International Journal of Analysis and Applications

The Convex Sets in Banach Spaces and Polynomial Approximation

Ashraf S. ELshreif^{1,2}, Habeeb Ibrahim^{1,3}, Mohammed E. Dafaalla^{1,4,*}, Osman Abdalla Adam Osman¹

¹Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia ²Department of Mathematics, College of Science and Technology, Shendi University, Sudan ³Department of Mathematics, Faculty of Education, University of Zalingei, Sudan ⁴Department of Mathematics, College of Science, University of Cordufan, Sudan

*Corresponding author: m.dafaalla@qu.edu.sa

ABSTRACT. A Banach space A, an open subset V of A, and an open subset U of A' are considered. Our definition introduces novel categories of topological algebras of holomorphic functions on A. We demonstrate the equality of the two sets of holomorphic functions ($\mathcal{H}_{wv}(V)$) and ($\mathcal{H}_{w^*vk}(U)$) under specific assumptions. We demonstrated that normdense $\mathcal{P}_{g_i}(A)$ is found in $\mathcal{P}_w(A)$ and norm-dense $\mathcal{P}_{g_i^*}(A')$ is found in $\mathcal{P}_{w^*}(A')$. Additionally, we demonstrated that $\mathcal{P}_{g_i}(A)$ is τ_k -dense in $\mathcal{H}_{wvk}(V)$ and $\mathcal{P}_{g_i^*}(A')$ is τ_k -dense in $\mathcal{H}_{w^*vk}(U)$ for a Banach space with a decreasing Schauder basis A, a polynomially convex weakly open subset V of A, and a polynomially convex weak-star open subset U of A.

1. Introduction

Consider *A* to be a Banach space, *V* and *U* to be open subsets of *A* and *A'*, respectively. Certain categories of holomorphic functions are delineated. In this context, $\mathcal{H}_{wv}(V)$ represents the collection of holomorphic functions $g: V \to \mathbb{C}$ that exhibit weak-star uniform continuity on every weakly compact subset of *V*. Similarly, $\mathcal{H}_{w^*vk}(U)$ signifies the collection of holomorphic functions $f: U \to \mathbb{C}$ that demonstrate weak-star uniform continuity on every weakly compact subset of *U*. Similarly, $\mathcal{H}_{w^*vk}(U)$ signifies the collection of holomorphic functions $f: U \to \mathbb{C}$ that demonstrate weak-star uniform continuity on every weakly compact subset of *U*. We begin by examining the characteristics of the algebras $\mathcal{H}_{wvk}(V)$ and $\mathcal{H}_{w^*vk}(U)$. An important finding pertains to the approximation of polynomials on such algebras [4]. We demonstrate that

Received May 17, 2024

²⁰²⁰ Mathematics Subject Classification. 46B04, 46B07.

Key words and phrases. Banach space; convex sets; weak-star; homomorphism; spectral Efficiencies.

in the case *V* is a weakly open subset of *A* that is polynomially convex and *A* is a Banach space with a shrinking Schauder basis, then $\mathcal{P}_{g_i}(A)$ is dense in $\mathcal{H}_{wvk}(V)$, assuming the topology of uniform convergence on the weakly compact subsets of *V*.

An equivalent outcome is obtained for the algebra $\mathcal{H}_{w^*vk}(U)$ [9]. The subsequent section provides a detailed account of the spectrum of $\mathcal{H}_{wvk}(V)$, where *A* represents a reflexive Banach space with a Shauder basis and *V* represents a weakly open, $\mathcal{P}_{wk}(A)$ -convex subset of *A*. We demonstrate that the spectrum $\mathcal{H}_{wk}(V)$ is indeed associated with *V* in this instance. Additionally, we examine whether $\mathcal{H}_{wvk}(V)$ and $\mathcal{H}_{wv}(V)$ coincide $\mathcal{H}_{wvk}(V) = \mathcal{H}_{wv}(V)$, for instance, if *A* is reflexive and *V* is weakly open and convex. We illustrate an additional circumstance in which $\mathcal{H}_{wvk}(V)$ and $\mathcal{H}_{wv}(V)$ coincide. By utilizing these fortuitous findings, we can enhance the outcomes reported in ([11], [15]). We conclude with results on ideals of the algebra $\mathcal{H}_{wvk}(V)$ that were generated finitely and Banach-Stone theorems.

2. Banach spaces and Schauder basis

Consider the complex Banach space A ([8], [10]). V shall represent an open subset of A. We designate the distance from x to the boundary of V for each $x \in V$ as $d_V(x)$. Let V_m equal { $x \in V : ||x|| < m$ and $d_V(x) > 2^{-m}$ for each value of $m \in \mathbb{N}$. The set of all $g \in \mathcal{H}(V)$ that are weakly continuous on each V_m is denoted by $\mathcal{H}_w(V)$, while $\mathcal{H}_{wv}(V)$) represents the set of $g \in \mathcal{H}(V)$ that are weakly uniformly continuous on each V_m . Lastly, $\mathcal{H}_b(V)$ signifies the set of $g \in \mathcal{H}(V)$ that are bounded on each V_m that $\mathcal{H}_{wv}(V) \subset \mathcal{H}_b(V)$ [3] holds for each open subset V. In the case where U is an open subset of A', let $\mathcal{H}_{w^*}(U)$ represent the collection of $f \in \mathcal{H}(U)$ elements that exhibit weak-star continuity on all U_m , and let $\mathcal{H}_{w^*v}(U)$ represent the collection of $f \in \mathcal{H}(U)$ elements that demonstrate weak-star uniform continuity on each U_m . Define $\mathcal{K}_w(V)$ as follows: { $E \subset U : E$ is weakly compact}; $\mathcal{K}_{w^*}(U)$, respectively. The following lemma describes a useful property of the elements of $\mathcal{K}_w(V)$ and $\mathcal{K}_{w^*}(U)$ if V is weakly open and U is weak-star open. The set of all neighborhoods of zero in A (or A') relative to the weak topology $\sigma(A, A')$ (or weak-star topology $\sigma(A, A')$ is represented by $\mathcal{V}_w(A)$ or $\mathcal{V}_{w^*}(E')$ or (E').

Lemma 2.1. Assume the following: *U* is an open subset of *A*′, *V* is a weakly open subset of *A*, and *A* is a Banach space. Then

(a) There exists a $W \in \mathcal{V}_w(A)$ such that $E + W \subset V$ for every $A \in \mathcal{K}_w(V)$.

(b) $W \in U_{w^*}(A')$ exists for any $B \in \mathcal{K}_{w^*}(U)$ such that $B + W \subset V$.

Proof. (a) Because *V* is weakly open, there exists $W_x, \widetilde{W}_x \in \mathcal{V}_w(A)$ such that $W_x + W_x \subset \widetilde{W}_x$ and $x + \widetilde{W}_x \subset U$ for any $x \in A$. We can find $x_1, ..., x_n \in E$ and $W_1, ..., W_n \in \mathcal{V}_w(A)$ such that $E \subset (x_1 + W_1) \cup ... \cup (x_m + W_m) \subset V$ because *E* is weakly compact. By taking $W = W_1 \cap ... \cap W_m$, it is simple to see that $A + W \subset V$.

(b) (A)'s proof is applicable.

