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ABSTRACT. This study aims to compare the efficacy of three ratio estimators for estimating the population ratio in simple 

random sampling without replacement (SRSWOR). The estimators under consideration are a customary ratio estimator 

(𝑅1̂), a ratio estimator based on a transformed mean estimator (𝑅2̂) introduced by Onyeka et al. [1], and a regression-

type estimator (𝑅3̂) proposed by Onyeka et al. [2]. We assess the performance of these estimators across three 

distributions (bivariate normal, bivariate Poisson log-normal, and bivariate Cauchy) while varying both correlation 

coefficients and sample sizes, utilizing Mean Square Error (MSE) and Percent Relative Efficiency (PRE) as evaluation 

criteria. The results indicate that for a bivariate normal distribution, the 𝑅1̂ and 𝑅2̂ estimators consistently outperformed 

the 𝑅3̂ estimator across all sample sizes and correlation coefficients. The 𝑅2̂ estimator demonstrated superiority with 

very small sample sizes, while 𝑅1̂ exhibited better performance in small sample sizes. The 𝑅2̂ estimator remained 

reliable for moderately sized samples, demonstrating consistent efficiency. In large samples, 𝑅2̂ maintained its 

performance advantage, except in weak correlation coefficients, where 𝑅1̂ proved superior. For a bivariate Poisson log-

normal distribution, both 𝑅2̂ and 𝑅3̂ performed significantly better than 𝑅1̂ for very small sample sizes, irrespective of 

correlation direction and strength. For moderately sized samples, 𝑅2̂ and 𝑅3̂ consistently excelled, with 𝑅2̂ leading in 

cases with positive correlation coefficients. For large sample sizes with negative correlation coefficients, both  𝑅2̂ and 

𝑅3̂ were comparable effective and significantly better than 𝑅1̂. Conversely, with positive correlation coefficients, the 𝑅1̂ 

estimator significantly outperformed both 𝑅2̂ and 𝑅3̂. In a bivariate Cauchy distribution, the 𝑅1̂ estimator demonstrated 

notable and consistent superiority over the 𝑅2̂ and 𝑅3̂  estimators across all sample sizes and correlation coefficients. 
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1. Introduction 

Estimating population mean, ratio, variance, and proportion is crucial in sample surveys. 

The population ratio (R) is a significant parameter that plays a vital role in statistical analysis. It 

represents the ratio between the population means of two variables: the study variable (Y) and 

the auxiliary variable (X). This parameter holds significance in various scenarios, such as 

estimating the yield-to- plantation-area ratio, the expense-to-income ratio, the employment-to-

population ratio, and more. To estimate the population ratio, statisticians often rely on a widely 

recognized and frequently used estimator known as the ratio estimator (Cochran, [3]). Over the 

past several years, many researchers have proposed alternative methods for estimating the ratio 

of two population means. The works of Rao [4], Singh [5], [6], Rao and Pereira [7], Tripathi [8], 

Ray and Singh [9], Upadhyaya and Singh [10], Upadhyaya et al. [11], Singh [12], [13], [14], 

Srivastava et al. [15], Okafor and Arnab [16], Khare [17], Okafor [18], Singh et al. [19], Prasad et 

al. [20], and Singh and Karpe [21] have contributed significantly to the development of these 

alternative estimators. In 2000, Upadhyaya et al. [22] presented an estimator based on the 

transformation of auxiliary variables. This estimator has several advantages, including cost-

effectiveness, as it is derived from existing auxiliary variables. Singh and Karpe [21] investigated 

the intricate problem of estimating the ratio and product of two population means. This endeavor 

was conducted while considering supplementary information derived from an auxiliary variable 

within the context of prevailing measurement errors. In pursuit of more refined estimations, they 

introduced novel estimators tailored to this complex scenario. The empirical findings, 

illuminating in nature, demonstrably establish the proposed estimator's heightened efficacy 

compared to its precursors within the existing scholarly literature. In 2013, Onyeka et al. [1] 

proposed six novel estimators of the population ratio in the simple random sampling (SRS) 

scheme. These estimators utilize a variable transformation technique applied to the auxiliary 

