuzzy boundary condition  

un+2 = Ln+2 + Un+2 * r 
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Algorithm 6 presents the Compute_SpectralRadius function pseudo code that computes the SR of 

the suggested iterative methods using the iteration matrices. 

 

Algorithm 6  Compute_SpectralRadius(S, 𝜔) 

Input: Matrix S, 𝑣𝑒𝑐𝑡𝑜𝑟 ω of g-values 

Output: Convergence_factor, * 

Procedure: 

Step 1: Case SOR: 

 Let S =L+D+U  

Iteration matrix T= ((D- ×L)-1) × (((1- ) ×D) + ×U) 

rho =max(abs(eigen_vectors(T))) 

Convergence_factor=min(rho) 

*= the optimal  with minimum convergence factor 

Step 2: Case MSOR:  

D1= S (1: n,1: n) 

D2= S (n+1: 2n, n+1: 2n) 

H= S (1: n, n+1: 2n) 

K= S (n+1:2n, 1: n) 

F= -D1-1 ×H  

G= -D2-1 ×K 

Iteration matrix T =[(1-1) ×I1 , 1×F ; (1-1) ×2×G , 1×2×G×F+(1-2) ×I2 ] 

rho= max (abs (eigen_vectors (T))) 

 Convergence_factor=min(rho) 

               (1*, 2*) = the pair with minimum convergence factor 

Step 3: Case MMSOR: 

 using the pair (1*, 2*) from Step 2 then Compute convergence_factor using same procedure 

 in step 2 replacing (1, 2) with (3, 4) to calculate the pair (3*, 4*) we get: 

                  (1*, 2*, 3*, 4*) = the quadruple with minimum convergence factor 

 

 

 

 



12 Int. J. Anal. Appl. (2024), 22:103 

 

3. Numerical Examples 

We consider Poisson’s equation with Dirichlet fuzzy boundary conditions. Three cases 

can be considered in the first case two fuzzy boundary conditions example (1), in the second case 

one fuzzy boundary condition at the left boundary and the other condition is crisp boundary 

condition example (2), and in the third case a crisp boundary condition at left boundary and a 

fuzzy boundary condition at other end the results are the same as the second case. We consider 

the finite difference method with RB-Labelling of the grid points described in the finite difference 

section with 𝑛 = 9 and 𝑛1 = 5. So, a corresponding fuzzy linear system FLSE 𝐴𝑈 = 𝑏 with block 

structure is obtained. Due to the grid ordering the fuzzy values appear at different positions in 

the right-hand side vector of the linear system. Then applying the embedding techniques 

presented by ([1], [13]) to obtain the DFLSE with coefficient matrix S, 𝑆𝑋 = 𝑌.  

In solving the DFLSE 𝑆𝑋 = 𝑌 , first the SOR and the MSOR techniques are used, to 

determine the suitable values of the relaxation parameters ω , ω1 and ω2 ([14], [15]), according to 

the behavior of SR of their iteration matrices. After some experiments, the relaxation parameter 

ω varies in the range of 1.52:0.002:1.555 with 18 possible values of 𝛚 in the case of SOR, 324 pairs 

of ω-values in the case of MSOR, and with 104976 quadruples of 1…4- values in the n case of 

MMSOR. In the calculation process, a zero value is chosen as an initial guess, a tolerance is 10-4, 

and a maximum number of 100 iterations is used as a stopping criterion in all considered iterative 

techniques. 

Example (1): Consider the following Poisson equation: 

 − 𝑢′′(𝑡) =  1.5 𝜋2 sin (𝜋 𝑡) ,  2 ≤ 𝑡 ≤ 3 with fuzzy boundary conditions: 

𝑢(2.0) = 𝛼 = (1.2, 1.5, 1.8) =   (1.2 + 0.3 𝑟 , 1.8 − 0.3 𝑟), 

𝑢(3.0) = 𝛽 = (1.2, 1.5, 1.8) =   (1.2 + 0.3 𝑟 , 1.8 − 0.3 𝑟). 

Following the RB-Labelling and Fig. 1 with 𝑛 = 9 internal grid points are selected and shown in 

Fig. 2 there are 𝑛1 = 5 red points and 𝑛 − 𝑛1 = 4 black points. The solutions 𝑢1 …𝑢9 are 

corresponding to these points. 