We write $\mathcal{P}_{g_i}(A) = \bigoplus_{n \in \mathbb{N}} \mathcal{P}_{g_i}(^n A)$, $\mathcal{P}_w(A) = \mathcal{P}(A) \cap \mathcal{H}_w(A)$, and $\mathcal{P}_{wv}(A) = \mathcal{P}(A) \cap \mathcal{H}_{wv}(A)$. In actuality, $\mathcal{P}_w(A) = \mathcal{P}_{wv}(A)$ [2] corresponds to the two final sets. Assume that $\mathcal{H}_{wvk}(V) = \{g \in \mathcal{H}(V): g \text{ is weakly balanced continuous on every } E \in \mathcal{K}_w(V)\}$. Let *V* be an open subset of *A*. Keep in mind that if *V* is weakly open, then $\mathcal{H}_{wv}(V) \subset \mathcal{H}_{wvk}(V)$ since every weakly compact subset of *V* is contained in some V_m . Furthermore, $\mathcal{P}_{g_i}(A) \subset \mathcal{P}_{wv}(A) \subset \mathcal{H}_{wvk}(V)$ is evident. After (a), we state that if and only if *P* is a finite linear combination of products of weak-star continuous linear functional on *A'*, then a polynomial $P \in \mathcal{P}_{g_i^*}(A')$.

Take note that every evaluation at a point in *A* is a weak-star continuous linear functional of $\mathcal{P}_{w^*}(A') = \mathcal{P}(A') \cap \mathcal{H}_{w^*}(A')$ and $\mathcal{P}_{w^*v}(A') = \mathcal{P}(A') \cap \mathcal{H}_{w^*v}(A')$ are also indicated, but it is evident that the final two sets coincide, that is, $\mathcal{P}_{w^*}(A') = \mathcal{P}_{w^*v}(A')$. Assume that $\mathcal{H}_{w^*vk}(U) = \{f \in \mathcal{H}(V): f \text{ is weak-star uniformly continuous on every } B \in \mathcal{H}_{w^*}(U)\}$. Let *U* be an open subset of *A'*. Keep in mind that $\mathcal{P}_{g_i^*}(A') \subset \mathcal{P}_{w^*v}(A') \subset \mathcal{H}_{w^*vk}(U)$, and $\mathcal{H}_{w^*vk}(A') = \mathcal{H}_{w^*v}(A')$. $\mathcal{H}_{w^*uk}(V) \subset \mathcal{H}_{wuk}(V)$ if *U* is weak-star open. $\mathcal{H}_{w^*v}(U) \subset \mathcal{H}_{w^*vk}(U)$ if *A* is reflexive.

We confer the topology of uniform topology of uniform convergence on the elements of $\mathcal{K}_w(V)$ (respectively $\mathcal{K}_{w^*}(U)$) to $\mathcal{H}_{wvk}(V)$ (respectively ($\mathcal{H}_{w^*vk}(U)$, and we represent this topology by τ_k (respectively τ_{k^*}). ($\mathcal{H}_{wvk}(V), \tau_k$) (or ($\mathcal{H}_{w^*vk}(U), \tau_{k^*}$)) is obviously a locally m-convex algebra. We provide a coincidental finding pertaining to the algebras $\mathcal{H}_{wvk}(V)$ and $\mathcal{H}_{wv}(V)$ in the following example.

Example 2.2. Assume that *V* is a convex, weakly open subset of *A* and that *A* is a reflexive Banach space. After that, $\mathcal{H}_{wvk}(V) = \mathcal{H}_{wv}(V)$.

Proof. Since sine *V* is convex, we may infer that V_m is convex for all *m* in N. Consequently, $\overline{V}_m^w = \overline{V}_m \subset V$. \overline{V}_m^w is w-compact since *A* is reflexive, and as a result, $\overline{V}_n^w \in \mathcal{K}_w(V)$. Consequently, $\mathcal{H}_{wvk}(V) \subset \mathcal{H}_{wv}(V)$.

Given a Banach space *A* and a Schauder basis $(e_m)_{m \in \mathbb{N}}$, the associated linear functionals are $(\psi_m)_{m \in \mathbb{N}}$. T_m^i represents the canonical projection $T_m^i: A \to A$ for each $m \in \mathbb{N}$, where $T_m^i(x) =$

 $T_m^i(\sum_{i=1}^{\infty} \psi_j(x)e_j) = \sum_{i=1}^{m} \psi_i(x)e_i$. If the associated linear functionals $(\psi_m)_{m\in\mathbb{N}}$ form a Schauder basis in A', we say that the Schauder basis is shrinking. The canonical projection $S_m: A' \to A'$ in this instance is denoted by S_m , where $S_m(\psi) = (\sum_{i=1}^{m} \psi(e_i)\psi_i)$, for each $\psi \in A'$. The sequence $(T_m^i)_{m\in\mathbb{N}}$ is known to converge uniformly to the identity operator on the compact subsets of E. If we swap out compact for bounded subsets of E in the case of infinite-dimensional E, the same outcome will not hold. In fact, there would be a contradiction if it were true, as the identity operator would be a compact operator. However, we present a weaker result of this kind in the following proposition.

Proposition 2.3. Assume that *A* has a decreasing Schauder basis and is a Banach space. Next

(a) T_m weakly uniformly converges to the identity operator on the bound subsets of A.

(b) On the bordered subsets of A, S_m weak-star uniformly and converges to the identity operator. **Proof.** (a) We have to demonstrate that for every bounded subset B of A, where $\psi \in A'$ and $\varepsilon > 0$, there exists an integer number $m_0 \in \mathbb{N}$ such that, for all $m > m_0$, $\sup_{x \in B} |\psi(T_m^i(x) - x)| < \varepsilon$. For any x in A, $\psi \in A'$, and m in \mathbb{N} , it is evident that $\psi(x - T_m^i(x)) = \sum_{i=m+1}^{\infty} \psi_i(x)\psi(e_i)$. A Schauder basis for A' is $(\psi_i)_{i\in\mathbb{N}}$, hence for any $\varepsilon > 0$, there exists $m_0 \in \mathbb{N}$ such that $\|\sum_{i=m+1}^{\infty} \psi(e_i)\psi_i\| < \varepsilon$. For $m > m_0$, this is $\sup_{x \in B_E} |\sum_{i=m+1}^{\infty} \psi(e_i)\psi_i(x)| < \varepsilon$, or equivalently,

 $\sup_{x \in B} |\sum_{i=m+1}^{\infty} \psi(e_i)\psi_i(x)| \leq \sup_{x \in B_A} |\sum_{i=m+1}^{\infty} \psi(e_i)\psi_i(rx)| < r\varepsilon, \text{ for } m > m_0 \text{ which is precisely for } B = B_A.$ Suppose that *B* be the bounded set of *A*, and let *r* > 0 such that $B \subset rB_A$. For any *m* > *m*₀, the

following holds true:
$$\sup_{x \in B} |\sum_{i=m+1}^{\infty} \psi(e_i) \psi_i(x)| \le \sup_{x \in B_A} |\sum_{i=m+1}^{\infty} \psi(e_i) \psi_i(rx)| < r\varepsilon.$$

(b) Assume that *x* belongs to *A*, $\varepsilon > 0$, and $B \subset A'$ is a abounded subset. Assume that $B \subset B_{A'}(0, r)$ for any r > 0. Since $(e_m)_{m \in \mathbb{N}}$ is a Schauder basis for *A*, for any $m > m_0$, there exists $m_0 \in \mathbb{N}$ such that $\|\sum_{i=m+1}^{\infty} \psi_i(x)e_i\| < \frac{\varepsilon}{3}$. If we use $\psi = \sum_{i=m+1}^{\infty} \psi(e_i)\psi_i$, then

$$\begin{split} \sup_{\psi \in B} |S_m(\psi)(x) - \psi(x)| &= \sup_{\psi \in B} \left| \sum_{i=m+1}^{\infty} \psi(e_i) \psi_i(x) \psi = \sum_{i=m+1}^{\infty} \psi(e_i) \psi_i \right| \\ &\leq \sup_{\psi \in B} \|\psi\| \left\| \sum_{i=m+1}^{\infty} \psi_i(x) e_i \right\| < r. \frac{\varepsilon}{r} = \varepsilon, \text{ for } m \ge m_0. \end{split}$$

Going forward, the lack of proof for the weak-star case in *A*' can be attributed to the fact that it restates the reasons presented in the proof for the weak case in *A*. The following corollaries apply to us.