variable. The empirical illustration accompanying the findings demonstrates that certain 

estimators proposed in the study exhibit significantly improved efficiency compared to the 

customary ratio estimator, especially for the given dataset of Johnson [23]. In the scholarly work 

presented by Onyeka et al. [2], a novel category of estimators is advanced to address estimating 

the population ratio involving the mean values of two distinct variables. This estimation 

endeavor was conducted within the SRS scheme, and notably, it employed a variable 

transformation technique applied to an auxiliary variable. The empirical outcomes of this 
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investigation compellingly demonstrate that several estimators within the proposed class exhibit 

considerable enhancements in efficiency compared to the conventional ratio estimator, as applied 

to the specific dataset under consideration. 

Prior research has centered on developing estimators for population ratios and assessing 

their efficacy within the context of their respective inquiries. However, these investigations have 

been restricted to specific populations to circumvent challenging comparisons. As such, these 

estimators have yet to be evaluated against those from other studies concerning data distribution. 

This study underscores the significance of selecting estimators attuned to population distribution, 

correlation magnitude and direction, and sample size. Such selection is paramount in obtaining 

precise inferences and predictions in various statistical scenarios. Consequently, our focus is on 

evaluating the efficacy of three established estimators detailed in Cochran [3], Onyeka et al. [1], 

and Onyeka et al. [2]. This examination involves exploring the performance of these three 

estimators under three distinct population distributions: the bivariate normal distribution, the 

bivariate Poisson log-normal distribution, and the bivariate Cauchy distribution. The effect of the 

magnitude and direction of the correlation coefficient between two variables on the ability to 

estimate population ratios of these estimates was studied.  

The rest of the article is organised as follows. Section 2 provides comprehensive 

information regarding the three ratio estimators. Section 3 outlines the research methodology. 

Section 4 presents simulation results. Finally, Section 5 provides the conclusion. 

2. Three Estimators for the Population Ratio 

The population ratio (𝑅) can be computed utilizing the 𝑅 =
𝜇𝑦

𝜇𝑥
 formula, where 𝜇𝑦(𝜇𝑥) 

denotes the population mean of variable Y(X), respectively, that is, 𝜇𝑦 =
1

𝑁
∑ 𝑌𝑖

𝑁
𝑖=1  and 𝜇𝑥 =

1

𝑁
∑ 𝑋𝑖

𝑁
𝑖=1 . Assume a sample of size n is selected from a population of size N under the SRSWOR 

scheme. Three estimators are considered for estimating the population ratio, detailed as follows. 

2.1 Ratio estimator 

 The ratio estimator (𝑅1̂), described in Cochran’s work from 1977 [3], is widely used and 

calculated using Equation (1)  

𝑅1̂ =  �̅� �̅�⁄      (1) 

where �̅�(�̅�) denotes the sample mean of the variables Y(X), respectively, that is, �̅� =
1

𝑛
∑ 𝑌𝑖

𝑛
𝑖=1  and  

�̅� =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 . The Mean Square Error (MSE) of 𝑅1̂ is defined as:    
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𝑀𝑆𝐸(𝑅1̂) =
1 − 𝑓

𝑛𝜇𝑥
2 ∑

(𝑦𝑖 − 𝑅1̂𝑥𝑖)
2

𝑛 − 1

𝑛

𝑖=1

=
1 − 𝑓

𝑛𝜇𝑥
2 (𝜎𝑦

2 + 𝑅2𝜎𝑥
2 + 2𝑅𝜎𝑦𝑥). 

Here, f = n/N represents a sampling fraction, 𝜎𝑦
2(𝜎𝑥

2) represents the population variance of the 

variables Y(X), while 𝜎𝑦𝑥 represents the population covariance between the variables Y(X).  

