
Int. J. Anal. Appl. (2024), 22:105 

 

 

Received May 20, 2024 

2020 Mathematics Subject Classification. 60H10, 65C30, 37H10. 

Key words and phrases. stochastic differential equation system; ant colony programming; evolutionary algorithm; 

algorithms; computational methods. 

 

https://doi.org/10.28924/2291-8639-22-2024-105 © 2024 the author(s) 

ISSN: 2291-8639  

1 

 

Application of Ant Colony Programming Approach for Solving Systems of Stochastic 

Differential Equations 

Ali Sami Rashid1,*, Salah H Abid2, Sadiq A. Mehdi2 

1Mathematics Department, College of education, University of Misan, Misan, Iraq 

2Mathematics Department, College of education, Mustansiriyah University, Baghdad, Iraq 

*Corresponding author: alisamirashid@uomisan.edu.iq 

ABSTRACT. Stochastic differential equations (SDE) have wide applications in natural phenomena, engineering, 

finance, and biological models. Obtaining analytic solutions for an SDE is often complex, and the complexity increases 

for an SDE system. The paper introduces ant colony programming (ACP) as a novel approach for solving SDE system. 

Ant colony programming was developed in two directions, the first is to add the Wiener process 𝑊𝑡 as a variable to the 

terminals and functions, and the second is to construct the appropriate fitness function 𝐹𝐹. ACP constructs 

mathematical expressions and evaluates them using the fitness function 𝐹𝐹. The ACP proposed effectiveness has been 

demonstrated by applying to 2,3 and 4-dimensional SDE systems. The most important finding of this work is that ACP 

generates symbolic stochastic processes that represent solutions for SDE system. Methods for solving SDE systems are 

important tools for study phenomena that involve noise or randomness. 

 

 

1. Introduction 

A stochastic differential equation (SDE) is a dynamical system that describes the behavior of 

systems under random influences, the influence of which may be internal to the system or 

external [1]. The stochastic term in SDE represents the randomness in the system [2]. SDEs are 

widely used in various scientific [3]. The solution to SDE is a stochastic process characterized by 

probability distributions [4]. 
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Previous literature on SDEs has dealt with analytical methods limited to solving some 

important examples of a single SDEs, for instance Geometric Brownian Motion, Ornstein-

Uhlenbeck Process, Stochastic Logistic Growth and others [5], [6], [7]. And numerical methods 

give approximate solutions with an acceptable error rate, such as Euler-Maruyama method [8], 

Milstein method [9], Runge-Kutta method [10], Monte Carlo method and finite difference 

methods [11], [12]. 

The research problem is based on finding optimal solutions for SDE systems using the ant 

colony programming (ACP), which is considered one of the important evolutionary algorithms 

used in finding the optimal path. ACP algorithm was developed by Boryczka and Czech and has 

been used to solve approximation problems [13], [14]. Kumaresan and Balasubramaniam 

developed the ACP to solve a stochastic linear singular system [15], Kamali modified the ACP to 

solve differential equations [16].  

The researchers will develop the ACP algorithm in two axes. The first is to choose node names 

in the search graph space, that formed of arithmetic operations, functions, variables and 

constants. Second, constructing a fitness function 𝐹𝐹 for evaluating the mathematical expressions 

formed by the ants' tours in a way that suits the algebraic formulation of SDE system under study. 

Finally, it will be proven that the optimal solutions generated by the ACP algorithm represent 

exact solutions for the SDE systems studied. 

 

2. Stochastic differential equation system 

An Itô process 𝑋𝑡 is a stochastic process with respect to a Wiener process 𝑊𝑡 has the form 

𝑋(𝑡) = 𝑎(𝑋𝑡)𝑑𝑡 + 𝑏(𝑋𝑡)𝑑𝑊𝑡,  𝑡 ≥ 0 (2.1) 

With initial value 𝑋0 = 𝑋(𝑡0), and continuous functions 𝑎 and 𝑏. 

Consider a function 𝜑: [0, 𝑇] × ℝ → ℝ with continuous partial derivatives 
𝜕𝜑

𝜕𝑡
,
𝜕𝜑

𝜕𝑥
,
𝜕2𝜑

𝜕𝑥2 are exist. 

