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Abstract. We introduce three sequences of different prime bi-ideals of semirings such that 11(12,13)-prime bi-ideal,

21(22)-prime bi-ideal and 31(32,33)-prime bi-ideal using bi-ideals. In this article, we characterize the different prime

bi-ideals. We discuss that the 11-prime bi-ideal implies the 12-prime bi-ideal implies the 13-prime bi-ideal, but the

reverse implication does not hold with the help of numerical examples. We investigate if a 21-prime bi-ideal implies

a 22-prime bi-ideal, but the converse need not be true with the help of numerical examples. If a is any bi-ideal of a

semiring S, then K(a) = {x ∈ a | x + y = z for some y, z ∈ a} is the unique largest k-bi-ideal contained in a. If Θ is a

21-prime bi-ideal ofS, then Θ is a one-sided ideal ofS. It is shown that there is a relation betweena and K(a), in which

a is a 13-prime bi-ideal. In our communication, 11-prime bi-ideal implies 21-prime bi-ideal. An interaction between a

31-prime bi-ideal implies a 32-prime bi-ideal, and a 32-prime bi-ideal implies a 33-prime bi-ideal; however, the reverse

implication is invalid by some examples. Every 13-prime bi-ideal is a 22-prime bi-ideal, but the converse need not be

true with the help of examples.

1. Introduction

The concept of semirings was introduced by Vandiver, an American mathematician, in 1934,

while a German mathematician, Richard Dedekind, proposed non-trivial examples of semirings

in the 19th century when he studied commutative IDs for rings. In addition to their applications

in the foundations of arithmetic and topological considerations, semirings occur as ideals of rings

and as positive cones of partially ordered rings. It primarily derives from applied mathematics,

including optimization and formal language theories. In the 20th century, non-commutative
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rings became systematically studied. A matrix is also a non-commutative entity that occurs

naturally. A fundamental contribution to the science of non-commutative rings was made by

Scottish mathematician Wedderburn with Wedderburn’s Theorem, which states that every finite

division ring is commutative. During the 18th century, commutative and non-commutative ring

theories were intertwined and impacted each other. Non-commutative rings provide a natural

extension of the study of prime radicals and primary ideals for commutative rings. The IDs of

rings and semirings have been studied in many studies. Associative rings are the conceptual

basis of algebraic number theory by Dedekind. In general, semigroups are generalizations of

rings and groups. In semigroup theory, certain band decompositions are useful for studying

semigroup structure. This research will open up a new field in mathematics, which aims to

use semigroups of bi-ideal semirings with additively reduced semilattices. The many different

ideals associated with Γ-semigroups and Γ-semiring have been described by several authors and

researchers. Partially ordered relation “ � ” satisfies the conditions of reflexivity, antisymmetry,

and transitivity. There are different classes of semigroup and Γ-semigroup based on bi-ideals

described by many researchers. An ordered semigroup is a generalization of a semigroup with a

partially ordered relation constructed on a semigroup so that the relation fits with the operation.

An algebraic structure such as the ordered Γ-semigroup has been studied by several authors [4–6].

Munir [11] introduced new ideals in the form of M-bi-ideals over semigroups in 2018.

Lajos studied using quasi-ideal (QI) and generalized bi-ideal (BI) with regular and intra-regular

semigroups. Describe different classes of semigroups using ideals [7]. Associative rings are, in

some ways, arbitrary but specified in terms of BIs. A quasi-ideal (QI) is an extension of the left

ideal (LI) and right ideal (RI), which are examples of BIs. Steinfeld introduced QIs when he

introduced semigroups and rings. Alarcon [1] semirings are useful for explaining prime ideals