2.2 Simple ratio estimator based on the transformed sample mean  

 Onyeka et al. [1] proposed a simple ratio estimator based on the transformed sample mean 

(𝑅2̂), which is calculated using Equation (2) 

      𝑅2̂ =  �̅� �̅�∗⁄      (2) 

where �̅�∗ represents a transformed sample mean estimator that is associated with the variable 

transformation and �̅�∗ = (1 + π)𝜇𝑥 − 𝜋�̅�, 𝜋 =
𝑛

𝑁−𝑛
. The transformed auxiliary variable 𝑥𝑖

∗ is 

calculated based on 𝑥𝑖
∗ =

𝑁𝜇𝑥−𝑛𝑥𝑖

𝑁−𝑛
, i = 1, 2, …, N. The MSE of 𝑅2̂ can be determined by  

𝑀𝑆𝐸(𝑅2̂) =
1−𝑓

𝑛𝜇𝑥
2 (𝜎𝑦

2 + 𝜋2𝑅2𝜎𝑥
2 + 2𝜋𝑅𝜎𝑦𝑥). 

2.3 Regression-type estimator based on both the sample mean and transformed sample 

mean  

 Onyeka et al. [2]  proposed a regression-type estimator (𝑅3̂) that uses of both the sample 

mean and transformed sample mean in their 2014 publication. This estimator can be conveniently 

calculated using Equation (3). 

     𝑅3̂ =
�̅�

1

4
(�̅�−�̅�∗+𝜇𝑥)+

3

4
(�̅�∗−�̅�+𝜇𝑥)

     (3) 

The MSE of 𝑅3̂ is defined as:  

𝑀𝑆𝐸(𝑅3̂) =
1−𝑓

𝑛𝜇𝑥
2 (𝜎𝑦

2 +
1

4
(1 + 𝜋)2𝑅2𝜎𝑥

2 + (1 + 𝜋)𝑅𝜎𝑦𝑥). 

 

3. Methodology 

The research methodology can be outlined as follows: 

3.1 Simulate population data. 

The present study utilized the R programming language version 3.3.3 to generate data. 

The simulated population consisted of 1,000 individuals and comprised two variables: the study 

variable (Y) and an auxiliary variable (X). The study population was characterized by bivariate 

normal distribution, bivariate Poisson log-normal distribution, and bivariate Cauchy 

distribution. Both variables were assigned a population mean and variance of 200 and one, 

respectively. The population correlation coefficient (ρ) between the two variables was designated 
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as either positive (indicating a similar relationship) or negative (indicating an opposite 

relationship). The correlation strength was defined at three levels: weak (0.25), moderate (0.50), 

and strong (0.75). 

3.2 Calculate the population ratio value. 

3.3 Random 1,000 samples from the population. 

A sample of size n was randomly drawn using SRSWOR with each sample size repeated 

1,000 times. The sample sizes were classified into four categories: very small (10), small (15), 

moderate (30), and large (100). 

3.4 Calculate the population ratio estimates.  

Calculate the ratio estimates obtained by the three ratio estimators: 𝑅1̂, 𝑅2̂ and 𝑅3̂, as 

represented in Equations (1) to (3), respectively.  

3.5 Calculate the estimated MSE and PRE.  

This study uses the MSE and the Prediction Error (PRE) as criteria to evaluate the 

performance of different estimators and compare them. A reduced MSE value and an elevated 

PRE indicate an estimator's superior performance. To estimate the MSE of parameter estimates, 

we computed the sum of squared error estimates for every 1,000 iterations. Then, we divided the 

sum by the total number of iterations, also 1,000. Accordingly, the formula for estimating the MSE 

of parameter estimates is formulated as follows:  

𝑀𝑆𝐸(𝜃) =
1

1,000
∑ (𝜃𝑖 − 𝜃)

2

1,000

𝑖=1

 

where 𝜃𝑖 represents the parameter estimate of the i-th iteration, and 𝜃 represents the parameter 

value. Furthermore, the PRE of the estimator 𝜃𝑖 over 𝜃𝑗 is computed using the formula: 

𝑃𝑅𝐸(𝜃𝑖) = 𝑀𝑆𝐸(𝜃𝑗) 𝑀𝑆𝐸(𝜃𝑖)⁄ . 