The Itô formula is given by 

𝑑𝜑(𝑡, 𝑋𝑡) = (
𝜕𝜑(𝑡, 𝑋𝑡)

𝜕𝑡
+ 𝑎(𝑋𝑡)

𝜕𝜑(𝑡, 𝑋𝑡)

𝜕𝑥
+

1

2
𝑏2(𝑋𝑡)

𝜕2𝜑(𝑡, 𝑋𝑡)

𝜕𝑥2 )𝑑𝑡

+ 𝑏(𝑋𝑡)
𝜕𝜑(𝑡, 𝑋𝑡)

𝜕𝑥
𝑑𝑊𝑡 

(2.2) 

Consider a stochastic process 𝑋(𝑡) satisfies (2.1). The general form of SDE is: 

𝑑𝑋(𝑡) =  𝑓(𝑡, 𝑋(𝑡))𝑑𝑡 + 𝑔(𝑡, 𝑋(𝑡))𝑑𝑊𝑡 (2.3) 
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Where 𝑓(𝑡, 𝑋(𝑡)) and 𝑔(𝑡, 𝑋(𝑡)) are functions that determine the drift and diffusion 

coefficients, respectively, and 𝑊𝑡 is a Wiener process [17]. SDE (2.3) describes the evolution of the 

stochastic process 𝑋(𝑡) over time [0, 𝑇] and includes both deterministic and stochastic terms. The 

stochastic term represents the randomness or noise in the system, while the deterministic term 

represents the drift or trend [18]. 

The set 𝑚 of SDEs is known as SDE system with dimension 𝑚, and written as [19], 

𝑑𝑋(𝑡) = 𝑓(𝑡, 𝑋(𝑡))𝑑𝑡 + 𝑔(𝑡, 𝑋(𝑡))𝑑𝑊(𝑡) , 𝑡 ∈ [𝑡0, 𝑇] (2.4) 

Where vector function 𝑓: [𝑡0, 𝑇] × ℝ𝑚 → ℝ𝑚, a matrix function 𝑔: [𝑡0, 𝑇] × ℝ𝑚 → ℝ𝑚×𝑚 and 𝑊 =

 {𝑊𝑡 , 𝑡 ≥  𝑡0} is a 𝑚- dimension Wiener process, or rewrite in matrix form as, 

[

𝑑𝑋1(𝑡)

𝑑𝑋2(𝑡)
⋮

𝑑𝑋𝑚(𝑡)

] =

[
 
 
 
 
𝑓1(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))

𝑓2(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))

⋮
𝑓𝑚(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))]

 
 
 
 

𝑑𝑡

+

[
 
 
 
 
𝑔11(𝑡, 𝑋1(𝑡)) 𝑔12(𝑡, 𝑋2(𝑡)) ⋯ 𝑔1𝑚(𝑡, 𝑋𝑚(𝑡))

𝑔21(𝑡, 𝑋1(𝑡))

⋮

𝑔22(𝑡, 𝑋2(𝑡)) ⋯

           ⋮             ⋱

𝑔2𝑚(𝑡, 𝑋𝑚(𝑡))

⋮
𝑔𝑚1(𝑡, 𝑋1(𝑡)) 𝑔𝑚2(𝑡, 𝑋2(𝑡)) ⋯ 𝑔𝑚𝑚(𝑡, 𝑋𝑚(𝑡))]

 
 
 
 

[

𝑑𝑊1(𝑡)

𝑑𝑊2(𝑡)
⋮

𝑑𝑊𝑚(𝑡)

] 

(2.5) 

With vector initial condition 𝑋(𝑡0) = 𝑋0. 

The solution of SDE system (2.5) is  

𝑋(𝑡) = 𝑋0 + ∫𝑓(𝓊, 𝑋(𝓊))𝑑𝓊

𝑡

0

+ ∫𝑔(𝓊, 𝑋(𝓊))𝑑𝑊(𝓊)

𝑡

0

 (2.6) 

In system components form,  

𝑋𝑖(𝑡) = 𝑋𝑖(0) + ∫𝑓𝑖(𝓊, 𝑋1(𝓊),… , 𝑋𝑑(𝓊))𝑑𝓊

𝑡

0

+ ∑∫ 𝑔𝑖𝑗 (𝓊, 𝑋𝑗(𝓊)) 𝑑𝑊𝑗(𝓊)
𝑡

0

𝑚

𝑗=1

 (2.7) 

where ∫ 𝑓(𝓊, 𝑋(𝓊))𝑑𝓊
𝑡

0
 is the Lebesgue integral, and ∫ 𝑔(𝓊, 𝑋(𝓊))𝑑𝑊𝑗(𝓊)

𝑡

0
 is the Itô's integral. 