(PID). Commutative rings have been extensively studied using the PID concept. Palanikumar

et al. [13], distinct prime partial BIs exist in non-commutative partial rings. Numerous studies

have described various forms of IDs in algebraic structures like semirings and rings. There is no

commutative requirement for semirings under either operation in an ID concept. Several authors

have studied semigroups, semirings, and rings. Palanikumar et al. [12] interacted with a new

type of basis for an ordered Γ-semigroup. Recently, Palanikumar et al. [8–10, 16–18] discussed

some algebraic structures such as semirings and ring semigroups. The k-ideals are a class of ideals

introduced by Henriksen in [3]. Sen et al. [19, 20] discussed various characterizations of k-ideals

of semirings. Bhuniya et al. [2] introduced the concept of k-bi-ideals in a semiring. The k-bi-ideals

on semirings were defined by Bhuniya et al. in 2011 to describe k-regular and intra-k-regular

semirings. Emmy Noether was the first to introduce the concept of a prime ideal in a commutative

ring. Computer science, automata, optimization, and generalized fuzzy computation extensively

use semirings. Palanikumar et al. addressed semigroups, semirings, rings, and ternary semirings

in their recent work [14–17].
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Throughout the paper, six sections are presented. An introduction is found in Section 1. Section

2 describes semirings, relevant definitions, and results. Section 3 discusses the 11(12,13)-prime

bi-ideal, providing some examples. The 21(22)-prime bi-ideals are discussed in Section 4. The

31(32,33)-prime bi-ideals are discussed in Section 5 with numerical examples. A discussion of the

conclusion can be found in Section 6.

2. Preliminaries

An overview of semirings and their basic concepts is provided in this study, which will be useful

for future studies.

Definition 2.1. A nonempty set S is said to be a semiring if
(i) (S,+) is a commutative monoid,
(ii) (S, ·) is a semigroup,
(iii) ε(γ+ ζ) = εγ+ εζ and (ε+ γ)ζ = εζ+ γζ for all ε,γ, ζ ∈ S.

Definition 2.2. [19] An additive subgroup ∆ of a ring R is called an LI(RI) if ri ∈ ∆(ir ∈ ∆) for all i ∈ ∆

and r ∈ R. ∆ is an ID if it is an RI and an LI.

Definition 2.3. (i) The subset ∆ is a QI if ∆ is a subring of a ring R and S∆ ∩ ∆S ⊆ ∆.
(ii) The subset ∆ is a BI if ∆ is a subring of a ring R and ∆A∆ ⊆ ∆.

Definition 2.4. [19] A BI ∆ in a semiring S is called a k-BI if for i ∈ ∆ and k ∈ S, i + k ∈ ∆ imply k ∈ ∆.

Definition 2.5. For a subset ∆ of a semiring S, k-closure of ∆ is denoted by ∆ and is defined as ∆ = {i ∈
S | i + j ∈ ∆ for some j ∈ ∆}.

Definition 2.6. For any subsets ∆ and J of a semiringS, the product of ∆ and J is defined as ∆J =
{ n∑

i=1
εiνi |

εi ∈ ∆, νi ∈ J and n ∈N

}
.

Definition 2.7. An ID Θ of a ring R is a PID if ∆Z ⊆ Θ implies ∆ ⊆ Θ or Z ⊆ Θ for IDs ∆ and Z of R.

Lemma 2.1. For any nonempty subset A of a semiring S and a ∈ A,
< a >r= {na + aS | n ∈ Z+

} is an RI generated by a,
< a >l= {na +Sa | n ∈ Z+

} is an LI generated by a,
< a >= {na +Sa + aS+SaS | n ∈ Z+

} is an ID generated by a,
< a >q= {na | n ∈ Z+

}+ (aS∩Sa) is a QI generated by a,
< a >b= {na + ma2 + aSa | n, m ∈ Z+

} is a BI generated by a.

Lemma 2.2. [9] For any subsets ∆ and ∆
′

of a semiring S which are closed under addition,
(i) ∆ + ∆

′

⊆ ∆ + ∆′ ⊆ ∆ + ∆′ ⊆ ∆ + ∆′ ,
(ii) ∆ + ∆

′

⊆ ∆ + ∆
′

⊆ ∆ + ∆′ ⊆ ∆ + ∆′ ,
(iii) ∆∆

′

⊆ ∆∆′ ⊆ ∆ ∆′ ⊆ ∆∆′ ,
(iv) ∆∆

′

⊆ ∆∆
′

⊆ ∆ ∆′ ⊆ ∆∆′ .
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Definition 2.8. [1] Let 2 ≤ n ≤ N and 0 ≤ i < n and m = n − i. Let B(n, i){0, 1, 2, ..., n − 1} be the
semiring with the operations defined as follows:

ε +B(n,i) γ =

ε+ γ if ε+ γ ≤ n− 1

l if ε+ γ ≥ n with l = (ε+ γ) mod m and i ≤ l ≤ n− 1

ε ·B(n,i) γ =

εγ if εγ ≤ n− 1

l if εγ ≥ n with l = εγ mod m and i ≤ l ≤ n− 1.