 

4. Simulation Results 

A simulation was conducted on a population comprising two variables, Y and X. The 

study involved the application of three distributions: the bivariate normal distribution, the 

bivariate Poisson log-normal distribution, and the bivariate Cauchy distribution. The correlation 

coefficients were varied at ±0.25, ±0.50, and ±0.75 during the analysis. Samples of sizes 10, 15, 

30, and 100 were randomly chosen using the SRSWOR scheme. The results of the estimated MSE 

and PRE of the estimators, compared to the classical ratio estimator 𝑅1̂, considering populations 
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following bivariate normal, bivariate Poisson log-normal, and bivariate Cauchy distributions, are 

presented in Tables 1 to 3, respectively. 

In Table 1, it is evident that in the context of a bivariate normal distribution, when 

analysing scenarios with negative correlation coefficients, the 𝑅2̂ estimator consistently 

outperforms the 𝑅1̂ estimator regarding estimated MSE and PRE. This superior performance is 

observed across a wide range of sample sizes and correlation coefficients, with the exception 

being scenarios with weak correlation between variables ( = −0.25) in small (n = 15) to very 

small (n = 10) sample sizes, where the 𝑅1̂ estimator exhibited better results. The estimated MSE 

indicates a discernible trend where the  𝑅1̂ and 𝑅2̂ estimators consistently outperform 𝑅3̂, 

irrespective of sample size or correlation coefficient. In terms of PRE, the PRE estimates reveal an 

interesting pattern in which the 𝑅2̂ estimator consistently displays a heightened level of efficiency 

relative to the others. Moreover, this efficiency tends to increase as the sample size increases. This 

observation underscores the critical role of sample size in the choice of estimator, particularly 

when considering the population correlation coefficient. For instance, when confronted with 

larger sample sizes, the 𝑅2̂ estimator emerges as a favourable choice. Turning our attention to 

scenarios characterized by positive correlation coefficients, it remains evident that the 𝑅2̂ 

estimator consistently outperforms 𝑅1̂ regarding estimated MSE and PRE across nearly all sample 

sizes and correlation coefficients. Once again, the MSE estimates reinforce the superior 

performance of estimators 𝑅1̂ and 𝑅2̂ while concurrently highlighting the inferior accuracy of the 

𝑅3̂ estimator across all sample sizes and correlation coefficients. This underscores the limited 

accuracy of the estimator 𝑅3̂ within this analytical framework. Additionally, the PRE estimates 

consistently depict 𝑅2̂ as the more efficient estimator, with efficiency generally increasing as both 

the sample size and correlation coefficient rise. Among the three estimators, the 𝑅3̂ estimator 

consistently holds the lowest position in terms of PRE, indicating that it is the least efficient 

estimator in this context. Consequently, the choice of estimator remains contingent upon the 

interplay between sample size and correlation coefficient. However, mostly 𝑅2̂ emerges as the 

most dependable and efficient estimators within the framework of a bivariate normal 

distribution, except for instances where there is a weak correlation ( = 0.25) in both small (n = 

15) and large (n = 100) sample sizes, and situations involving a moderate correlation ( = 0.50) 

specifically in large sample sizes. 
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  MSE  PRE 
n  𝑅1̂ 𝑅2̂ 𝑅3̂  𝑅1̂ 𝑅2̂ 𝑅3̂ 
10 -0.75 0.00004 0.00003 0.94733  100 133.3333 0.0042 
 -0.50 0.00006 0.00004 0.94744  100 150.0000 0.0063 
 -0.25 0.00002 0.00004 0.94746  100 50.0000 0.0021 
 0.25 0.00007 0.00006 0.94732  100 116.6667 0.0074 
 0.50 0.00003 0.00002 0.94734  100 150.0000 0.0032 
 0.75 0.00003 0.00001 0.94751  100 300.0000 0.0032 

15 -0.75 0.00005 0.00009 0.94746  100 55.5556 0.0053 
 -0.50 0.00004 0.00008 0.94744  100 50.0000 0.0042 
 -0.25 0.00002 0.00009 0.94747  100 22.2222 0.0021 
 0.25 0.00001 0.00006 0.94744  100 16.6667 0.0011 
 0.50 0.00003 0.00008 0.94748  100 37.5000 0.0032 
 0.75 0.00008 0.00005 0.94743  100 160.0000 0.0084 