 

Fig. 2: RB-Labelling of the n=9 points and corresponding Fuzzy solutions 
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Thus, a fuzzy linear system 𝐴𝑋 = 𝑌is obtained with block-structured matrix A of size 9 × 9.  

𝐴 =  

[
 
 
 
 
 
 
 
 

 2 0     0
0 2     0
0 0    2

0       0 −1
0       0 −1
0       0     0

0 0  0
−1 0  0
−1 −1  0

0   0 0
 0 0 0
−1 −1 0

2    0  0
0     2   0
0    0    2

    0 −1 −1
    0 0 −1
     0 0 0

    0    −1 −1
   0       0 −1
  0     0   0

0   0   0
−1    0   0
−1 −1 0

 
2    0   0
0    2    0
0    0    2 ]

 
 
 
 
 
 
 
 

 , 𝑌 = 

[
 
 
 
 
 
 
 
 

𝑦1

0.119770 
0.148044
0.11977

𝑦2

0.0870181
0.140798
0.140798
0.0870181]

 
 
 
 
 
 
 
 

,                  (3.1)                                       

 

where 𝑦1 = 𝑦2 = (1.24575 + 0.3𝑟, 1.84575 − 0.3𝑟)  are two fuzzy numbers. The resulting DFLSE 

S matrix for the two examples is the same and has the block structure shown in Fig. 3. 

 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9  

2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 3 

0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 

0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 5 

0 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 6 

0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 7 

0 0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 8 

0 0 0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 0 9 

0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 1 1 0 0 0 2 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 1 1 0 0 0 2 0 0 0 0 0 0 3 

0 0 0 0 0 0 0 1 1 0 0 0 2 0 0 0 0 0 4 

0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 5 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 6 

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 7 

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 8 

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 9 
 

Fig. 3: The Block Structure of the S matrix  
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The exact solution is  𝑢(𝑡, 𝑟) = (1.2 + 1.5 sin(𝜋 𝑡) + 0.3 𝑟, 1.8 + 1.5 sin(𝜋 𝑡) − 0.3 𝑟). The fuzzy 

solutions of Example 1 obtained from the three methods are the same and are shown 

accompanied by the exact solution in Fig 4 stated as follows: 

𝑢1 = (1.6676 + 0.3 𝑟 , 2.2676 − 0.3 𝑟),                 𝑢6 = (2.6895 − 0.3001 𝑟, 2.0892 + 0.3 𝑟) 

𝑢2 = (2.4241 + 0.3001 𝑟 , 3.0241 − 0.3001 𝑟),   𝑢7 = (3.2391 − 0.3001 𝑟, 2.6388 + 0.3001𝑟) 

𝑢3 = (2.7129 + 0.3001 𝑟 , 3.3130 − 0.3001 𝑟),   𝑢8 = (3.2391 − 0.3001 𝑟, 2.6388 + 0.3001 𝑟) 

𝑢4 = (2.4241 + 0.3001 𝑟 , 3.0241 − 0.3001 𝑟),   𝑢9 = (3.0241 − 0.3001 𝑟, 2.4241 + 0.3001 𝑟 ), 

𝑢5 = (1.6676 + 0.3 𝑟 , 2.2676 − 0.3 𝑟). 

The solutions' numbering matches the numbering of the grid points. It is interesting to note that 

the solutions corresponding to the black points are weak fuzzy solutions. It is worth noticing that 

in ([8], [13]), when natural labeling was used, weak solutions were obtained with even grid points.  

 

 

 

Fig. 4 Fuzzy solution of Example 1 at different alpha cuts (r =0 (0.1)1)  
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a) 

 

b)  

 

c)  

 

d) 

 

e)  

 

f) 

 

g)  

 

h) 

 

i)  

Fig. 5: SOR, MSOR, MMSOR (Example1) 

Fig. 5 shows the results of Example 1. Fig. 5(a) up to Fig. 5(c) show the exit iteration profiles for 

applying SOR, MSOR, and MMSOR, respectively. Fig. 5(d) up to Fig. 5(f) show the minimum 

integral error (cap D to the 1 n Definition 3) profiles for applying SOR, MSOR, and MMSOR, 

respectively. The x-axis in Fig. 5(b), Fig. 5(c), Fig. 5(e), and Fig. 5(f) is the number of the pair/ 

quadruple. The SR is presented in Fig. 5(g) up to Fig. 5(i), the optimal quadruple (1*, 2*, 3*, 