3. On various 1-PBIs

It is assumed that S denotes a semiring throughout this paper unless otherwise stated.

Definition 3.1. A BI Θ in S is called
(i) an 11-PBI if a1a2 ⊆ Θ implies a1 ⊆ Θ or a2 ⊆ Θ for BIs a1 and a2 of S,
(ii) a 12-PBI if a1a2 ⊆ Θ implies a1 ⊆ Θ or a2 ⊆ Θ for a BI a1 and a k-BI a2 of S,
(iii) a 13-PBI if a1a2 ⊆ Θ implies a1 ⊆ Θ or a2 ⊆ Θ for k-BIs a1 and a2 of S.

Theorem 3.1. Every 11-PBI is a 12-PBI.

Proof. It is a direct result of a k-BI being a BI. �

Remark 3.1. Some 12-PBIs fail to be an 11-PBI as shown in Example 3.1.

Example 3.1. Consider the semiring (S,+, ·) by the following table:

+ ςa ςb ςc ςd ςe ς f

ςa ςa ςb ςc ςd ςe ς f

ςb ςb ςb ςc ςd ςe ς f

ςc ςc ςc ςc ς f ςe ς f

ςd ςd ςd ς f ςd ςe ς f

ςe ςe ςe ςe ςe ςe ςe

ς f ς f ς f ς f ς f ςe ς f

· ςa ςb ςc ςd ςe ς f

ςa ςa ςa ςa ςa ςa ςa

ςb ςa ςb ςc ςb ςc ςc

ςc ςa ςb ςc ςb ςc ςc

ςd ςa ςd ςe ςd ςe ςe

ςe ςa ςd ςe ςd ςe ςe

ς f ςa ςd ςe ςd ςe ςe

Clearly, Θ = {ςa, ςe} is a 12-PBI of S. But {ςa, ςd}{ςa, ςc} = {ςa, ςe} ⊆ Θ implies that Θ is not an 11-PBI
of S.

Theorem 3.2. Every 12-PBI is a 13-PBI.

Proof. It is a direct result of a k-BI being a BI. �

Remark 3.2. Example 3.2 assures that 13-PBI is not a 12-PBI.

Example 3.2. Consider the semiring (S,+, ·) by the following table:
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+ ςa ςb ςc ςd ςe ς f ςg

ςa ςa ςb ςc ςd ςe ς f ςg

ςb ςb ςb ςc ςd ςe ς f ςg

ςc ςc ςc ςc ς f ςe ς f ςg

ςd ςd ςd ς f ςd ςe ς f ςe

ςe ςe ςe ςe ςe ςe ςe ςe

ς f ς f ς f ς f ς f ςe ς f ςe

ςg ςg ςg ςg ςe ςe ςe ςg

· ςa ςb ςc ςd ςe ς f ςg

ςa ςa ςa ςa ςa ςa ςa ςa

ςb ςa ςb ςc ςb ςc ςc ςc

ςc ςa ςb ςc ςb ςc ςc ςc

ςd ςa ςd ςe ςd ςe ςe ςe

ςe ςa ςd ςe ςd ςe ςe ςe

ς f ςa ςd ςe ςd ςe ςe ςe

ςg ςa ςb ςc ςd ςe ς f ςg

Clearly, Θ = {ςa, ςd} is a 13-PBI of S. But Θ is not a 12-PBI of S by {ςa, ςe}{ςa, ςb} = {ςa, ςd} ⊆ Θ.

Theorem 3.3. Ifa is any BI of S, then K(a) = {x ∈ a | x+ y = z for some y, z ∈ a} is the unique largest
k-BI contained in a.