As especial case, for a 1- dimensional Wiener process 𝑊𝑡, then the formula of SDE system (2.5) 

is given by 

[

𝑑𝑋1(𝑡)

𝑑𝑋2(𝑡)
⋮

𝑑𝑋𝑚(𝑡)

] =

[
 
 
 
 
𝑓1(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))

𝑓2(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))

⋮
𝑓𝑚(𝑡, 𝑋1(𝑡),… , 𝑋𝑚(𝑡))]

 
 
 
 

𝑑𝑡 +

[
 
 
 
 
𝑔1(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))

𝑔2(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))

⋮
𝑔𝑚(𝑡, 𝑋1(𝑡), … , 𝑋𝑚(𝑡))]

 
 
 
 

𝑑𝑊𝑡 (2.8) 

Where ∆𝑊𝑡𝑖
= 𝑊𝑡𝑖

− 𝑊𝑡𝑗
~𝑁(0, ∆𝑡) , for each 𝑡0 ≤ 𝑡𝑖 , 𝑡𝑗 ≤ 𝑇. 

3. Ant colony programming 
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ACP was proposed as a metaheuristic algorithm used to address optimization problems, 

inspired by the foraging behavior of ants [20]. ACP utilizes a graph-based representation of the 

problem space, where nodes represent variables, functions, arithmetic operations and constants. 

Edges represent connections between the nodes [13] . 

In ACP, a population of "simulated ants" is employed to explore the graph and find optimal 

solutions. Each ant constructs a solution to the problem under study by traversing the search 

graph, starting from an initial node and moving to neighboring nodes according to a probabilistic 

decision rule. The decision rule is influenced by the pheromone trails deposited on the edges of 

the graph [14] . 

The pheromone trails represent the collective knowledge of the ant population and are 

updated based on the quality of the solutions found. Ants deposit pheromone on the edges of the 

graph corresponding to the nodes they visit during their search. The amount of pheromone 

deposited is proportional to the quality of the solution found. Over time, the pheromone 

evaporates, allowing exploration of new paths . 

The probabilistic decision rule used by the ants is influenced by both the pheromone trails and 

a heuristic value associated with each edge. The heuristic value represents the attractiveness of a 

particular edge based on problem-specific information. The combination of pheromone trails and 

heuristic values guides the ants towards promising nodes of the search space . 

Successive iteration of the algorithm, which includes updating the pheromone trails and 

evaporation leads to enhancing the pheromone level at the path of promising nodes, thus 

increasing the probability of ants moving to them, making the ants' expressions closer to the 

optimal solution. The algorithm stops when terminal criteria are met, such as reaching a 

maximum number of iterations or finding an optimal solution. The process flowchart of the ACP 

algorithm is shown in Fig. 1.  
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Boryczka and Wiezorek identified four essential steps in researching process [14], [21], 

❖ Choice of functions and terminals, 

❖ Graph Construction, 

❖ Construction of fitness function, and 

❖ Defining terminal criteria. 

3.1. Terminals and functions 

Choice of functions and terminal symbols in the ACP algorithm depends on the problem 

studied. In ACP approach, terminal symbols include constants {0, 1, … , 9, 𝜋, 𝑒}, variables 

{𝑡, 𝑥, 𝑦, 𝑊𝑡, … }, and functions {𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑒𝑥𝑝, 𝑙𝑜𝑔, ^
𝑚

𝑛
} where 𝑚, 𝑛 are integers and 𝑛 ≠ 0. Functions 

can be designated as arithmetic operations {+,−,∗,÷}, Boolean operations {∨,∧,⇒,⇔}, or functions 

defined with a particular form appropriate to the problem. 