Corollary 2.4. Assume that *A* has a decreasing Schauder basis and is a Banach space. In $\mathcal{P}_w(A)$, $\mathcal{P}_{g_i}(A)$ is norm-dense, and in $\mathcal{P}_{w^*}(A')$, $\mathcal{P}_{g_i^*}(A')$ is norm-dense.

Proof. For every *m* in \mathbb{N} , let c > 1 be such that $||T_m^i|| \le c$. Suppose that B = B(0, r), and let C = B(0, cr). Let *x*, *y* are in C, x - y is in $W, W \in \mathcal{V}_w(A)$ and $\varepsilon > 0$ then

$$|P(x) - P(y)| < \varepsilon.$$

According to Proposition (1.3), for any x in B and $m > m_0$, there exists $m_0 \in \mathbb{N}$ such that $T_m^i(x) - x \in W$. As a result, for all x in B where $m > m_0$, $|P \circ T_m^i(x) - P(x)| < \varepsilon$. Now note that, for every n in \mathbb{N} , $P \circ T_m^i \in \mathcal{P}_{g_i}(A)$.

Assume that *A* denote a subset of the Banach space *E*, and $G \subset \mathcal{P}(A)$. Then for all $g \in G$, the *G* - hull of *E* is defined as the set

$$\widehat{E}_{\mathcal{G}} = \{ x \in A \colon |f(x)| \le \sup_{E} |g| \}$$

Corollary 2.5. Suppose that *A* represents a Banach space characterized by a diminishing Schauder basis. Define *E* and *B* as abounded and bounded subsets, respectively, of *A* and *A*'. Then

$$\widehat{E}_{\mathcal{P}_{g_i}(A)} = \widehat{E}_{\mathcal{P}_w(A)}, \text{ and } \widehat{B}_{\mathcal{P}_{g_i^*}(A')} = \widehat{B}_{\mathcal{P}_{w^*}(A')}.$$

Corollary 2.6. Permit *A* to represent a Banach space characterized by a diminishing Schauder basis. Define *V* as a weakly open subset of *A*, and *U* as a weak-star open subset of *A*'.

(a) Given $m > m_0$ and $E \in \mathcal{K}_{\omega}(V)$, there are $W \in \mathcal{V}_{\omega}(A)$ and $m_0 \in \mathbb{N}$ in which $E + W \subset V$ and $T_m^i(E) + W \subset V$ are both true. Specifically, $T_m^i(E) \in \mathcal{K}_{\omega}(V)$ holds true for all values of $m \ge m$.

(b) There exists a $W \in \mathcal{V}_{\omega^*}(A')$ and $m_0 \in \mathbb{N}$ pairwise compatible such that $B + W \subset U$ and $S_m(B) + W \subset U$, for all $m > m_0$, for each $B \in \mathcal{K}_{\omega^*}(U)$. More specifically, $S_m(B) \in \mathcal{K}_{\omega^*}(U)$ as m approaches to zero.

(c) The set $\mathcal{K}_{\omega}(V)$ contains the elements $C = E \cup \{T_m^i(E) : m \ge m_0\}$

(d) $\mathcal{K}_{\omega^*}(U)$ contains the set $D = B \cup \{S_m(B) : m \ge m_0\}$.

Proof. (a) Assume that $E \in \mathcal{K}_{\omega}(V)$ is present. We can determine $W, \widetilde{W} \in \mathcal{V}_{\omega}(A)$ by Lemma 2.1, given that $W + W \subset \widetilde{W}$ and $E + \widetilde{W} \subset V$. According to Proposition 2.3, for all $x \in E$ and $m \ge m_0$, there exists $m_0 \in \mathbb{N}$ such that $T_m(x) - x \in W$. Therefore, $T_m^i(E) \subset E + W \subset V$ holds true for all $m \ge m_0$ as well as hence $T_m^i(E) \subset E + W \subset V$, where $m < m_0$.

(c) By (a), specifically, we obtain $C \subset V$. To demonstrate the weak compactness of *C*, consider $(W_{\alpha})_{\alpha \in E}$ as a weakly open cover for *C*, such that $C \subset \bigcup_{\alpha \in E} W_{\alpha}$. Given that $E \subset C$ is weakly compact, $\alpha_1, ..., \alpha_k \in E$ must be present for $A \subset \bigcup_{i=1}^k W_{\alpha_i}$. Consider $W \in \mathcal{V}_w(A)$ to be such that E + C

 $W \subset \bigcup_{j=1}^{k} W_{\alpha_j}$ according to Lemma 2.1. Proposition 2.3 states that for all $x \in A$ and $m \ge m_1$, there exists $m_1 \ge m_0$ in which $T_m(x) - x \in W$. This implies that $T_m^i(x) \in \bigcup_{j=1}^k W_{\alpha_j}$, for all $x \in A$ and $m \ge m_1$. It is now evident that $T_m^i(E)$, where $m = m_0, ..., m_1$, belongs to a finite subfamily of $(W_{\alpha})_{\alpha \in E}$.

Corollary 2.7. Denoted as *A*, this space follows a diminishing Schauder basis. Subsequently, $\mathcal{P}_{g_i}(A)$ and $\mathcal{P}_{g_i^*}(A')$ both exhibit norm-dense characteristics.

Proof. Whenever $||T_m^i|| \le 1 + \delta_i$, and $m \in \mathbb{N}$. B = B(0, r), $C = B(0, (1 + \delta_i) r)$ and $P^i \in \mathcal{P}_w(A) = \mathcal{P}_{wv}(A)$. There exists $W \in \mathcal{V}_w(A)$ for which $\varepsilon > 0$, such that if $x, y \in C$ and $x - y \in W$, then

$$\sum_{i=1}^{m} \left| P^{i}(x) - P^{i}(y) \right| < \varepsilon.$$

There exists $m_0 \in \mathbb{N}$ in accordance with Proposition 2.3 such that $T_m^i(x) - x \in W$, where $x \in B$ and $m \ge m_0$. This is why

$$\sum_{i=1}^{m} \left| P^{i} \circ T_{m}^{i}(x) - P^{i}(x) \right| < \epsilon,$$

in the given $x \in B$ and $m \ge m_0$. For all $m \in \mathbb{N}$, observe that $P^i \circ T^i_m(x) \in \mathcal{P}_{q_i}(A)$.

Proposition 2.8. Define *V* as a weakly open subset of *A*, *U* as a weak-star open subset of *A'*, and *A* as a Banach space with a contracting Schauder basis. Assign *g* to $g \in \mathcal{H}_{wvk}(V)$ and *f* to $f \in \mathcal{H}_{w^*vk}(U)$. Then

(a) There is a value of $m_0 \in \mathbb{N}$ such that $\sup_{x \in E} \left| g\left(T_m^i(x)\right) - g(x) \right| < \varepsilon$, for all $m \ge m_0$, for each $E \in \mathbb{N}$

 $\mathcal{K}_w(V)$ and $\varepsilon > 0$.

(b) There exists a value of $m_0 \in \mathbb{N}$ such that $\sup_{y' \in B} \left| f\left(S_m^i(y')\right) - f(y') \right| < \varepsilon$, for all $m \ge m_0$, where $\varepsilon > 0$ and $\in \mathcal{K}_{w^*}(U)$.