4*) = (1.258, 1.528, 1.258, 1.528) determined by MMSOR includes the optimal pair (1*, 2*) = 

(1.258, 1.528) determined by MSOR where *= 1. 258 determined by SOR. The convergence value 

is 0.528 for all methods. 
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Example (2): 

Consider the same fuzzy Poisson equation: − 𝑢′′(𝑡) =  1.5 𝜋2 sin (𝜋 𝑡) ,  2 ≤ 𝑡 ≤ 3  with 

one fuzzy boundary condition and one crisp condition: 

𝑢(2.0) =  𝛼 = (1.2, 1.5, 1.8) =   (1.2 + 0.3 𝑟 , 1.8 − 0.3 𝑟), 

𝑢(3.0) = 𝛽 =    1.5 

In this case, the exact solution is:  

 𝑢(𝑡, 𝑟) = (0.6 + 0.3 𝑡 + 0.9 𝑟 − 0.3 𝑟 𝑡 + 1.5 sin(𝜋 𝑡) , 2.4 − 0.9 𝑟 − 0.3𝑡 + 0.3 𝑟 𝑡 + 1.5 sin(𝜋 𝑡)).   

A similar matrix A (3.1) as in Example 1 is obtained except that 𝑦2 = 1.545751 in the right-hand 

side is a crisp value as shown in Fig. 6(b). Therefore, the S matrix is the same as in Example 1, and 

therefore, the exit iterations, SR, and * are similar to those obtained in Example 1. (Fig. 5) and 

Fig. 7 shows the minimum error profiles of applying the SOR, MSOR, and MMSOR respectively. 

The obtained fuzzy solutions are: 

𝑢1 = (1.6976 + 0.27 𝑟 , 2.2376 − 0.27 𝑟), 𝑢6 = (2.6295 − 0.24 𝑟, 2.1493 + 0.24 𝑟) 

𝑢2 = (2.5141 + 0.21𝑟 , 2.9341 − 0.21 𝑟), 𝑢7 = (3.1191 − 0.18 𝑟, 2.7589 + 0.18 𝑟) 

𝑢3 = (2.863 + 0.15 𝑟, 3.163 − 0.15 𝑟),      𝑢8 = (3.0591 − 0.12 𝑟 , 2.8188 + 0.12  𝑟) 

𝑢4 = (2.6341 + 0.09 𝑟 , 2.8141 − 0.09 𝑟), 𝑢9 = ( 2.4495 − 0.06 𝑟 , 2.3293 + 0.06 𝑟), 

𝑢5 = (1.9376 + 0.03 𝑟 , 1.9976 − 0.3 𝑟). 

Again, the labeling matches the grid points labeling, and the solutions corresponding to the black 

points are weak fuzzy solutions.  

 

 

 

(a) 

 

𝐘 = 

[
 
 
 
 
 
 
 
 

𝑦1

0.119770 
0.148044
0.11977

1.545751.5
0.0870181
0.140798
0.140798
0.0870181]

 
 
 
 
 
 
 
 

 

 

(b) 

Fig. 6 The Fuzzy solution of Example 2 with the exact solution at all alpha cuts  
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4. Results and Discussion 

A 1D-Poisson’s problem with fuzzy boundary conditions is considered and solved with 

SOR variants methods. Tables 1 and 2 show the values of *, minimum iterations (minIter), SR, 

and minimum error (minError)for each of Examples 1 and 2, respectively. The parameter ω for all 

methods varies within the same range from 1.52 to 1.555 with the same step size 0.002. In this 

way, we can observe how the choice of ω affects the iteration in all the experiments. The ω* for 

SOR that gives the minimum convergence value is calculated according to [14], that is ω* = 1.528 

obtained at iteration number 18 and minError =0.002 for all the iterative methods under 

investigation.  