Start 

Input SDE system, parameters and 

terminal symbols  

Construct the Graph  

Construct Tours, by passing the ants through graph  

Extract 

expressions 

Evaluate the expressions  

Evaluate Fitness Function 𝐹𝐹 

If 𝐹𝐹 ⟶ 0 
and 

satisfying 
initial 

conditions 

Identify 

best tour 

Display 

optimal 

solution 

End 

Apply a 

global update 

formula  

yes No 

Figure 1: ACP algorithm flowchart 
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The choice of terminals and functions is crucial in representing the problem and finding the 

optimal solution. In SDE system problems, by choosing the appropriate combination of terminals 

and functions, ACP can efficiently explore the search space and generate expressions forming 

stochastic processes that solving the given SDE system. The terminals and functions are chosen 

as in Table 1. 

Table 1: The functions and terminal symbols. 

Terminal symbol or function  

𝑡𝑖 ∈ 𝕋 𝕋 = {0,1,2,3,4,5,6,7,8,9, 𝑡,𝑊𝑡} 
𝑓𝑖 ∈ 𝔽 𝔽 = { +,−,∗,/, ), (, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑒𝑥𝑝, 𝑙𝑜𝑔, 𝑠𝑞𝑟𝑡} 

 

3.2. Graph construction 

The construction of the graph 𝐺 is an initial step in ACP as it provides structure for the ants to 

navigate and search for solutions, involves construct a graph 𝐺 with 𝐿 nodes and edges to 

represent the search space. Each node in 𝐺 represents either a function 𝑓𝑖 ∈ 𝔽 or a terminal 

symbol 𝑡𝑖 ∈ 𝕋. The edges in 𝐺 connect the nodes and are weighted by pheromone. Fig. 2 is 

illustrative Graph of ACP. 

 

 

 

3.3. Fitness function construction 

The fitness function 𝐹𝐹 is a form of the objective function. In ACP algorithm 𝐹𝐹 plays a crucial 

role in evaluating and selecting the solutions of given problem, the formulation of 𝐹𝐹 depends 

on the nature of the problem to be solved [14] . 

In ACP algorithm, 𝐹𝐹 is utilized to evaluate the quality or fitness of the solutions generated 

by the ant tours. It is a norm of how well the solution satisfies the desired criteria or objectives of 

the problem. In solving SDE system, the objective of 𝐹𝐹 is to filter out the best solution among 

Figure 2: Illustrative ACP graph. 
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the generated solutions and to determine the fitness value of each solution and guide the search 

process towards finding the optimal solution. 

If ACP produces a 𝑚 −dimensional stochastic process 𝜙(𝑡, 𝑋(𝑡)), then the Itô formula for the 

𝑟 component takes the form, 

𝑑𝜙𝑟 = 𝑓𝑟(𝑡, 𝑋1, … , 𝑋𝑚)𝑑𝑡 + ∑𝑔𝑟𝑠(𝑡, 𝑋𝑠)𝑑𝑊𝑠(𝑡)

𝑚

𝑠=1

 (3.1) 

The fitness function is, 

𝐹𝐹 = ∑ (𝑓𝑟(𝑡, 𝑋1, … , 𝑋𝑚) − 𝑓𝑟(𝑡, 𝑋1, … , 𝑋𝑚))
2
+ ∑(𝑔𝑟𝑠(𝑡, 𝑋𝑠) − 𝑔𝑟𝑠(𝑡, 𝑋𝑠))

2
𝑚

𝑠=1

𝑚

𝑟=1

 (3.2) 

Where 𝑓𝑟, 𝑔𝑟𝑠 are drift and diffusion functions of the component 𝑟 in the SDEs system (2.5). 

3.4. Terminal criteria 

In the context of the ACP technique, the terminal criteria refer to the conditions that determine 

when the program stops searching for solutions. In each generation, the ants are sent to traverse 

through the graph. If an ant finds an expression that gives a fitness function value of zero and 

satisfies the initial conditions, the program stops. Otherwise, the tour with the minimum 𝐹𝐹 value 

is identified as the best ant tour, and the global update rule is applied to update the pheromone 

values in the graph, and the process is repeated until 𝐹𝐹 value equal or close to zero is obtained. 

4. ACP methodology 

The ACP algorithm starts with 

• Choose the appropriate terminals and functions for the problem. 

• Determine the number of nodes, and create the graph. 

• Choose the number of simulated ants. 

• Determine the maximum number of iterations. 

• Define parameter values. 