30 -0.75 0.00007 0.00004 0.94749  100 175.0000 0.0074 
 -0.50 0.00006 0.00005 0.94745  100 120.0000 0.0063 
 -0.25 0.00008 0.00003 0.94742  100 266.6667 0.0084 
 0.25 0.00005 0.00009 0.94746  100 55.5556 0.0053 
 0.50 0.00006 0.00003 0.94741  100 200.0000 0.0063 
 0.75 0.00008 0.00007 0.94744  100 114.2857 0.0084 

100 -0.75 0.00009 0.00005 0.94746  100 180.0000 0.0095 
 -0.50 0.00008 0.00003 0.94747  100 266.6667 0.0084 
 -0.25 0.00003 0.00008 0.94748  100 37.5000 0.0032 
 0.25 0.00005 0.00009 0.94745  100 55.5556 0.0053 
 0.50 0.00007 0.00005 0.94745  100 140.0000 0.0074 
 0.75 0.00006 0.00001 0.94743  100 600.0000 0.0063 

Table 1 MSE and PRE estimates of the estimators 𝑅1̂, 𝑅2̂, and 𝑅3̂ over the 𝑅1̂ estimator when the 

population has a bivariate normal distribution with different sample sizes (n) and different 

correlation coefficients () 

Furthermore, the three estimators have been subject to evaluation across varying sample 

sizes and distinct correlation coefficients within the context of a bivariate Poisson log-normal 

distribution, as presented in Table 2. It is noteworthy that, particularly when exploring scenarios 

featuring a negative correlation coefficient, the MSE estimates of the 𝑅2̂ and 𝑅3̂ estimators 

consistently exhibit superior performance when compared to the 𝑅1̂ estimator. This phenomenon 

holds across the entire spectrum of sample sizes and correlation coefficients emphasizing 

instances where  = −0.75 or when n = 30 and 100. Additionally, the PRE values exhibit variability 

contingent upon the sample size and the correlation coefficient. Conversely, in scenarios 

characterized by  = −0.75 and larger sample sizes, 𝑅2̂ and 𝑅3̂ consistently outperform  𝑅1̂. These 

findings collectively imply that, as a general trend, 𝑅2̂ and 𝑅3̂ tend to serve as the most accurate 

and efficient estimators within this context. However, it is imperative to exercise prudence in 

selecting the appropriate estimator, as the choice should be contingent upon the specific interplay 
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of sample size and correlation coefficient. Shifting our attention to positive correlation 

coefficients, it is worth mentioning that when the correlation coefficient is 0.75, the 𝑅1̂ estimator 

outperforms 𝑅2̂ and 𝑅3̂ in terms of MSE and PRE across various sample sizes, except for scenarios 

with very small sample sizes (n = 10). Within the context of a correlation coefficient of 0.5, an 

empirical examination reveals that the 𝑅1̂ estimator demonstrates superior performance when 

compared to 𝑅2̂ and 𝑅3̂ under circumstances characterized by very small sample sizes (n = 10) 

and considerably large sample sizes (n = 100). When, when sample sizes are small (n = 15) or 

moderate (n = 30), the 𝑅2̂ and 𝑅3̂ estimators are more effective. However, when  is 0.25, 𝑅1̂ 

consistently outperforms both 𝑅2̂ and 𝑅3̂ in situations with both small sample sizes (n = 15) and 

large sample sizes (n = 100). Interestingly, the 𝑅2̂ and 𝑅3̂ estimators perform better when faced 

with very small samples (n = 10) or moderate samples (n = 30). 