 

a) SOR  

 

b) MSOR  

 

c) MMSOR 

Fig. 7 SOR, MSOR, MMSOR Minimum Error profiles (Example2) 

In Table 1, and similarly in Table 2. the smallest number of iterations is obtained when ω 

around 1.5. The optimal *=1.528 in SOR then this value re-appears as optimal pair (1*,2*) = 

(1.528, 1.528) in MSOR and as optimal quadruple (1*,2*, 3*,4*) = (1.528, 1.528, 1.528, 1.528) in 

MMSOR. In SOR, there are four -instances minIterSOR= (1.546, 1.548, 1.55, 1.552) that are not 

optimal but still gave a minimum iteration 14. These four instances in minIterSOR re-appeared again 

as -instances pairs in MSOR, i.e., minIterMSOR = (…, (1.546 1.548), (1.546 1.55), (1.546 1.552), (1.548 

1.55), (1.548 1.552), (1.55 1.552), …) with minimum-iteration=14 in MSOR. These minIterMSOR pairs 

re-appeared again -instances quadruples, i.e., minIterMMSOR =( …, (1.546  1.548  1.546  1.55), (1.546  

1.548  1.546, 1.552),  (1.546  1.548  1.548 1.55), (1.546  1.548  1.55 1.552), (1.546  1.548  1.548 1.552), 

(1.546 1.55 1.546 1.552), (1.546 1.55 1.548 1.55), (1.546 1.55 1.548 1.552), (1.546 1.55 1.55 1.552), (1.546 

1.552 1.548 1.55), (1.546 1.552 1.548 1.552), (1.546 1.552 1.55 1.552), (1.548 1.55 1.548 1.552), (1.548 

1.55 1.55 1.552), (1.548 1.552 1.55 1.552), …) with minimum-iteration 14  in MMSOR. The number 

of their re-appearances can be calculated by combinations. In SOR, there exist 4 minimum-

iteration -instances re-appeared as 6 pairs in MSOR (4 choose 2= 6). In MSOR, it was 6 minimum 
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instances then re-appeared as 15 quadruples in MMSOR (6 choose 2= 15). This is a new relation 

between the three methods which is expressed in the following equations where 2 refers to two 

pairs: 

Number of reappeared minimum iterations MSOR =𝑐2
|𝑚𝑖𝑛𝐼𝑡𝑒𝑟𝑆𝑂𝑅|

 

Number of reappeared minimum iterations MMSOR =𝑐2
|𝑚𝑖𝑛𝐼𝑡𝑒𝑟𝑀𝑆𝑂𝑅|

                                            

In addition, it is worth noting that a one -instance minError= (1.554) with minimum error re-

appeared for SOR, MSOR, and MMSOR in a singleton, in a pair, or a quadrable. The larger range 

of -values the larger range of minimum iteration values, for example, for the range 

(=1.5:0.001:1.6), the iteration range becomes 14-21 instead of 14:19 for the range ( 

=1.52:0.002:1.555) and therefore the more instances of  (minIter) with minimum iterations minIter. 

In Table 1 and Table 2, each different run (fixing ) for an iterative method gives fixed results. 

Using multiple partitions allowed the use of a range of values for up to four relaxation parameters 

and this allowed some pairs and quadruples to execute in less time than others. The approximate 

elapsed time at * for SOR is 0.000002, MSOR is 0.000003, and MMSOR is 0.000001 in both 

examples. Hence the minimum elapsed time reached for * is associated with MMSOR. In both 

examples, the iteration iter* and minimum error minError* for the optimal value * is similar in 

the case of SOR, MSOR, and MMSOR. The minimum error (minError) reached among the three 

methods in the case of MMSOR is 0.000151 in Example 1 and 0.000119 in Example 2.  

Table 1 and 2 Abbreviations:  

 minError: the minimum error reached.  

minError* is the minimum error at *. 

minError is the group of relaxation parameters associated with minimum error.  

minIter is the group of relaxation parameters associated with minimum iteration for   

 specific iterative method. 

iter* is the exit iteration at *. 

                          R is the exit iteration range for the relaxation parameters. 
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Table 1: *, minimum iterations, SR, and minimum errors for Example 1 

Example 1 

 

*  iter* minError* SR 

R & minIter   minError & minError  

SOR 

• 18 - single 

values 

• Out of them 4 

minimum 

iterations 

 

1.528 18  minError*=0.002 0.528 

R= 14:19 where minIter=14 

minIterSOR= (1.546, 1.548, 1.55, 1.552)  

at min iteration 14 

minError =0.000577  

& 

minError= (1.554)  

MSOR  

• 324 - pairs  

• Out of them 42-

minimum 

iteration 

instances 

(1.528, 

1.528) 

18 minError*=0.002 0.528 

R= 14:19 where minIter=14 

minIterMSOR = (…, (1.546 1.548), (1.546 

1.55), (1.546 1.552), (1.548 1.55), 

(1.548 1.552), (1.55 1.552), …)  