Indexed ants are sent to search for available solutions for the SDE system under study. The 

ants navigate through nodes in the graph 𝐺(𝑉, 𝐸), where the nodes 𝑉 represent the functions 𝑓𝑖 

and terminal symbols 𝑡𝑖, and 𝐸 the set of connecting edges between the nodes that are weighted 

by the pheromone concentration. 

Each ant 𝑘 navigates from node 𝑖 to node 𝑗 on graph 𝐺 at time 𝑡 according to the probability 

law: 

𝑝𝑖𝑗,𝑘(𝑡) =
𝜏𝑖𝑗(𝑡) ⋅ [𝛾𝑗]

𝛽

∑ [𝜏𝑖𝑟(𝑡)] ⋅ [𝛾𝑟]
𝛽

𝑟∈𝐽𝑖
𝑘

 (4.1) 
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Where 𝜏𝑖𝑗 represents pheromone concentration at the edge (𝑖, 𝑗), 𝛾𝑠 = (
1

2+𝜋𝑗
)
𝑑

, and 𝜋𝑗 is power 

of node j that can be belongs 𝑇 or 𝐹, value 𝜋𝑗 is shown in Table 2, 𝑑 is the current length of the 

expression, the pheromone concentration and visibility on the ant trail are controlled by 

parameter 𝛽 = 0.8 and 𝐽𝑖
𝑘is the set of nodes not visited by ant 𝑘 from node 𝑖. 

After completing the ant tours, a parse tree is performed for each tour, the mathematical 

expressions are generated, evaluate the expressions and exclude expressions that do not forming 

valid mathematical functions. For example, if one ant produces 𝑠𝑖𝑛 (𝑊𝑡/5 ∗ 𝑒) + 𝑡 and another ant 

produces 𝑊𝑡+) ∗ 𝑒𝑡, the first expression is evaluable while the second cannot. Table 3 showing 

the evaluable mathematical expressions corresponding to Virtual tours. The mathematical 

expressions (evaluable) are directed to be substituted into 𝐹𝐹. If the value of 𝐹𝐹 is equal to or 

close to zero and the initial conditions of the SDE system under study are satisfied, then the 

generation of additional ant tours stops. Otherwise, the global update of the pheromone values 

on the edges of the graph is performed according to the following law: 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌). 𝜏𝑖𝑗(𝑡) + 𝜌.
1

𝐿
 (4.2) 

Where 𝑡 is the generation number, 𝜌 is the parameter of pheromone decay coefficient with the 

rang (0,1], and 𝐿 is the length of the best tour. 

After updating the pheromone and determining the best tour in the previous generation, send 

the ants back through the best tour. 

Table 2: Power of functions and terminal symbols 

function of terminal symbol Power 

Variable or constant -1 

Functions or closing parenthesis ) 0 
 Arithmetic operations +, - , * , / or opening 

parenthesis  ( 
1 

 

Table 3: Virtual tours and corresponding expressions 

Ant tours Expressions Status 

exp(𝑊𝑡) ∗ 𝑡 𝑒𝑡𝑊𝑡  evaluable 

sin)𝑡 + 𝑊𝑡  sin)𝑡 + 𝑊𝑡  Non-evaluable 

cos(𝑊𝑡 ∗ 𝑡 ∗ 2/5) cos (
2𝑡𝑊𝑡

5
) evaluable 

sin(𝑊𝑡 ∗) sin(𝑊𝑡 ∗) Non-evaluable 

2 ∗ 𝑡 ∗ exp(𝑊𝑡/𝑡) 2𝑡𝑒
𝑊𝑡
𝑡  evaluable 

exp log(𝑊𝑡) 𝑊𝑡  evaluable 
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The ACP algorithm described with the following, 

Step 1. Start with input parameters and terminal symbols. 

Step 2. Construct the graph. 

Step 3. As a starting point, set equal values of pheromone on all edges. 

Step 4. Construct tours, by passing 𝑁 ants through nodes, and moving from node to the other 

according to Equation (4.1). 

Step 5. Save the ant tours and construct parse trees for it. 

Step 6. Extract the expressions and exclude unwanted ones. 

Step 7. Evaluate the expressions, substitute the value of time 𝑇 and Wiener process 𝑊𝑡  into 

the expressions. 

Step 8. Evaluate fitness function 𝐹𝐹. 

Step 9. If 𝐹𝐹 → 0 and satisfying initial conditions; stop, and go to Step 13. 