Proof. Assume that $E \in \mathcal{K}_w(U)$. Using Corollary 2.6, there exists an integer number $m_1 \in \mathbb{N}$ such that $E \cup \{T_m^i(E) : m \ge m_1\} = C \in \mathcal{K}_w(V)$. Since $g \in \mathcal{H}_{wvk}(V)$, there is $W \in \mathcal{V}_w(A)$ such that if $x, y \in C$ and $x - y \in W$ then

$$|g(x) - g(y)| < \varepsilon.$$

There exists a *W* for which $m_2 \in \mathbb{N}$ guarantees that $T_m(x) - x \in W$, given that $x \in C$ and $m \ge m_2$. Define m_0 as the maximum of m_1, m_2 given that $x \in E$ and $m \ge m_0$. Following this, $x, T_m(x) \in C$, $T_m(x) - x \in W$, and thus $|g(T_m^i(x)) - g(x)|$ is less than ε . In essence, proposition 2.8 states that $g \circ T_m^i$ converges uniformly to g across the elements of w(V). However, this would be a linguistic distortion, as not all compositions $g \circ T_m^i$ are precisely defined for each value of $m \in \mathbb{N}$. Our first significant finding regarding the two algebras $\mathcal{H}_{wvk}(V)$ and $\mathcal{H}_{w^*vk}(U)$ is the Next theorem.

Theorem 2.9. Consider *A* a Banach space with a diminishing Schauder basis, *V* a weakly open subset of *A* that is polynomially convex, and *U* a weak-star open subset of *A'* that is also polynomially convex. $\mathcal{P}_{g^*}(A')$ is τ_{k^*} -dense in $\mathcal{H}_{w^*vk}(U)$, whereas $\mathcal{P}_g(A)$ is τ_k -dense in $\mathcal{H}_{wvk}(V)$. **Proof.** Assume that Let $E \in \mathcal{H}_w(V)$, $g \in \mathcal{H}_{wvk}(V)$ and $\varepsilon > 0$. By applying Proposition 2.8 and Corollary 2.6, we can identify an integer number $m_0 \in \mathbb{N}$ such that

$$T_{m_0}^i(E) \in \mathcal{K}_w(V) \text{ and } |g \circ T_{m_0}^i(x) - g(x)| < \frac{\varepsilon}{2}$$
, for all $x \in E$.

 $V \cap T_{m_0}^i(A)$ is polynomially convex in $T_{m_0}^i(A)$, which follows from the fact that *V* is polynomially convex [10]. Conversely, it is evident that $T_{m_0}^i(A)$ constitutes a compact subset of $V \cap T_{m_0}^i(A)$. Subsequently, it can be deduced from [10] that $P \in \mathcal{P}(T_{m_0}^i(A))$ exists in such a way that ensures the discrepancy between |P(y) - g(y)| and $\frac{1}{2}$ is present uniformly on $y \in T_{m_0}^i(E)$ alternatively stated,

$$\sup_{x\in E} |p\circ T^i_{m_0}(x)-g\circ T^i_{m_0}(x)|<\frac{\varepsilon}{2}.$$

The conclusion is now presented in (a) and (b).

The initial assertion in Corollary 2.4 becomes evident when A' possesses the property of approximation [3]. Knowing the second assertion in Theorem 2.9 requires that A possesses the approximation property [1] and U = A'. But the proof presented here is considerably simpler when A has a diminishing Schauder basis.

Corollary 2.10. Define *V* as a weakly open subset of *A*, *U* as a weak-star open subset of *A'*, and *A* as a Banach space with a contracting Schauder basis. Allow $g_i \in \mathcal{H}_{wvk}(V)$ and $f_i \in \mathcal{H}_{w^*vk}(U)$. Thus,

(a) Given $\varepsilon > 0$ and $E \in \mathcal{K}_w(V)$, there is a $m_0 \in \mathbb{N}$ value in which

$$\sup_{x \in E} \sum_{i=1}^{m} \left| g_i \left(T_m^i(x) \right) - g_i(x) \right| < \varepsilon, \text{ for all } m \ge m_0.$$

(b) In the case where $B \in \mathcal{K}_{w^*}(U)$ and $\varepsilon > 0$, $m_0 \in \mathbb{N}$ is a valid value such that

$$\sup_{y'\in B}\sum_{i=1}^{m} \left| f_i\left(S_m^i(y')\right) - f_i(y') \right| < \varepsilon, \text{ for all } m \ge m_0.$$

Proof. Assume $E \in \mathcal{K}_w(V)$. It is implied by corollary 2.6 that for an integer number $m_1 \in \mathbb{N}$, there exists $E \cup \{T_m^i(E): m \ge m_1\} = C \in \mathcal{K}_w(V)$ condition. Given that $g_i \in \mathcal{H}_{wvk}(V)$, there is an element $W \in \mathcal{V}_w(A)$ in which $x, y \in C$ and $x - y \in W$, then

$$\sum_{i=1}^m |g_i(x) - g_i(y)| < \varepsilon.$$

There exists a value of \mathbb{N} such that $T_m^i(x) - x \in W$ for this W, given that $x \in C$ and $m \ge m_2$. Define m_0 as the maximum of m_1, m_2 given that $x \in E$ and $m \ge m_0$. Consequently, $x, T_m^i(x) \in C$ and $T_m^i(x) - x \in W$, and hence

$$\sum_{i=1}^m \left| g_i(T_m^i(x)) - g_i(x) \right| < \varepsilon.$$

Corollary 2.11. Consider *A* a Banach space with a diminishing Schauder basis, *V* a weakly open subset of *A* that is polynomially convex, and *U* a weak-star open subset of *A'* that is also polynomially convex. Subsequently, $\mathcal{P}_{g_i}(A)$ becomes τ_k -dense in $\mathcal{H}_{wvk}(V)$, while $\mathcal{P}_{g_i^*}(A')$ is τ_{k^*} -dense in $\mathcal{H}_{w^*vk}(U)$ [16].

Proof. Let $g_i \in \mathcal{H}_{wvk}(V)$ and $E \in \mathcal{K}_w(V)$ both have $\varepsilon > 0$. In the case where an integer m_0 is such that $T_{m_0}^i(E) \in \mathcal{K}_w(V)$ and $\sum_{i=1}^m |g_i \circ T_{m_0}^i(x) - g_i(x)| < \frac{\varepsilon}{2}$, for all $x \in E$.

 $V \cap T^i_{m_0}(A)$ is polynomially convex in $T^i_{m_0}(A)$, given that V is polynomially convex [10]. The compact subset of $V \cap T^i_{m_0}(A)$ is denoted as $T^i_{m_0}(E)$. [1] demonstrates that $P^i \in \mathcal{P}(T^i_{m_0}(A))$ exists, such that

$$\sum_{i=1}^{m} \left| P^{i}(y) - g_{i}(y) \right| < \frac{\varepsilon}{2},$$

concerning $y \in T_{m_0}^i(E)$, or

$$\sup_{x \in E} \sum_{i=1}^m \left| P^i \circ T^i_{m_0}(x) - g_i \circ T^i_{m_0}(x) \right| < \frac{\varepsilon}{2}.$$

This is the consequence.

We will now discuss a number of applications of the prior research. The findings pertain to novel categories of open subsets of Banach spaces. The definition of 2.1 was derived from [15].

3. The convex sets and the compactness

Definition 3.1. Consider *A* to be a Banach space, *V* and *U* to be open subsets of *A* and *A*', respectively. We assert that:

- (a) For all $E \in \mathcal{K}_w(V)$, V is $\mathcal{P}_{wk}(A)$ -convex if $\widehat{E}_{\mathcal{P}_\omega(A)} \cap V \in \mathcal{K}_w(V)$.
- (b) *U* is convex with respect to $\mathcal{P}_{w^*k}(A')$ if $\hat{B}_{\mathcal{P}_w(A')} \cap U \in \mathcal{K}_{w^*}(U)$, for all $B \in \mathcal{K}_{w^*}(U)$.
- (c) If $\widehat{E}_{\mathcal{P}_w(A)} \subset V$, and $\widehat{E}_{\mathcal{P}_w(A)} \in \mathcal{K}_w(V)$ for all $E \in \mathcal{K}_w(V)$, then *V* is strongly $\mathcal{P}_{wk}(A)$ -convex.
- (d) *U* is considered to be strongly $\mathcal{P}_{w^*k}(E')$ -convex if $\widehat{B}_{\mathcal{P}_w(A')} \subset U$ and $\widehat{B}_{\mathcal{P}_w(A')} \in \mathcal{K}_{w^*}(U)$, for all $B \in \mathcal{K}_w(U)$.