 

  MSE  PRE 
n  𝑅1̂ 𝑅2̂ 𝑅3̂  𝑅1̂ 𝑅2̂ 𝑅3̂ 
10 -0.75 1.4697 1.0013 1.0000  100 146.78 146.97 

 -0.50 0.8673 0.9992 1.0000  100 86.80 86.73 
 -0.25 3.4834 0.8552 0.9476  100 407.32 367.60 
 0.25 1.1944 1.0034 1.0001  100 119.04 119.43 
 0.50 0.0018 0.993 0.9998  100 0.18 0.18 
 0.75 2.5756 1.0027 1.0001  100 256.87 257.53 

15 -0.75 0.0074 1.0062 1.0002  100 0.74 0.74 
 -0.50 13.2038 1.0285 1.0008  100 1,283.79 1,319.32 
 -0.25 3.2057 0.9871 0.9996  100 324.76 320.70 
 0.25 0.0381 0.9946 0.9999  100 3.83 3.81 
 0.50 1.4759 0.8648 0.9962  100 170.66 148.15 
 0.75 0.0377 1.7822 1.0183  100 2.12 3.70 

30 -0.75 4.0998 1.0116 1.0003  100 405.28 409.86 
 -0.50 3.602 1.0181 1.0005  100 353.80 360.02 
 -0.25 2.7775 1.0204 1.0006  100 272.20 277.58 
 0.25 4.1961 1.0062 1.0002  100 417.02 419.53 
 0.50 2,011.27 0.9859 0.9996  100 204,003.14 201,207.18 
 0.75 0.0109 1.0072 1.0002  100 1.08 1.09 

100 -0.75 577.9088 1.0148 1.0004  100 56,948.05 57,767.77 
 -0.50 1.4657 1.004 1.0001  100 145.99 146.56 
 -0.25 5.4544 0.952 0.9986  100 572.94 546.20 
 0.25 0.2101 0.9827 0.9995  100 21.38 21.02 
 0.50 0.4307 1.0363 1.0011  100 41.56 43.02 
 0.75 0.2473 1.0112 1.0003  100 24.46 24.72 

Table 2 MSE and PRE estimates of the estimators 𝑅1̂, 𝑅2̂, and 𝑅3̂ over the 𝑅1̂ estimator when the 

population has a bivariate Poisson log-normal distribution with different sample sizes (n) and 

different correlation coefficients () 
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  MSE  PRE 
n  𝑅1̂ 𝑅2̂ 𝑅3̂  𝑅1̂ 𝑅2̂ 𝑅3̂ 

10 -0.75 0.4331 195.7600 57.1220  100 0.22 0.76 
 -0.50 0.8710 1549.0000 169.7100  100 0.06 0.51 
 -0.25 0.0013 1171.4400 25.1660  100 0.00 0.01 
 0.25 0.1148 57.9840 12.5130  100 0.20 0.92 
 0.50 0.1896 85.5070 11.7720  100 0.22 1.61 
 0.75 0.5615 1373.1000 141.0700  100 0.04 0.40 

15 -0.75 0.0875 400.8000 36.4510  100 0.02 0.24 
 -0.50 0.1532 166857.0000 15.6550  100 0.00 0.98 
 -0.25 0.3928 226.6600 39.8050  100 0.17 0.99 
 0.25 0.1555 1610.2000 56.4380  100 0.01 0.28 
 0.50 0.1438 197.6900 30.0410  100 0.07 0.48 
 0.75 0.1251 414.9800 29.7730  100 0.03 0.42 

30 -0.75 0.1913 299.7000 42.0570  100 0.06 0.45 
 -0.50 0.1275 183.6800 44.0310  100 0.07 0.29 
 -0.25 0.2122 9.5413 18.8010  100 2.22 1.13 
 0.25 0.0544 85.0080 52.4910  100 0.06 0.10 
 0.50 0.0007 69.3170 32.1760  100 0.00 0.00 
 0.75 0.0160 79.3030 40.2830  100 0.02 0.04 

100 -0.75 0.0147 20.8391 32.1110  100 0.07 0.05 
 -0.50 0.0232 20.8542 48.0810  100 0.11 0.05 
 -0.25 0.0279 34.4529 49.7480  100 0.08 0.06 
 0.25 0.2032 14.4208 42.8850  100 1.41 0.47 
 0.50 0.0448 17.5957 33.1070  100 0.25 0.14 
 0.75 0.0461 18.2860 27.8550  100 0.25 0.17 

Table 3 MSE and PRE estimates of the estimators 𝑅1̂, 𝑅2̂, and 𝑅3̂ over the 𝑅1̂ estimator when the 

population has a bivariate Cauchy distribution with different sample sizes (n) and different 

correlation coefficients () 