Proof. Let ζ1, ζ2 ∈ K(a). Then ζ1 + ξ1 = ω1 and ζ2 + ξ2 = ω2 for some ξ1, ξ2,ω1,ω2 ∈ a. Now,

ζ1 + ξ1 + ζ2 + ξ2 = ω1 +ω2 implies (ζ1 + ζ2) + (ξ1 + ξ2) = ω1 +ω2. Thus, ζ1 + ζ2 ∈ K(a). Also,

(ζ1 + ξ1)(ζ2 + ξ2) = ω1ω2 implies ζ1ζ2 + ζ1ξ2 + ξ1ζ2 + ξ1ξ2 = ω1ω2. Since ζ1, ζ2, ξ1, ξ2 ∈ a, we

have ζ1ξ2, ξ1ζ2, ξ1ξ2 ∈ a and y
′

= ζ1ξ2 + ξ1ζ2 + ξ1ξ2 ∈ a. Therefore, ζ1ζ2 + y
′

= ω1ω2. Thus,

ζ1ζ2 ∈ K(a). Hence, K(a) is a subsemiring of S. Let a, d ∈ K(a) and s ∈ S. Then a + b = c and

d + e = f for some b, c, e, f ∈ a. Now, (a + b)s(d + e) = cs f implies asd + (ase + bsd + bse) = cs f .

Thus, asd ∈ a for all a, d ∈ a and s ∈ S. Therefore, K(a) is a BI of S. Let a ∈ K(a), x ∈ S and

x + a ∈ K(a). Then a ∈ K(a) ⊆ a and x + a ∈ K(a) ⊆ a. Hence, x ∈ K(a). Therefore, K(a) is a

k-BI of S. Suppose that a1 is any other k-BI of S which contained in a. Let ν1 ∈ a1 = a1. Then

ν1 + b
′

= b
′′

for some b
′

, b
′′

∈ a1 and hence ν1 ∈ K(a). Thus, a1 ⊆ K(a). Hence, K(a) is the

unique largest k-BI contained in a. �

Lemma 3.1. If a is a 13-PBI, then K(a) is a 13-PBI.

Proof. Let a be a 13-PBI of S. Suppose that a1a2 ⊆ K(a) for k-BIs a1 and a2 of S. Therefore,

a1a2 ⊆ K(a) ⊆ a implies a1 ⊆ a or a2 ⊆ a. Thus, a1 ⊆ K(a) or a2 ⊆ K(a). Hence, K(a) is a

13-PBI of S. �

Theorem 3.4. If a is a 13-PBI, then K(a) is an 11-PBI.

Proof. Let a be a 13-PBI of S. Suppose that a1a2 ⊆ K(a) for BIs a1 and a2 of S. Now,

a1a2 ⊆ (a1)(a2) ⊆ a1a2 ⊆ K(a) = K(a) implies a1 ⊆ K(a) or a2 ⊆ K(a). Hence, K(a)
is an 11-PBI of S. �

Remark 3.3. A 13-PBI a is not sufficient for K(a) to be 11-PBI.

Example 3.3. By Example 3.1, for a = {ςa, ςb}, K(a) = {ςa} is an 11-PBI of S. But a is not a 13-PBI of
S by {ςa, ςb, ςc}{ςa, ςb, ςd} ⊆ a, but {ςa, ςb, ςc} * a and {ςa, ςb, ςd} * a.
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4. On various 2-PBIs

The two types of 2-PBIs, namely 21-PBI and 22-PBI, are introduced.

Definition 4.1. A BI Θ in S is called
(i) a 21-PBI if aSb ⊆ Θ implies a ∈ Θ or b ∈ Θ for a, b ∈ S,
(ii) a 22-PBI if aSb ⊆ Θ implies a ∈ Θ or b ∈ Θ for a, b ∈ S.

Remark 4.1. Example 4.1 guarantees that a 13-PBI differs from a 21-PBI.

Example 4.1. (i) Θ = {ςa, ςc} is a 13-PBI as in Example 3.2. But Θ is not a 21-PBI by ςaSςe = {ςa, ςc} ⊆ Θ.

(ii) Consider the semiring S =


a b
c d

 ∣∣∣∣∣∣ a, b, c, d ∈ B(2, 1)

, where B(2, 1) is defined as in [1]. Clearly,

Θ =


0 0

0 0


 is a 21-PBI of S.