We have demonstrated in the following lemma that the final conditions of Definitions 3.1 (c) and (d) are superfluous.

Lemma 3.2. Consider *A* to be a Banach space, *V* and *U* to be open subsets of *A* and *A'*, respectively. Suppose that $E \in \mathcal{K}_{\omega}(V)$ and $B \in \mathcal{K}_{\omega^*}(U)$. If $\widehat{E}_{\mathcal{P}_{\omega}(A)} \subset V$, and $\widehat{E}_{\mathcal{P}_{\omega^*}(A')} \subset U$ then $\widehat{E}_{\mathcal{P}_{w}(A)} \in \mathcal{K}_{w}(V)$, and $\widehat{B}_{\mathcal{P}_{\omega^*}(A')} \in \mathcal{K}_{\omega^*}(U)$ respectly.

Proof. Given that $\mathbb{C} \oplus A' \subset \mathcal{P}_w(A)$, it can be deduced that $\hat{E}_{\mathcal{P}_w(A)} \subset \hat{E}_{\mathbb{C} \oplus A'} = co^{-w}(E)$, with the final equality being derived from [8]. Given the weak compactness of $co^{-w}(E)$ and the weak closure of $\hat{E}_{\mathcal{P}_w(A)}$, it can be deduced that $\hat{E}_{\mathcal{P}_w(A)} \subset V$ is also weakly compact, and thus $\hat{E}_{\mathcal{P}_w(A)} \in \mathcal{K}_w(V)$. Since $\hat{B}_{\mathcal{P}_w(A')}$ is weak-star closed and bounded, and thus weak-star compact, the second assertion is superfluous.

Lemma 3.3. Define *A* as a Banach space, and *E* as a subset of *A*' that is abounded. Subsequently, $\widehat{E}_{\mathbb{C}\oplus A'} = co^{-w^*}(E)$, where $\mathbb{C}\oplus A$ represents the set $\{e + \delta_x : e \in \mathbb{C}, x \in A\} \subset A''$.

Proof. The proof is continued by applying the Hahn Banach Theorem to the space $(A', \sigma(A', A))$ that is locally convexymorphic [10].

Example 3.4. Suppose *A* represents a Banach space, with P and Q ranging over $\mathcal{P}_{g_i}(A)$ and $\mathcal{P}_{g_i}(A')$ Consequently, then:

(a) each weakly open convex subset of *A* is strongly $\mathcal{P}_{wk}(A)$ -convex

(b) Each convex weak-star open subset of A' possesses the property of $\mathcal{P}_{w^*k}(A')$ -convexity.

(c) $V = \{x \in A : |P(x)| < 1\}$ is a weakly open set that is strongly $\mathcal{P}_{wk}(A)$ -convex.

(d) $U = \{x \in A' : |Q(x)| < 1\}$ is an open set that is strongly $\mathcal{P}_{w^*k}(A')$ -convex weak-star.

Proof. Let $E \in \mathcal{K}_w(V)$ in (a). To begin, we shall demonstrate that $\overline{co}^w(E) \in \mathcal{K}_w(V)$. Assume, by Lemma 2.1, that $\widetilde{W} \in \mathcal{V}_w(A)$ is such that $E + \widetilde{W} \subset V$. Given that V is convex, it is evident that $co(E) + \widetilde{W} \subset co(E + \widetilde{W}) \subset V$. Based on the equation $\overline{co}^w(E) = \bigcap_{W \in \mathcal{V}_w(A)} co((E) + W)$, it is evident that $\overline{co}^w(E) \subset co(E) + \widetilde{W} \subset V$. Consequently, $\overline{co}^w(E) \in \mathcal{K}_w(V)$. Currently, $\widehat{E}_{\mathbb{C}\oplus A'} \subset \widehat{E}_{\mathcal{P}_w(A)} = \overline{co}^w(E) \in \mathcal{K}_w(V)$, with the final equality being deduced from [10]. Consequently, *V* is strongly $\mathcal{P}_{wk}(A)$ -convex.

(b) We apply the identical reasoning as in (a), substituting Lemma 3.2 for [10].

(c) It is evident that *V* has a feeble opening. When $E \in \mathcal{K}_w(V)$, we will demonstrate that $\sup_E |P| < 1$.

Consider the case where $\sup_{E} |P| = 1$. There is a sequence $(x_m) \in E$ such that $|P(x_m)|$ approaches to 1. Given that E is compact in the w-direction, a subsequence of (x_m) called (x_{m_k}) exists in which $x_{m_k} \xrightarrow{w} x \in E \subset V$. Therefore, $|P(x_{m_k})| \to |P(x)| = 1$.

precisely, $x \notin V$, which is inherently contradictory. At this time, let $y \in \widehat{E}_{\mathcal{P}_w(A)}$. Then $|P(y)| \leq \sup_{E} |P| < 1$, which establishes that $\widehat{E}_{\mathcal{P}_w(A)} \subset V$. Now *V* strongly $\mathcal{P}_{wk}(A)$ convex according to Lemma 3.2.

 $\mathcal{P}_{wk}(A)$ -convexity and weak openness both indicate that V is polynomially convex. Indeed, $K \in \mathcal{K}_w(V)$ if K is a compact subset of V. Given that $\mathcal{B}(V)$ is in a state of $\mathcal{P}_w(V) \subset \mathcal{P}(A)$, it follows that $\hat{K}_{\mathcal{P}(A)} \subset \hat{K}_{\mathcal{P}_w(A)}$. Consequently, $\hat{K}_{\mathcal{P}(A)} \cap V \subset \hat{K}_{\mathcal{P}_w(A)} \cap V \in \mathcal{K}_w(V) \subset \mathcal{B}(V)$. It is worth noting that according to [15], an open subset V of a Banach space A is considered $\mathcal{P}_b(A)$ -convex if $\hat{E}_{\mathcal{P}(A)} \cap V \in \mathcal{B}(V)$ for every $E \in \mathcal{B}(V)$. Furthermore, V is considered strongly $\mathcal{P}_b(A)$ -convex if $\hat{E}_{\mathcal{P}(A)} \subset V$ and $\hat{E}_{\mathcal{P}(A)} \in \mathcal{B}(V)$ for every $E \in \mathcal{B}(V)$. In contrast, we demonstrate in [15] that the final condition $\hat{E}_{\mathcal{P}(A)} \in \mathcal{B}(V)$ is unnecessary. When the value of V is balanced, both concepts are concurrent [15]. The outcome is analogous when $\mathcal{P}_{wk}(A)$ -convex sets are considered; this is demonstrated in Theorem 3.6. To illustrate this theorem, the subsequent result is required.

Theorem 3.5. Consider the Banach space *A*.

(a) Consider a weakly compact subset of *A* denoted by $E \subset A$ and a weakly open subset of $A \subset E$ denoted by *V*, such that $\widehat{E}_{\mathcal{P}(A)} \subset V$. Subsequently, a weakly open set \widetilde{V} exists that is $\mathcal{P}_{wk}(A)$ -convex and such that $\widehat{E}_{\mathcal{P}_{a_i}(A)} \subset \widetilde{V} \subset V$.

(b) Denote a weak-star compact subset of A' denoted as $B \subset A'$ and a weak-star open subset of A' referred to as U, such that $\widehat{B}_{\mathcal{P}_{g_i^*}(A')} \subset U$. Subsequently, a weak-star open set \widetilde{U} is generated, which is strongly $\mathcal{P}_{w^*k}(A')$ -convex. This implies that the set $\widehat{B}_{\mathcal{P}_{g_i^*}(A')} \subset \widetilde{U} \subset U$.