Finally, an empirical analysis of populations has been conducted to examine bivariate 

Cauchy distributions. This analysis reveals clear patterns regarding the characteristics of MSE 

and PRE displayed in Table 3. For negative correlation coefficients, the 𝑅1̂ estimator exhibits 

superior performance across all sample sizes. Notably, when dealing with relatively small to 

moderate sample sizes (specifically, sample sizes of 10, 15, and 30), the 𝑅3̂ estimator exhibits a 

statistically significant performance advantage over 𝑅2̂. In contrast, this trend is reversed for 

larger sample sizes, wherein the 𝑅2̂ estimator exhibits superior performance compared to 𝑅3̂. This 

pattern signifies a size-dependent relationship between the two estimators, contingent upon the 

magnitude of the sample size. Shifting focus to scenarios characterized by positive correlation 

coefficient values, the 𝑅1̂ estimator once again surfaces as the most adept choice, displaying 

comparable performance levels. This tandem outperforms estimators 𝑅2̂ and 𝑅3̂, with statistical 
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significance underpinning the observed discrepancies. However, mirroring the dynamics 

observed in positive  values, the 𝑅3̂ estimator surpasses the 𝑅2̂ estimator in scenarios 

characterized by relatively small to moderate sample sizes. This phenomenon highlights the 

sensitivity of estimator performance to sample size, consistent with prior findings. Ultimately, in 

the endeavor to focus our scholarly scrutiny upon the evaluation of PRE, it becomes evident that 

the resultant findings bear a remarkable semblance to the antecedently elucidated outcomes 

delineated within the purview of MSE.  

For convenience, Table 4 summarizes the most effective estimator according to population 

distribution, sample size, and correlation coefficient. 

n  

Distribution  

n  

Distribution 

Bivariate 

Normal 

Bivariate 

Poisson 

Log- Normal 

Bivariate  

Cauchy 

  

Bivariate 

Normal 

Bivariate 

Poisson 

Log- Normal 

Bivariate  

Cauchy 

 

10 -0.75 𝑅2̂ 𝑅2̂, 𝑅3̂ 𝑅1̂  30 -0.75 
2R̂  𝑅2̂ (2), 𝑅3̂ (1) 𝑅1̂ 

 -0.50 𝑅2̂ 𝑅1̂ 𝑅1̂   -0.50 
2R̂  𝑅2̂ (2), 𝑅3̂ (1) 𝑅1̂ 

 -0.25 𝑅1̂ 𝑅2̂ (1), 𝑅3̂ (2) 𝑅1̂   -0.25 
2R̂  𝑅2̂ (2), 𝑅3̂ (1) 𝑅1̂ 

 0.25 𝑅2̂ 𝑅2̂, 𝑅3̂ 𝑅1̂   0.25 𝑅1̂ 𝑅2̂ (2), 𝑅3̂ (1) 𝑅1̂ 

 0.50 𝑅2̂ 𝑅1̂ 𝑅1̂   0.50 
2R̂  𝑅2̂ (1), 𝑅3̂ (1) 𝑅1̂ 

 0.75 𝑅2̂ 𝑅2̂ (2), 𝑅3̂ (1) 𝑅1̂   0.75 
2R̂  𝑅1̂ 𝑅1̂ 

15 -0.75 𝑅1̂ 𝑅1̂ 𝑅1̂  100 -0.75 𝑅2̂ 𝑅2̂ (2), 𝑅3̂ (1) 𝑅1̂ 

 -0.50 𝑅1̂ 𝑅2̂ (2), 𝑅3̂ (1) 𝑅1̂   -0.50 𝑅2̂ 𝑅2̂ (2), 𝑅3̂ (1) 𝑅1̂ 

 -0.25 𝑅1̂ 𝑅2̂ (1), 𝑅3̂ (2) 𝑅1̂   -0.25 𝑅1̂ 𝑅2̂ (1), 𝑅3̂ (2) 𝑅1̂ 

 0.25 𝑅1̂ 𝑅1̂ 𝑅1̂   0.25 𝑅1̂ 𝑅1̂ 𝑅1̂ 

 0.50 𝑅1̂ 𝑅2̂ (1), 𝑅3̂ (2) 𝑅1̂   0.50 𝑅2̂ 𝑅1̂ 𝑅1̂ 

 0.75 𝑅2̂ 𝑅1̂ 𝑅1̂   0.75 𝑅2̂ 𝑅1̂ 𝑅1̂ 

Note: The number within parentheses indicates the order of an appropriate estimator. 