Step 10. Otherwise, identify the tour with minimum 𝐹𝐹 (best tour). 

Step 11. Perform a global update of the pheromone values on the graph edges by applying 

law (4.2). 

Step 12. Go to Step 4. 

Step 13. Display the solution. End. 

5. Simulation results of ACP 

In this work, an ACP algorithm will be designed to simulate 2, 3 and 4-dimensional SDE 

systems (5.1), (5.4) and (5.7) on time interval [0,1]. The mathematical expressions generated by 

ACP algorithm and the parse trees for the best ant tours, as well as the optimal solution 

corresponding to each component of SDE systems will be shown figures. Finally, the ACP 

solution for each SDE system will be proven to be the exact solution. 

According to previous literature [16], [22], the control parameters for the ACP method were 

selected in Table 4. 

Table 4: ACP control parameters 

Parameters value 

Population size 100 

Terminals {0,1, … ,9, 𝑡,𝑊𝑡} 

Functions  {+,−,∗,/, 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑒𝑥𝑝, 𝑙𝑜𝑔, 𝑠𝑞𝑟𝑡} 

Max generation 2000 

5.1. 𝟐-dimensional SDE system 

Consider 𝑌𝑡  =  𝑊𝑡 is the 1-dimensional Wiener process, and the 2-dimensional SDE system   
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𝑑𝑋1(𝑡) =
−1

2
𝑋1(𝑡)𝑑𝑡 − 𝑋2(𝑡)𝑑𝑊𝑡  

𝑑𝑋2(𝑡) =
−1

2
𝑋2(𝑡)𝑑𝑡 + 𝑋1(𝑡)𝑑𝑊𝑡

 (5.1) 

With initial condition 𝑋(0) = [
𝑋1(0)

𝑋2(0)
] = [

1
0
] and 𝑡 ∈ [0,1]. 

Fig. 3 shows the parse trees corresponding to the optimal ant tours with 𝐹𝐹 = 0, for each 

component of the solution for SDE system (5.1). The ACP algorithm produced the following 

optimal solution for the SDE system (5.1): 

𝑋 = [
cos𝑊𝑡

sin𝑊𝑡
] (5.2) 

As 𝑌𝑡 is an Itô process, the Itô formula (2.2) for the components 𝑋1 and 𝑋2 of the stochastic 

process (5.2) satisfy the following, 

𝑑𝑋1(𝑡) = −
1

2
cos𝑊𝑡 𝑑𝑡 − sin𝑊𝑡 𝑑𝑊𝑡  

𝑑𝑋2(𝑡) = −
1

2
sin𝑊𝑡 𝑑𝑡 + cos𝑊𝑡 𝑑𝑊𝑡

 (5.3) 

 

Therefore, the stochastic process (5.2), is the exact solution of the SDE system (5.1), and 𝑋1 and 

𝑋2 are satisfy the initial conditions 𝑋1(0) = 1 and 𝑋2(0) = 0. 

The optimal solution and best ant tours generated by the ACP algorithm for the components 

of the SDE system (5.1) are plotted in Fig. 4. 

cos 

𝒲𝑡 

sin 

𝒲𝑡 

 𝑋2 = 𝑠𝑖𝑛 𝒲𝑡 𝑋1 = 𝑐𝑜𝑠 𝑊𝑡 

Figure 3: Parse tree for the solution of SDE 
system (5.1) by ACP method 
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Figure 4: Exact solution, optimal solution and last 7 best ant tours for the SDE system (5.1) 

5.2. 𝟑-dimensional SDE system 

Consider the following 3-dimensional SDE system with respect to the 1-dimensional Wiener 

process 𝑊𝑡. 

𝑑𝑋1(𝑡) = (
2 − 𝑡

2𝑡
) 𝑋1(𝑡)𝑑𝑡 − 𝑋2(𝑡)𝑑𝑊𝑡 

𝑑𝑋2(𝑡) = (
2 − 𝑡

2𝑡
) 𝑋2(𝑡)𝑑𝑡 + 𝑋1(𝑡)𝑑𝑊𝑡 

𝑑𝑋3(𝑡) = (
1

𝑡
𝑋2(𝑡) −

1

2
𝑋3(𝑡)) 𝑑𝑡 + (𝑋1(𝑡) −

1

𝑡
𝑋2(𝑡))𝑑𝑊𝑡 

(5.4) 

With initial conditions 𝑋1(0) = 0 , 𝑋2(0) = 0, 𝑋3(0) = 1 and 𝑡 ∈ [0,1]. 