Proof. (a) Our strategies are motivated by the concepts put forth in [10]. It can be deduced that $C = \overline{co}^w(E)$ is weakly compact, given that *E* is weakly compact. In the event that $C \subset V$, $\tilde{V} = C + C$

W is obtained, given that $W \in \mathcal{V}_w(V)$ is convex and such that $C + W \subset V$ (Lemma 2.1). Given that $\mathbb{C} \oplus A' \subset \mathcal{P}_{g_i}(A)$, it can be deduced that $\widehat{E}_{\mathcal{P}_{g_i}(A)} \subset \widehat{E}_{\mathbb{C} \oplus A'} = C$. This last equality is supported by reference [10]. Example 3.4 demonstrates that \widetilde{V} is now strongly $\mathcal{P}_{wk}(A)$ -convex; therefore, \widetilde{V} is the intended set. In the absence of *C* being contained in *V*, there exists a $P \in \mathcal{P}_{g_i}(A)$ such that $\sup_{E} |P| < 1 < |P(y)|$, for every $y \in C \setminus V$. Given that $C \setminus V$ is weakly compact, it is possible to identify polynomials $P_1, P_2, \dots, P_k \in \mathcal{P}_{g_i}(A)$ that satisfy the following conditions:

$$C \setminus V \subset \bigcup_{i=1}^{k} \{ x \in A : |P_i(x)| > 1$$

This is why

 $C \cap \{ x \in A : |P_i(x)| \le 1, \text{ for } i = 1, 2, ... \} \subset V.$

We assert that $W \in \mathcal{V}_w(A)$ exists in such a way that

 $(C + W) \cap \{x \in A : |P_i(x)| < 1, \text{ for } i = 1, ..., k\} \subset V.$

In the event that this condition is not met, there exists a set $z_W = x_W + y_W$ for each $W \in \mathcal{V}_w(V)$, where $x_W \in C$, $y_W \in W$, and $|P_i(z_W)| < 1$ for i = 1, 2, ..., k; such that $z_W \notin V$. Without sacrificing generality, since *C* is weakly compact, there exists $x \in C$ such that $x_W \xrightarrow{w} x \in C$, and thus $z_W \xrightarrow{w} x \in C$.

It follows that since $P_i(z_W) \to P_i(x)$ for i = 1, 2, ..., k, $|P_i(z_W)| \le 1$, i = 1, ..., k, which indicates that $x \in V$, by (c). Define W as such that $x + \widetilde{W} \subset V$. There exists a $W_0 \in \mathcal{V}_W(V)$ for which $z_{W_0} \in x + \widetilde{W} \subset V$, which is in contradiction with the given \widetilde{W} . Consequently, $\widetilde{V} = (C + W) \cap \{x \in$ $A: |P_i(x)| < 1$, for $i = 1, ..., k\}$ is strongly $\mathcal{P}_{wk}(V)$ -convex by nature, as it is a finite intersection of sets that are $\mathcal{P}_{wk}(A)$ -convex (Example 3.4) at this point. Ultimately, it is evident that $\widehat{E}_{\mathcal{P}_{g_i}(A)} \subset \widetilde{V} \subset V$.

(b) We adopt the identical methodology as in (a), substituting Lemma 3.3 for [10].

Theorem 3.6. The space *A*, which has a shriking Schauder basis, *V* is a weakly open subset of *A*. *U* on the other hand, is a weak-star open subset of *A*'. Then

(a) *V* is $\mathcal{P}_{wk}(A)$ -convex if and only if *V* is strongly $\mathcal{P}_{wk}(A)$ -convex.

(b) *U* is $\mathcal{P}_{w^*k}(A')$ -convex if and only if *U* is strongly $\mathcal{P}_{w^*k}(A')$ -convex.

Proof. To illustrate the nontrivial consequence, let $E \in \mathcal{K}_w(V)$. It is sufficient to demonstrate, by Lemma 2.10, that $\widehat{E}_{\mathcal{P}_w(A)} \subset V$. We consider that $\widehat{E}_{\mathcal{P}_w(A)} = (\widehat{E}_{\mathcal{P}_w(A)} \cap V) \cup (\widehat{E}_{\mathcal{P}_w(A)} \setminus V)$. Since *V* is $\mathcal{P}_{wk}(A)$ -convex, we have that $\widehat{E}_{\mathcal{P}_w(A)} \cap V \in \mathcal{K}_w(V)$ and then by Lemma 2.1 there is a $\widetilde{W} \in \mathcal{V}_w(V)$ in which $\widehat{E}_{\mathcal{P}_W(A)} \cap V + \widetilde{W} \subset V$, which implies that $(\widehat{E}_{\mathcal{P}(A)} \cap V + \widetilde{W}) \cap (\widehat{E}_{\mathcal{P}(A)} \setminus V) = \emptyset$. Determine $W \in \mathcal{V}_W(V)$ in which $W + W \subset \widetilde{W}$. $(E_0 + W) \cap (E_1 + W) = \emptyset$, where $E_0 = (\widehat{E}_{\mathcal{P}_W(A)}) \cap V$ and $E_1 = \widehat{E}_{\mathcal{P}_W(A)} \setminus V$, as deduced from [15].

By representing $V' = (E_0 + W) \cup (E_1 + W)$, it becomes evident that $V' = \hat{E}_{\mathcal{P}_W(A)} + W = \hat{E}_{\mathcal{P}_g(A)} + W$, with the final equality being derived from Corollary 2.5. Define $g \in \mathcal{H}_{wvk}(V')$ as the condition that g = 0 in $E_0 + U$ and g = 1 in $E_1 + U$. Let V' signify a weakly open subset of A consisting of $\hat{E}_{\mathcal{P}_g(A)}$. There exists a weakly open set \tilde{V} that is strongly $\mathcal{P}_{wk}(A)$ -convex, as stated in Theorem 3.5, such that $\hat{E}_{\mathcal{P}_{g_i}(A)} \subset \tilde{V} \subset V'$. We have that $\hat{E}_{\mathcal{P}_{g_i}(A)} \in \mathcal{K}_w(\tilde{V})$ due to the weak compactness of $\hat{E}_{\mathcal{P}_{g_i}(A)}$. Given that V is $\mathcal{P}_{wk}(A)$ -strongly convex and $g|_{\tilde{V}} \in \mathcal{H}_{wvk}(\tilde{V})$, Theorem 2.9 can be utilised to identify a polynomial $P \in \mathcal{P}_g(A)$ such that $\sup_{\hat{E}_{\mathcal{P}_{g_i}(A)}} |g|_{\tilde{V}} - P| < 1/2$. Given that $E \subset E_0$, it follows that $\sup_{E} |P| < 1/2$ and hence $\sup_{\hat{E}_{\mathcal{P}_{g_i}(A)}} |P| < 1/2$.

Currently, let $y \in E_1 \subset \tilde{V}$. Then we have

$$\frac{1}{2} > |p(y) - g|_{\widetilde{V}}(y)| = |P(y) - 1| = |1 - P(y)| \ge 1 - |P(y)|.$$

It follows that ||P(y)| > 1/2 is greater than 1/2, which is a contradiction.