Table 4 The most effective estimator categorized according to population distribution, sample 

size, and correlation coefficient 

 

5. Conclusion 

In this study, we conducted a simulation to compare three estimators for estimating the 

population ratio in SRSWOR. The three estimators are the traditional ratio estimator 𝑅1̂ defined 

by Cochran [3]; the simple ratio estimator 𝑅2̂, which is based on a transformed mean estimator 

introduced by Onyeka et al. [1]; and the regression-type estimator 𝑅3̂ proposed by Onyeka et al. 
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[2]. Our research aimed to determine the effectiveness of these estimators across different sample 

sizes and correlation coefficients for populations following bivariate normal, bivariate Poisson 

log-normal, and bivariate Cauchy distributions. The study revealed that when the population 

follows a bivariate normal distribution, the ratio estimators 𝑅1̂ and 𝑅2̂ consistently outperformed 

the regression-type estimator 𝑅3̂ across all sample sizes and correlation coefficients. In situations 

with very small sample sizes (n = 10), and for most correlation coefficients examined, the 

performance of the 𝑅2̂ estimator was significantly superior to that of  𝑅1̂. In small sample sizes (n 

= 15), the 𝑅1̂ estimator outperformed 𝑅2̂ for most correlation coefficients. In moderately sized 

samples (n = 30), the 𝑅2̂ estimator outperformed 𝑅1̂ for most correlation coefficients.  Finally, with 

large sample sizes (n = 100) and moderate to strong correlation coefficients in both positive and 

negative directions ( = ±0.75, ±0.50), the 𝑅2̂ estimator demonstrated significantly better 

performance than 𝑅1̂, however 𝑅1̂ outperformed 𝑅2̂ significantly in cases of weak correlation 

coefficients ( = ±0.25). 

In cases where the underlying population follows a bivariate Poisson log-normal 

distribution, for very small sample sizes (n = 10), the 𝑅2̂ and 𝑅3̂ estimators showed equal and 

significantly better performance than 𝑅1̂ for weak and strong correlation coefficients, regardless 

of their directions. When strong correlation coefficients in both positive and negative directions 

( = ±0.75) were present for small sample sizes (n = 15), the 𝑅1̂ estimator outperformed 𝑅2̂ and 

𝑅3̂. However, in most cases with weak to moderate correlation coefficients ( = ±0.25, ±0.50), the 

𝑅2̂ and 𝑅3̂ estimators were equally effective and significantly better than the 𝑅1̂ estimator. For 

moderately sized samples (n = 30), the 𝑅2̂ and 𝑅3̂ estimators were equally effective and 

significantly superior to 𝑅1̂ for the majority of examined correlation coefficients. In the cases of 

large sample sizes (n = 100) with negative correlation coefficients, both 𝑅2̂ and 𝑅3̂ were equally 

effective and significantly better than 𝑅1̂. However, with positive correlation coefficients, the 𝑅1̂ 

estimator significantly outperformed both the 𝑅2̂ and 𝑅3̂ estimators. In populations with a 

bivariate Cauchy distribution, the 𝑅1̂ estimator shows robust performance compared to the 𝑅2̂ 

and 𝑅3̂ estimators, across all sample sizes and correlation coefficients examined. 

 The authors suggest further studies on populations with different distributions, such as 

bivariate gamma distributions. The performance of the estimators can also be compared to other 

distribution conditions, such as coefficient of variation, kurtosis, skewness, and additional ratio 

estimators, as well as by increasing the correlation coefficient level. For example, exploring 
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scenarios where the correlation coefficient approaches one or zero or investigating ratio 

estimators derived from alternative sampling methods like stratified or successive sampling 

could be valuable areas for future research. 
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