Now,


0 0

0 0

 ,

0 1

0 0




0 0

0 0

 ,

1 0

0 0


 ⊆ Θ, hence Θ is not a 13-PBI of S.

Theorem 4.1. Every 11-PBI is a 21-PBI.

Proof. Let aSb ⊆ Θ for a, b ∈ S. Now, (aS)(Sb) ⊆ aSb ⊆ Θ implies aS ⊆ Θ or Sa ⊆ Θ. Suppose that

aS ⊆ Θ. Then < a >b< b >b⊆ aS ⊆ Θ implies a ∈ Θ. Similarly, Sb ⊆ Θ implies b ∈ Θ. Therefore, Θ

is a 21-PBI of S. �

Remark 4.2. Example 4.2 shows that there is a 21-PBI, which is not an 11-PBI.

Example 4.2. By Example 4.1 (ii), Θ =


0 0

0 0

 ,

1 0

0 0

 ,

0 1

0 0

 ,

1 1

0 0


 is a 21-PBI of S. Now,

0 0

0 0

 ,

0 0

1 0




0 0

0 0

 ,

0 0

0 1


 ⊆ Θ, hence Θ is not an 11-PBI of S.

Theorem 4.2. Every 21-PBI is a 22-PBI.

Proof. Let aSb ⊆ Θ for a, b ∈ S. Now, aSb ⊆ aSb ⊆ Θ implies a ⊆ Θ or b ⊆ Θ. Therefore, Θ is a

22-PBI of S. �

Remark 4.3. A 22-PBI is not a 21-PBI by Example 4.3.

Example 4.3. In Example 3.1, Θ = {ςa, ςd} is a 22-PBI ofS, but not a 21-PBI ofS by ςeSςb = {ςa, ςd} ⊆ Θ

with ςe < Θ and ςb < Θ.

Theorem 4.3. Every 13-PBI is a 22-PBI.

Proof. If there exists aSb ⊆ Θ, but a < Θ and b < Θ, then aSa * Θ and bSb * Θ. Now, (aSa)(bSb) ⊆
aSSSSb ⊆ aSb implies (aSa)(bSb) ⊆ aSb ⊆ Θ, contradicts aSa * Θ and bSb * Θ. Hence, Θ is a

22-PBI of S. �
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Remark 4.4. Disprove the converse of Theorem 4.3 by Example 4.4.

Example 4.4. By Example 4.1 (ii), Θ =


0 0

0 0

 ,

1 1

1 1


 is a 22-PBI of S.

Now,


0 0

0 0

 ,

1 0

0 0




0 0

0 0

 ,

0 0

1 0


 ⊆ Θ, hence Θ is not a 13-PBI of S.

Theorem 4.4. For a BI Θ, the following statements are equivalent:
(i) Θ is a 21-PBI,
(ii) Q1Q2 ⊆ Θ implies Q1 ⊆ Θ or Q2 ⊆ Θ,
(iii) QL ⊆ Θ implies Q ⊆ Θ or L ⊆ Θ,
(iv) RQ ⊆ Θ implies R ⊆ Θ or Q ⊆ Θ,
(v) RL ⊆ Θ implies R ⊆ Θ or L ⊆ Θ, where Q, Q1, and Q2 are QIs, R is an RI, and L is an LI.

Proof. To prove the equivalence, we are going to prove that

(i) =⇒ (ii) =⇒ (iii) =⇒ (v) =⇒ (i) and (ii) =⇒ (iv) =⇒ (v).
(i) =⇒ (ii): Let aSb ⊆ Θ for a, b ∈ S. If there exist QIs Q1 and Q2 of S such that Q1Q2 ⊆ Θ, but

Q1 * Θ, then a ∈ Q1 \Θ. For any b ∈ Q2, aSb ⊆< a >q< b >q⊆ Q1Q2 ⊆ Θ implies b ∈ Θ. Thus,

Q2 ⊆ Θ.

(ii) =⇒ (iii), (iii) =⇒ (v), (ii) =⇒ (iv) and (iv) =⇒ (v) are straightforward.