4. Banach stone theorems and holomorphic mappings

Following this, the spectral efficiencies of $\mathcal{H}_{wvk}(V)$ when A is reflexive will be examined . Given that the two algebras $\mathcal{H}_{wvk}(V)$ and $\mathcal{H}_{w^*vk}(U)$ are of the same type, it is adequate to deal with $\mathcal{H}_{wvk}(V)$. Let V be an open subset of A and denote A as Banach space. $S_{wvk}(V)$ represents the spectrum of $\mathcal{H}_{wvk}(V)$, which consists of every continuous complex homomorphism $T: \mathcal{H}_{wvk}(V) \to \mathbb{C}$. Consider $z \in V$. Then $\delta_z: \mathcal{H}_{wvk}(V) \to \mathbb{C}$ is referred to as evaluation at z. It is defined by $\delta_z(g) = g(z)$ for all $g \in \mathcal{H}_{wvk}(V)$. It is evident that $\delta_z \in S_{wvk}(V)$ for each $z \in V$; therefore, we can say that $S_{wvk}(V)$ contains V. Subsequently, we demonstrate that, under specific conditions on A and V, every element of $S_{wvk}(V)$ consists of an evaluation at some point of V; thus, we say that $S_{wvk}(V)$ is identified with V [16].

Theorem 4.1. For *A* to be a reflexive Banach space with a Schauder basis, consider *V* to be a weakly open subset of *A* that is a $\mathcal{P}_{wk}(A)$ -convex. Following this, the spectrum of $\mathcal{H}_{wvk}(V)$ is correlated with *V*.

Proof. We adopt the concepts put forth in [8]. Denote $T \in S_{wvk}(V)$. and c > 0 are both necessary conditions for T to be continuous, ensuring that $||T(g)| \leq c \sup_E |g|$ for all $g \in \mathcal{H}_{wvk}(V)$. We may infer that c equals 1 based on the classical argument that T is multiplicative. Consider r > 0 in the sense that $E \subset B(0,r)$. Specifically, for all $g \in A'$, we have that $|T(g)| \leq \sup_E |g| \leq \sup_{A(0,r)} |g|$. Therefore, given that $T \in A'' = A$ and $a \in A$ is unique such that T(g) = g(a) for all $g \in A', T(P) = P(a)$ for all $P \in \mathcal{P}_{g_i}(A)$, we conclude that T(P) = P(a). Subsequently, for all $P \in \mathcal{P}_{g_i}(A)$, it can be deduced that $|P(a)| = |T(P)| \leq \sup_E |P|$. This implies that $a \in \widehat{E}_{\mathcal{P}_{g_i}(A)} = \widehat{E}_{\mathcal{P}_w(A)}$, with the final equality being deduced from Corollary 2.5.

We now have, by Theorem 3.6 that *V* is strongly $\mathcal{P}_{wk}(A)$ convex; therefore, $a \in V$. T(g) = g(a) is then obtained by applying Theorem 2.9 to all $g \in \mathcal{H}_{wvk}(V)$ values.

Example 4.2. Consider *A* to be a Banach space that is reflexive, and *V* to be a convex and weakly open subset of *A*. Example 2.2 demonstrates that $\mathcal{H}_{wvk}(V)$ equals $\mathcal{H}_{wv}(V)$. *V* is strongly $\mathcal{P}_{wk}(A)$ -convex, as demonstrated by Example 3.4, given that *V* is convex. Assuming *A* possesses a Shauder basis, it follows that $\mathcal{P}_{g_i}(A)$ is dense in $\mathcal{H}_{wv}(V)$. according to Theorem 2.9. Additionally, Theorem 4.1 dictates that $S_{wv}(V)$ equals $V. V \subset A$ is a convex and balanced open set, and if *A* is a Banach space such that *A'* possesses the approximation property, then $S_{wv}(V) = \operatorname{int}(\overline{V}^{w^*})$, where the interior is taken in the norm *A''*, as demonstrated in ([6], [7]). $S_{wv}(V)$ equals *V* specifically if *A* is reflexive with a Shauder basis. Therefore, in the reflexive case, the hypothesis that *V* is balanced can be disregarded; however, it is necessary to presume that *V* is only weakly open.

Example 4.3. Denote *A* a Banach space that is reflexive, such that $\mathcal{P}(A) = \mathcal{P}_w(A)$. Consider *V* to be a weakly open subset of *A* that is $\mathcal{P}_{wk}(A)$ -convex due to its strong $\mathcal{P}_b(A)$ -convexity. It can be deduced that $\overline{V}_m^w \subset (\widehat{V}_m)_{\mathcal{P}_w(A)} = (\widehat{V}_m)_{\mathcal{P}(A)} \subset V$. Given that *A* is reflexive, it follows that \overline{V}_m^w is weakly compact; therefore, $\overline{V}_m^w \in \mathcal{H}_w(V)$. As a result, $\mathcal{H}_{wvk}(V)$ equals $\mathcal{H}_{wv}(V)$. Furthermore, under the assumption that *A* possesses a Schauder basis, it can be deduced from Example 4.2 that $\mathcal{P}_w(A)$ is dense in $\mathcal{H}_{wv}(V)$ and $S_{wv}(V)$ equals *V*. An instance of a Banach space that possesses every one of the necessary properties is Tsirelson's space [13]. It is demonstrated in reference [15] $S_{wv}(V) = V$ if *A* is a reflexive Banach space in which $\mathcal{P}(A) = \mathcal{P}_w(A), V \subset A$ is balanced, and the $\mathcal{P}_b(A)$ -convex open set is strongly $\mathcal{P}_b(A)$ -convex. As previously noted, each balanced $\mathcal{P}_b(A)$ -convex open set possesses the strongly $\mathcal{P}_b(A)$ -convex property. In the specific instance where *A* represents Tsireson's space, we further enhance the outcomes reported in reference [15].

As a result of Theorem 4.1, the Next Theorem follows. It states that, according to the same Theorem 4.1 hypotheses, each proper finitely generated ideal of $\mathcal{H}_{wv}k(V)$. shares a zero. The substantiation shall be omitted in accordance with the tenets of [11].

Theorem 4.4. Assume that *V* is a a $\mathcal{P}_{wk}(A)$ -convex and weakly open subset of *A*, where *A* is a reflexive Banach space with a Schauder basis. Consequently, if $g_1, g_2, ..., g_m \in \mathcal{H}_{\omega vk}(V)$ and none of them have any common zeros, there is exists $f_1, f_2, ..., f_m \in \mathcal{H}_{\omega v}(V)$ in which $\sum_{i=1}^m g_i f_i = 1$.

With respect to the algebra $\mathcal{H}_{wv}(V)$, the subsequent corollary follows in the spirit of Example 4.2. **Corollary 4.5.** Consider *A* to be a Schauder-basis reflexive Banach space, and *V* to be a convex and weakly open subset of *A*. Subsequently, if $g_{1,} \dots, g_m \in \mathcal{H}_{wv}(V)$ and none of the elements contain common zeros, there is a $f_{1,}, f_2, \dots, f_m \in \mathcal{H}_{wv}(V)$ in which $\sum_{i=1}^m g_i f_i = 1$.

Denoted as Banach spaces A and G, let $V \subset A$ and $U \subset G$ represent open subsets. The set of holomorphic mappings $\psi: U \to V$ is represented by $\mathcal{H}_{wvk}(V, U)$ in which $\psi: (V, \sigma(G, G')) \to$ $(V, \sigma(G, G'))$ remains uniformly continuous when limited to each $B \in \mathcal{H}_w(U)$. Suppose that $\psi \in \mathcal{H}_{wuvk}(U, V)$. It can be readily observed that the continuous algebra-homomorphism $C_{\psi}: \mathcal{H}_{wvk}(V) \to \mathcal{H}_{wvk}(U)$, where $C_{\psi}(g) = g \circ \psi$, holds true for all $g \in \mathcal{H}_{wvk}(V)$. Such a homomorphism is referred to as a composition operator. Subsequently, we demonstrate that every continuous algebra-homomorphism from $\mathcal{H}_{wvk}(V)$ to $\mathcal{H}_{wvk}(U)$ is a composition operator, under the same conditions as Theorem 4.1.