6 combinations of minIterSOR at min 

iteration 14 

minError =0.000223  

& 

minError= 

(1.554 1.534)  

MMSOR 

• 104976- 

quadruples  

• Out of 

them 2535 

minimum 

iteration 

instances 

 

(1.528, 

1.528, 

1.528, 

1.528) 

18  minError*=0.002 0.528 

R= 14:19 where minIter=14 

minIterMMSOR =(…, (1.546  1.548  1.546  

1.55), (1.546  1.548  1.546, 1.552),  

(1.546  1.548  1.548 1.55), (1.546  

1.548  1.55 1.552), (1.546  1.548  1.548 

1.552), (1.546 1.55 1.546 1.552), 

(1.546 1.55 1.548 1.55), (1.546 1.55 

1.548 1.552), (1.546 1.55 1.55 1.552), 

(1.546 1.552 1.548 1.55), (1.546 1.552 

1.548 1.552), (1.546 1.552 1.55 1.552), 

(1.548 1.55 1.548 1.552), (1.548 1.55 

1.55 1.552), (1.548 1.552 1.55 

1.552),…)  

15 combinations of minIterSOR at min 

iteration 14 

minError=0.000151  

& 

minError= 

(1.546    1.554    1.534 

1.544)  
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Table 2: *, minimum iterations, SR and minimum errors for Example 2 

Example2 

 

*  iter* minError* SR 

R & minIter  minError  & 

minError 

SOR 

• 18 - values 

• 4 minimum 

iterations 

1.528 18 minError*=0.002 0.528 

R=14:19 where minIter=14 

 minIterSOR =(1.546,  1.548, 1.55,  1.552 )  

at min iteration 14 

minError =0.000429  

& 

 minError =1.544 

MSOR 

• 324 - pairs 

• 42-

minimum 

iteration 

instances 

(1.528 

1.528) 

18 minError*=0.002 0.528 

R=14:19 where minIter=14 

minIterMSOR= (…, (1.546 1.548), (1.546 

1.55), (1.546 1.552), (1.548 1.55), (1.548 

1.552),  (1.55 1.552),.…)  the 6 

combinations for minIterSOR at min 

iteration 14 

minError =0.000147  

& 

 minError = One pair 

with minimum 

error 

(1.55   1.538) 

MMSOR 

• 104976-

quadruples 

• 2545 

minimum 

iteration 

instances 

 

(1.528, 

1.528, 

1.528, 

1.528) 

18 minError*=0.002 0.528 

R=14:19 where minIter=14 

minIterMMSOR = =( …, (1.546  1.548  1.546  

1.55), (1.546  1.548  1.546, 1.552),  (1.546  

1.548  1.548 1.55), (1.546  1.548  1.55 

1.552), (1.546  1.548  1.548 1.552), (1.546 

1.55 1.546 1.552), (1.546 1.55 1.548 1.55), 

(1.546 1.55 1.548 1.552), (1.546 1.55 1.55 

1.552), (1.546 1.552 1.548 1.55), (1.546 

1.552 1.548 1.552), (1.546 1.552 1.55 

1.552), (1.548 1.55 1.548 1.552), (1.548 

1.55 1.55 1.552), (1.548 1.552 1.55 1.552)  

…) the 15 combinations for minIterMSOR 

at min iteration 14 

minError 

=0.000119  

& 

 minError =(1.55    

1.536    1.55    

1.538)  

a quadruple with 

minimum error 
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5. Conclusion  

In this work, we introduced a 1D Poisson with a fuzzy boundary condition, which is 

discretized using the finite difference method and the RB-Labelling producing a fuzzy linear 

system of equations. A variant of SOR, the iterative method MMSOR is presented and is applied 

on the DFLSE. The method is compared with the well-known iterative methods SOR and MSOR. 

The MMSOR uses four relaxation parameters which are applied on four partitions of S. The 

algebraic structure corresponding to these values is given. The experimental results showed that 

the same optimal relaxation parameter ω* re-appeared in all methods. In addition, the relaxation 

parameter instances associated with the minimum iteration reappeared in all the methods as a 

pair or quadruple. It is revealed that MMSOR runs faster compared with SOR and MSOR. We 

look forward to considering the effect of refinement techniques [16] and the role of the relaxation 

parameters [17].   
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