(v) =⇒ (i): Suppose that aSb ⊆ Θ for a, b ∈ S. Now, (aS)(Sb) ⊆ aSb ⊆ Θ implies aS ⊆ Θ or

Sb ⊆ Θ. If aS ⊆ Θ, then

< a >r< b >l = [{na | n ∈ Z+
}+ aS][{mb | m ∈ Z+

}+Sb]

= namb + naSb + aSmb + aSSb

⊆ {n
′

ab | n
′

∈ Z+
}+ aSb

⊆ aS ⊆ Θ.

Thus, a ∈ Θ or b ∈ Θ. Similarly, if Sb ⊆ Θ, then < a >r< b >l⊆ Sb ⊆ Θ. Thus, a ∈ Θ or b ∈ Θ. �

Definition 4.2. (i) An RI Θ in S is called a PRI if R1R2 ⊆ Θ implies R1 ⊆ Θ or R2 ⊆ Θ for RIs R1 and
R2 in S.
(ii) An LI Θ in S is called a PLI if L1L2 ⊆ Θ implies L1 ⊆ Θ or L2 ⊆ Θ for LIs L1 and L2 in S.

Lemma 4.1. If Θ is a 21-PBI, then Θ is a one-sided ID.

Proof. Let Θ be a 21-PBI of S. Then (ΘS)(SΘ) ⊆ ΘSΘ ⊆ Θ. Thus, ΘS ⊆ Θ or SΘ ⊆ Θ. Hence, Θ

is a one-sided ID of S. �

Theorem 4.5. If Θ is a 21-PBI, then Θ is a prime one-sided ID.

Proof. By Lemma 4.1, we have Θ is a one-sided ID of S. Suppose Θ is an RI of S. If there exist RIs

R1 and R2 of S such that R1R2 ⊆ Θ, but R1 * Θ then a ∈ R1 \Θ. For any b ∈ R2 and by Theorem 4.4,
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we get

< a >r< b >l ⊆ R1[mb +Sb]

⊆ R1R2 + R1SR2

⊆ R1R2

⊆ Θ

implies b ∈ Θ. Thus, R2 ⊆ Θ. Therefore, Θ is a PRI of S. Similarly, if Θ is an LI of S, then Θ is a

PLI of S. �

Remark 4.5. (i) Theorem 4.5 and Example 4.5 contrast a 12-PBI from a 21-PBI of S.
(ii) There is a 22-PBI which differs from a 21-PBI of S.

Example 4.5. Example 3.1, {ςa, ςc} is a 12-PBI of S, but neither an RI nor an LI of S.
In Example 3.2, {ςa, ςb} is a 22-PBI of S, but neither an RI nor an LI of S.

5. On various 3-PBIs

In this section, we introduce 31(32,33)-prime bi-ideals of semirings.

Definition 5.1. A BI Θ in S is called
(i) a 31-PBI if Λ1Λ2 ⊆ Θ implies Λ1 ⊆ Θ or Λ2 ⊆ Θ for IDs Λ1 and Λ2 in S,
(ii) a 32-PBI if Λ1Λ2 ⊆ Θ implies Λ1 ⊆ Θ or Λ2 ⊆ Θ for an ID Λ1 and a k-ID Λ2 in S,
(iii) a 33-PBI if Λ1Λ2 ⊆ Θ implies Λ1 ⊆ Θ or Λ2 ⊆ Θ for k-IDs Λ1 and Λ2 in S.

Theorem 5.1. Every 21-PBI is a 31-PBI.

Proof. If there exist IDs Λ1 and Λ2 of S such that Λ1Λ2 ⊆ Θ, but Λ1 * Θ. Then a ∈ Λ1 \Θ. For any

b ∈ Λ2, aSb ⊆< a >< b >⊆ Λ1Λ2 ⊆ Θ implies b ∈ Θ. Thus, Λ2 ⊆ Θ. Therefore, Θ is a 31-PBI of

S. �

Remark 5.1. Disprove the converse of Theorem 5.1 by Example 5.1.

Example 5.1. In Example 3.1, Θ = {ς1, ς2} is a 31-PBI of S. But Θ is not a 21-PBI of S by ς3Sς4 =

{ς1, ς2} ⊆ Θ.