 

* 

𝑡 cos 

𝒲𝑡 

* 

𝑡 sin 

𝒲𝑡 

* 

𝑡 sin 

𝒲𝑡 

+ 

cos 

𝒲𝑡 

𝑋1 = 𝑡 𝑐𝑜𝑠 𝒲𝑡 𝑋2 = 𝑡 𝑠𝑖𝑛𝒲𝑡 

𝑋3 = 𝑐𝑜𝑠 𝒲𝑡 + 𝑡 𝑠𝑖𝑛 𝒲𝑡 

Figure 5: Parse tree for the solution of SDE system (5.4) by ACP method 
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Fig. 5 shows the parse trees corresponding to the optimal ant tours with 𝐹𝐹 = 0, for each 

component of the solution for SD E system (5.4). 

The ACP algorithm produced the following optimal solution for the SDE system (5.4): 

𝑋(𝑡) = [

𝑡 cos𝑊𝑡

𝑡 sin𝑊𝑡

cos𝑊𝑡 + 𝑡 sin𝑊𝑡

] (5.5) 

By the Itô formula (2.2) for the components 𝑋1 , 𝑋2 and 𝑋3  of the stochastic process (5.5), we 

obtain 

𝑑𝑋1(𝑡) = (
2 − 𝑡

2𝑡
) 𝑡 cos𝑊𝑡 𝑑𝑡 − 𝑡 sin𝑊𝑡 𝑑𝑊𝑡   

𝑑𝑋2(𝑡) = (
2 − 𝑡

2
) sin𝑊𝑡 𝑑𝑡 + 𝑡 cos𝑊𝑡 𝑑𝑊𝑡 

𝑑𝑋3(𝑡) = (sin𝑊𝑡 −
1

2
cos𝑊𝑡 −

1

2
𝑡 sin𝑊𝑡)𝑑𝑡 + (𝑡 cos𝑊𝑡 − sin𝑊𝑡)𝑑𝑊𝑡 

(5.6) 

Therefore, the stochastic process (5.5), is the exact solution of the SDE system (5.4), and the 

components 𝑋1, 𝑋2, 𝑋3 are satisfy the initial conditions 𝑋1(0) =0, 𝑋2(0) = 0 and 𝑋3(0) = 1. 

The optimal solution (5.5) and best ant tours generated by the ACP algorithm for the 

components of the SDE system (5.4) are plotted in Fig. 6. 

 

Figure 6: Exact solution, optimal solution and last 7 best ant tours for the SDE system (5.4) 

5.3. 𝟒-dimensional SDE system 

Consider the following 4-dimensional SDE system with respect to the 1-dimensional Wiener 

process 𝑊𝑡. 

𝑑𝑋1 = (𝑋3(𝑡) − 𝑋2(𝑡) −
1

2
𝑋1(𝑡)) 𝑑𝑡 +  𝑡(𝑋1(𝑡) − 𝑋4(𝑡))𝑑𝑊𝑡 

𝑑𝑋2 = (𝑋4(𝑡) − 𝑋1(𝑡) −
1

2
𝑋2(𝑡)) 𝑑𝑡 +  𝑋1(𝑡)𝑑𝑊𝑡 

(5.7) 
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𝑑𝑋3 = (
1

𝑡
𝑋2(𝑡) −

1

2
𝑋3(𝑡)) 𝑑𝑡 + (𝑋4(𝑡) −

2

𝑡
𝑋2(𝑡)) 𝑑𝑊𝑡 

𝑑𝑋4 = (
1

𝑡
𝑋1(𝑡) −

1

2
𝑋4(𝑡)) 𝑑𝑡 + (

2

𝑡
𝑋1(𝑡) − 𝑋3(𝑡)) 𝑑𝑊𝑡 

With initial conditions 𝑋1(0) = 0, 𝑋2(0) = 0, 𝑋3(0) = 1, 𝑋4(0) = 0, and 𝑡 ∈ [0,1]. 