Theorem 4.6. Consider the two Banach spaces *A* and *G*, where *A* is reflexive and has a Shauder basis. Consider $V \subset A$ to be weakly open and $\mathcal{P}_{wk}(A)$ -convex, while $U \subset G$ represents an open subset. Consequently, all continuous algebra-homomorphisms $T: \mathcal{H}_{wvk}(V) \to \mathcal{H}_{wvk}(U)$ can be classified as composition operators.

Proof. Our principles are derived from [14]. It is necessary to identify a mapping $\psi \in \mathcal{H}_{wvk}(U, V)$ that guarantees $T = C_{\psi}$. It is observed that $\delta_w \circ T \in S_{wvk}(V)$ and let $\omega \in U$. A unique $z \in V$ exists such that $\delta_w \circ T = \delta_z$, as stated in Theorem 4.1. By establishing $\psi(w) = z$, we can deduce that $T(g) = g \circ \psi$, for all $g \in \mathcal{H}_{wvk}(V)$. Specifically, $g \circ \psi$ is holomorphic for all $g \in A'$; therefore, ψ is a holomorphic mapping according to [10]. To demonstrate that the set $\psi: (U, \sigma(G, G')) \rightarrow (V, \sigma(A, A'))$ remains uniformly continuous while being limited to a single $B \in \mathcal{K}_w(U)$. Therefore, let $B \in \mathcal{K}_w(U)$, $g \in A'$ and $\omega > 0$. Given that $g \circ \psi \in \mathcal{H}_{wvk}(U)$, there is $W \in \mathcal{V}_w(G)$ in which $|g \circ \psi(x) - g \circ \psi(y)| < \varepsilon$, and $x, y \in W$, then $x - y \in W$. This demonstrates $\psi \in \mathcal{H}_{wvk}(U, V)$ [16].

Corollary 4.7. Consider Banach spaces *A* and *G*, where *A* is reflexive and has a Shauder basis. Denote $V \subset A$ as a weakly open and convex set, while denoting $U \subset G$ as an open subset. Then all continuous algebra homomorphisms $T: \mathcal{H}_{wv}(V) \to \mathcal{H}_{wv}(U)$ can be classified as composition operators.

Corollary 4.7 presents comparable findings to those presented in [7] regarding absolutely convex open subsets of Banach spaces whose dual possesses the property of approximation. Two compact metric spaces *X* and *Y* are homeomorphic if and only if the Banach algebras C(X) and C(Y) are isometrically isomorphic, as demonstrated in [5]. The well-known Banach-Stone theorem was extended to arbitrary compact Hausdorff topological spaces by M.H. Stone in [12]. Comparable outcomes are established for the algebras $\mathcal{H}_{wvk}(V)$ and $\mathcal{H}_{wvk}(U)$ in the following theorem.

Theorem 4.8. Consider the reflexive Banach spaces *A* and *G* to be Shauder bases. Assume that $V \subset A$ and $U \subset G$ are weakly open sets, with *V* and *U* being $\mathcal{P}_{wk}(A)$ -convex and $\mathcal{P}_{wk}(G)$ -convex respectively. Subsequently, the subsequent conditions are equivalent.

(a) A bijective mapping $\psi: U \to V$ is present, in which $\psi \in \mathcal{H}_{wvk}(U, V)$ and $\psi^{-1} \in \mathcal{H}_{wvk}(V, U)$.

(b) $\mathcal{H}_{wvk}(V)$ and $\mathcal{H}_{wvk}(U)$ are topologically isomorphic algebras.

Proof. Our principles are derived from [14].

(a) \Rightarrow (b) The composition operator $C_{\psi}: \mathcal{H}_{wvk}(V) \rightarrow \mathcal{H}_{wvk}(U)$ shall be examined. It is then evident that C_{ψ} is bijective, and $(C_{\psi})^{-1} = C_{\psi^{-1}}$.

(*b*) \Rightarrow (*a*) Consider an example of a topological isomorphism $T: \mathcal{H}_{wvk}(V) \rightarrow \mathcal{H}_{wvk}(U)$. There exist $\psi \in \mathcal{H}_{wvk}(U, V)$ and $\phi \in \mathcal{H}_{wvk}(U, V)$ in which $T = C_{\psi}$ and $T^{-1} = C_{\phi}$, respectively, according to Theorem 4.6. It is subsequently uncomplicated to observe that $\phi = \psi^{-1}$; this concludes the proof [16].

Author Contributions: All authors contributed equally to the writing of this article. All authors have accepted responsibility for entire content of the manuscript and approved its submission. **Data availability statement:** Data sharing is not applicable to the article as no data sets were

generated or analyzed during the current study.

Acknowledgement: The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024-9/1).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- R.M. Aron, B.J. Cole, T.W. Gamelin, Weak-Star Continuous Analytic Functions, Canad. J. Math. 47 (1995), 673–683. https://doi.org/10.4153/cjm-1995-035-1.
- [2] R.M. Aron, C. Hervés, M. Valdivia, Weakly Continuous Mappings on Banach Spaces, J. Funct. Anal. 52 (1983), 189–204. https://doi.org/10.1016/0022-1236(83)90081-2.
- R.M. Aron, J.B. Prolla, Polynomial Approximation of Differentiable Functions on Banach Spaces, J. Reine Angew. Math. 313 (1980), 195–216. https://doi.org/10.1515/crll.1980.313.195.
- [4] R.M. Aron, M.P. Rueda, Homomorphisms on Spaces of Weakly Continuous Holomorphic Functions, Arch. Math. 73 (1999), 430–438. https://doi.org/10.1007/s000130050420.
- [5] S. Banach, Théorie des Opérations Linéaires, Chelsea Pub, Warsaw, 1932.
- [6] P.A. Burlandy, L.A. Moraes, The Spectrum of an Algebra of Weakly Continuous Holomorphic Mappings, Indag. Math. 11 (2000), 525–532. https://doi.org/10.1016/s0019-3577(00)80021-x.
- [7] D. Carando, D. García, M. Maestre, Homomorphisms and Composition Operators on Algebras of Analytic Functions of Bounded Type, Adv. Math. 197 (2005), 607–629. https://doi.org/10.1016/j.aim.2004.10.018.
- [8] S. Dineen, Complex Analysis in Infinite Dimensional Spaces, Springer, 1999.
- [9] D. Garcia, M.L. Lourenço, L.A. Moraes, O.W. Paques, The Spectra of Some Algebras of Analytic Mappings, Indag. Math. 10 (1999), 393–406. https://doi.org/10.1016/s0019-3577(99)80031-7.
- [10] J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Stud., vol. 120, Elsevier, Amsterdam, 1986.
- [11] J. Mujica, Ideals of Holomorphic Functions on Tsirelson's Space, Arch. Math. 76 (2001), 292–298. https://doi.org/10.1007/s000130050571.
- [12] M.H. Stone, Applications of the Theory of Boolean Rings to General Topology, Trans. Amer. Math. Soc. 41 (1937), 375-481.
- [13] B.S. Tsirel'son, Not every Banach Space Contains an Imbedding of l_p or c_0 , Funct. Anal. Appl. 8 (1974), 138–141. https://doi.org/10.1007/BF01078599.
- [14] D.M. Vieira, Theorems of Banach-Stone Type for Algebras of Holomorphic Functions on Infinite Dimensional Spaces, Math. Proc. R. Irish Acad. 106A (2006), 97–113. https://doi.org/10.1353/mpr.2006.0019.
- [15] D.M. Vieira, Spectra of Algebras of Holomorphic Functions of Bounded Type, Indag. Math. 18 (2007), 269–279. https://doi.org/10.1016/s0019-3577(07)80022-x.
- [16] D.M. Vieira, Polynomial Approximation in Banach Spaces, J. Math. Anal. Appl. 328 (2007), 984–994. https://doi.org/10.1016/j.jmaa.2006.05.076.