Theorem 5.2. Every 31-PBI is a 32-PBI.

Proof. Let I be a 31-PBI of S. Suppose that Λ1Λ2 ⊆ I for an ID Λ1 and a k-ID Λ2 of S. Now,

Λ1Λ2 ⊆ Λ1Λ2 ⊆ I implies Λ1 ⊆ I or Λ2 ⊆ I. Hence, I is a 32-PBI of S. �

Remark 5.2. A 32-PBI fails to be a 31-PBI by Example 5.2.

Example 5.2. Consider the semiring (S,+, ·) by the following table:
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+ ςa ςb ςc ςd ςe ς f ςg

ςa ςa ςb ςc ςd ςe ς f ςg

ςb ςb ςe ς f ςg ςe ς f ςg

ςc ςc ς f ςg ςg ς f ςg ςg

ςd ςd ςg ςg ςg ςg ςg ςg

ςe ςe ςe ς f ςg ςe ς f ςg

ς f ς f ς f ςg ςg ς f ςg ςg

ςg ςg ςg ςg ςg ςg ςg ςg

· ςa ςb ςc ςd ςe ς f ςg

ςa ςa ςa ςa ςa ςa ςa ςa

ςb ςa ςa ςa ςa ςa ςa ςa

ςc ςa ςb ςc ςd ςe ς f ςg

ςd ςa ςe ςg ςg ςe ςg ςg

ςe ςa ςa ςa ςa ςa ςa ςa

ς f ςa ςb ςc ςd ςe ς f ςg

ςg ςa ςe ςg ςg ςe ςg ςg

Clearly, Θ = {ςa, ςb, ςe, ς f , ςg} is a 32-PBI of S, but not a 31-PBI of S by
{ςa, ςb, ςd, ςe, ςg}{ςa, ςd, ςe, ςg} = {ςa, ςe, ςg} ⊆ Θ with {ςa, ςb, ςd, ςe, ςg} * Θ and
{ςa, ςd, ςe, ςg} * Θ.

Theorem 5.3. Every 32-PBI is a 33-PBI.

Proof. It is a direct result of a k-BI being a BI. �

Remark 5.3. A 33-PBI fails to be a 32-PBI by Example 5.3.

Example 5.3. Consider the semiring (S,+, ·) by the following table:

+ ςa ςb ςc ςd ςe ς f ςg

ςa ςa ςb ςc ςd ςe ς f ςg

ςb ςb ςb ςd ςd ςg ςg ςg

ςc ςc ςd ςe ςg ςe ς f ςg

ςd ςd ςd ςg ςg ςg ςg ςg

ςe ςe ςg ςe ςg ςe ς f ςg

ς f ς f ςg ς f ςg ς f ςg ςg

ςg ςg ςg ςg ςg ςg ςg ςg

· ςa ςb ςc ςd ςe ς f ςg

ςa ςa ςa ςa ςa ςa ςa ςa

ςb ςa ςb ςa ςb ςa ςb ςb

ςc ςa ςa ςc ςc ςe ςe ςe

ςd ςa ςb ςc ςd ςe ςg ςg

ςe ςa ςa ςe ςe ςe ςe ςe

ς f ςa ςb ςe ςg ςe ς f ςg

ςg ςa ςb ςe ςg ςe ςg ςg

Clearly, Θ = {ςa, ςb, ςe, ςg} is a 33-PBI of S. Now, {ςa, ςb, ςe, ς f , ςg}{ςa, ςc, ςe} = {ςa, ςe} ⊆ Θ,
but {ςa, ςb, ςe, ς f , ςg} * Θ and {ςa, ςc, ςe} * Θ. Hence, Θ is not a 32-PBI of S.

Remark 5.4. Example 5.4 guarantees that a 22-PBI differs from a 31-PBI.