Fig. 7 gives the parse trees corresponding to the optimal ant tours with 𝐹𝐹 = 0, for each 

component of the SDE system (5.7) solution. The ACP algorithm produced the following optimal 

solution for the SDE system (5.7): 

𝑋(𝑡) = [

𝑡 cos𝑊𝑡

𝑡 sin𝑊𝑡

cos𝑊𝑡 + 𝑡 sin𝑊𝑡

t cos𝑊𝑡 + sin𝑊𝑡

] (5.8) 

The Itô formula (2.2) for the components 𝑋1 , 𝑋2 , 𝑋3 and 𝑋4 of the stochastic process (5.8) 

satisfies the following: 

𝑑𝑋1(𝑡) = (cos𝑊𝑡 −
1

2
𝑡 cos𝑊𝑡  ) 𝑑𝑡 − 𝑡 sin𝑊𝑡 𝑑𝑊𝑡 

𝑑𝑋2(𝑡) = (sin𝑊𝑡 −
1

2
𝑡 sin𝑊𝑡)𝑑𝑡 + 𝑡 cos𝑊𝑡 𝑑𝑊𝑡 

𝑑𝑋3(𝑡) = (sin𝑊𝑡 −
1

2
cos𝑊𝑡 −

1

2
𝑡 sin𝑊𝑡)𝑑𝑡 + (𝑡 cos𝑊𝑡 − sin𝑊𝑡)𝑑𝑊𝑡 

𝑑𝑋4(𝑡) = (cos𝑊𝑡 −
1

2
(𝑡 cos𝑊𝑡 + sin𝑊𝑡))𝑑𝑡 + (cos𝑊𝑡 − 𝑡 sin𝑊𝑡)𝑑𝑊𝑡 

(5.9) 

Therefore, the stochastic process (5.8), is the exact solution of the SDE system (5.7), and the 

components 𝑋1, 𝑋2, 𝑋3, 𝑋4 are satisfy the initial conditions 𝑋1(0) = 0, 𝑋2(0) = 0, 𝑋3(0) = 1 and 

𝑋4(0) = 0. 

 

* 

𝑡 sin 

𝒲𝑡 

+ 

cos 

𝒲𝑡 

* * 

𝑡 cos 

𝒲𝑡 

* 

𝑡 cos 

𝒲𝑡 

+ 

sin 

𝒲𝑡 

𝑋1 = 𝑡 𝑐𝑜𝑠 𝒲𝑡 𝑋2 = 𝑡 𝑠𝑖𝑛 𝒲𝑡 

𝑋4 = 𝑡 𝑐𝑜𝑠 𝒲𝑡 + 𝑠𝑖𝑛 𝒲𝑡 

𝑡 sin 

𝒲𝑡 

𝑋3 = 𝑐𝑜𝑠 𝒲𝑡 + 𝑡 𝑠𝑖𝑛 𝒲𝑡 

Figure 7: Parse tree for the solution of SDE system (5.7) by ACP method 
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The optimal solution and best ant tours generated by the ACP algorithm for the components 

of the SDE system (5.7) are plotted in Fig. 8. 

 

Figure 8: Exact solution, optimal solution and last 7 best ant tours for the SDE system (5.7) 

6. Conclusions 

This paper presented the ACP algorithm as a novel approach to solve SDE systems with 

respect to a 1-dimensional Wiener process. Simulation programs by MATLAB were construct to 

solve SDE systems by the ACP method, and the simulations yielded important results. 

Improvements to ACP algorithm enable it to produce and evaluate stochastic processes. More 

precisely, the ACP algorithm can be used to generate symbolic solutions to complex mathematical 

problems for which analytical solutions are difficult to obtain. The 𝐹𝐹 values for the optimal 

solutions of the studied SDE systems are equal to zero, which means that the optimal solutions 

are exact. Therefore, the ACP method is appropriate to solve systems of multidimensional 

stochastic differential equations. The symbolic mathematical expressions generated by the ACP 

algorithm are based on the functions chosen in the initialization step, so they are not limited to 

the type of SDE system, whether linear or nonlinear, nor to the type of stochastic process. As a 

promising tool, the ACP method may be of great interest in solving scientific and finance 

problems involving stochastic dynamics. As a future work, ACP and other optimization and 

evolutionary algorithms could be developed as automatic programming algorithms to produce 

symbolic mathematical expressions to address and solving various of mathematical problems, as 

appropriate to the nature of the problem to be solved.  
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