Example 5.4. By Example 5.2, Θ = {ςa, ςb, ςe, ς f , ςg} is a 22-PBI of S, but not a 31-PBI of S by
{ςa, ςb, ςd, ςe, ςg}{ςa, ςd, ςe, ςg} = {ςa, ςe, ςg} ⊆ Θ with {ςa, ςb, ςd, ςe, ςg} * Θ and {ςa, ςd, ςe, ςg} * Θ. By

Example 4.1 (ii), Θ =


0 0

0 0

 ,

0 0

0 1


 is a 31-PBI of S, but not a 22-PBI of S by

0 0

1 0

S 0 1

0 1

 =
0 0

0 0

 ,

0 0

0 1


 ⊆ Θ and


0 0

0 0

 ,

0 0

0 1


 ⊆ Θ with

0 0

1 0

 < Θ and

0 1

0 1

 < Θ.

Theorem 5.4. For a BI Θ, then following statements are equivalent:
(i) Θ is a 31-PBI,
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(ii) IR ⊆ Θ implies I ⊆ Θ or R ⊆ Θ,
(iii)LI ⊆ Θ implies L ⊆ Θ or I ⊆ Θ, where R is an RI, L is an LI, and I is an ID.

Proof. (i) =⇒ (ii): If there exist an ID I and an RI R of S such that IR ⊆ Θ, but R * Θ, then

b ∈ R \Θ. For any a ∈ I, < a >< b >⊆ I[R + Sb + SbS] ⊆ IR ⊆ Θ implies a ∈ Θ. Thus, I ⊆ Θ.

Therefore, (ii) holds.

(ii) =⇒ (iii): If there exist an LI L and an ID I of S such that LI ⊆ Θ, but L * Θ, then a ∈ L \Θ.

For any b ∈ I, < a >< b >r⊆ [L + aS+SaS]I ⊆ LI ⊆ Θ implies b ∈ Θ. Thus, I ⊆ Θ. Therefore, (iii)

holds.

(iii) =⇒ (i): If there exist IDs Λ1 and Λ2 of S such that Λ1Λ2 ⊆ Θ, but Λ1 * Θ, then a ∈ Λ1 \Θ.

For any b ∈ Λ2,< a >l< b >⊆ Λ1Λ2 ⊆ Θ implies b ∈ Θ. Thus, Λ2 ⊆ Θ. Therefore, Θ is a 31-PBI of

S. �

Remark 5.5. A 31-PBI is neither an RI nor an LI.

Example 5.5. By Example 4.1 (ii), Θ =


0 0

0 0

 ,

0 0

1 1


 is a 31-PBI of S, but neither an RI nor an LI

of S.

Definition 5.2. For any BI a of S, we define L(a) = {x ∈ a | Sx ⊆ a} and H(a) = {y ∈ L(a) | yS ⊆
L(a)}. Then H(a) is the unique largest two-sided ID of S contained in a.

Theorem 5.5. A BI a is a 31-PBI of S if and only if H(a) is a PID of S.

Proof. Let a BI a be a 31-PBI of S. Suppose that Λ1Λ2 ⊆ H(a) for IDs Λ1 and Λ2 and a 31-PBI a

of S. Thus, Λ1Λ2 ⊆ H(a) ⊆ a implies Λ1 ⊆ a or Λ2 ⊆ a. Therefore, Λ1 ⊆ H(a) or Λ2 ⊆ H(a).

Hence, H(a) is a PID of S.

Conversely, let H(a) be a PID of S. Suppose that Λ1Λ2 ⊆ a for IDs Λ1 and Λ2 of S. Then

Λ1Λ2 ⊆ H(a) implies Λ1 ⊆ H(a) ⊆ a or Λ2 ⊆ H(a) ⊆ a. Hence, a is a 31-PBI of S. �

6. Conclusion

Many different PBIs of semirings are introduced in this paper. We introduced three sequences

of different PBIs based on different BIs. These sequences include 11(12,13)-PBIs, 21(22)-PBIs,

and 31(32,33)-PBIs. For example, an 11-PBI implied a 12-PBI implied a 13-PBI, but the reverse

implication did not hold. A numerical example does not support the opposite implication that

a 21-PBI implies a 22-PBI. Future research will focus on b-semirings, ternary semirings, and

hyper semirings based on BIs, QIs and bi-quasi ideals. Future research will focus on b-semirings,

ternary semirings and hyper semirings using various prime ideals and tri-ideals. We will develop

semirings to b-semirings using various prime ideals and prime bi-ideals.
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