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Abstract. This work is based on the ideas of L. Somer and M. Krizek, On a connection of Number theory with Graph

theory. In this work, we introduce the concept of Universal directed graph Un and we also define the complement of

the digraph Γ(n, 2). We study some relations between the digraph Γ(n, 2) and its complement digraph Γ(n, 2) in terms

of degree of a vertex and directed arcs. A result for the number of fixed points in the digraph Γ(n, 2) is established. We

also established some results on the degree of a vertex w. r. t. a subset of the vertex set of the digraphs Γ(n, 2) and

Γ(n, 2).

1. Introduction

In the last few years establishing the relationship between Graph theory, Group theory, and

number theory became an interesting topic, for example, see [1–4, 6, 7, 9–12, 14]. In this article, let

Zn = {0, 1, 2, . . . , n− 1} denote the complete set of residues modulo n, which forms a commutative

ring under addition and multiplication modulo n. For each positive integer n, a power digraph

modulo n denoted by Γ(n, 2) is a digraph with vertex set Zn = {0, 1, 2, . . . , n − 1} and the ordered

pair (x, y) is a directed arc of Γ(n, 2) from x to y if and only if x2
≡ y(mod n), where x, y ∈ Zn.

In [1, 3, 5, 8, 10–12] some properties of the digraph Γ(n, 2) were investigated.

In this paper, we define universal directed graph and complement of the digraph Γ(n, 2). We

study some properties of the degree of a vertex and directed arcs of the digraph Γ(n, 2) and its

complement digraph Γ(n, 2). Also, we study the degree of a vertex w. r. t. a subset of the vertex

set of the digraph Γ(n, 2) and its complement digraph. We organize our paper as follows:

In section 2, we provide some definitions and basic results. In section 3, we define universal

directed graph and in section 4, we define the complement of the digraph Γ(n, 2) and establish
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some relations between the digraph Γ(n, 2) and its complement digraph Γ(n, 2) using the definition

of degree of a vertex and directed arcs. A result for the number of fixed points in the digraph

Γ(n, 2) is also established. Finally, in section 5, we established some results on the degree of a

vertex w. r. t. a subset of the vertex set of the digraphs Γ(n, 2) and Γ(n, 2).

2. Preliminaries

For a positive integer n, we consider a directed graph Γ(n, 2) whose vertex set is Zn and any

two vertices x, y ∈ Zn are connected by exactly one directed arc from x to y iff

x2
≡ y(mod n).

We denote the vertex set and arc set of the digraph Γ(n, 2) by V(Γ) (= Zn) and A(Γ) respectively.

The distinct vertices v1, v2, v3, . . . , vt in V(Γ) will form a cycle of length t if

v1
2
≡ v2(mod n)

v2
2
≡ v3(mod n)

v3
2
≡ v4(mod n)

...

vt
2
≡ v1(mod n)

We call a cycle of length t as a t- cycle and a cycle of length 1 is named as a fixed point (or a

self-loop). A vertex is isolated if it is not connected to any other vertex in Γ(n, 2).

Theorem 2.1. [13](Szalay) The number of fixed points in Γ(n, 2) is 2ω(n), whereω(n) denotes the number
of distinct primes dividing n.

The in-degree of a vertex v ∈ V(Γ), denoted by d−Γ (v) is the number of directed arcs incident

into the vertex v and the out-degree of a vertex v, denoted by d+Γ (v) is the number of directed arcs

incident out of the vertex v. Since the residue of a number modulo n is unique, so d+Γ (v) = 1 and

d−Γ (v) ≥ 0 for each vertex v ∈ V(Γ). Also, for an isolated fixed point v ∈ V(Γ) , d+Γ (v) = d−Γ (v) = 1.

The total degree (or simply degree) of a vertex v ∈ V(Γ), denoted by dΓ(v) is the sum of out-degree

and in-degree of v i.e., dΓ(v) = d+Γ (v) + d−Γ (v).
If d+Γ (v) = d−Γ (v) for every vertex v ∈ V(Γ), then the digraph Γ(n, 2) is said to be an isodigraph

(mod n) or balanced digraph (mod n) and if d+Γ (v) = d−Γ (v) = k for every vertex v ∈ V(Γ), then the

digraph Γ(n, 2) is said to be a regular graph of degree k (or k-regular digraph).

A component of a digraph is a subdigraph which is a maximal connected subgraph of the

associated nondirected graph. As the outdegree of each vertex of the digraph Γ(n, 2) is equal to

1, so the number of components of Γ(n, 2) is equal to the number of all cycles. The cycles may or

may not be isolated.

From definition of Γ(n, 2), it is clear that |A(Γ)| = n. Since, the number of arcs in a directed

graph is equal to the number of their tails (or their heads), we have the following theorem.

Theorem 2.2. [15] (Handshaking theorem) In the digraph Γ(n, 2),
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v∈ V(Γ) d+Γ (v) =

∑
v∈ V(Γ) d−Γ (v) = |A(Γ)|

A directed walk in a digraph D is an alternating sequence v1, e1, v2, e2, v3, . . . , en−1, vn of vertices

and arcs in which each arc ei is vivi+1. A directed path is a walk in which all vertices are distinct.

If there is a directed path from a vertex u to a vertex v, then v is said to be reachable from u.

In a digraph D, a semi-walk is an alternating sequence v1, e1, v2, e2, v3, . . . , en−1, vn of vertices and

arcs in which each arc ei may be either vivi+1 or vi+1vi. A semi-path is a semi-walk in which all

vertices are distinct.

A digraph is strongly connected (or strong) if every two vertices are mutually reachable. A

digraph is unilaterally connected (or unilateral) if for any two vertices at least one is reachable

from the other. A digraph is weakly connected (or weak) if every two vertices are joined by a

semi-path.

Every strongly connected (or strong) digraph is unilateral digraph and every unilateral digraph

is weak. But the converse statements are not true.

A digraph is disconnected if it is not even weak.

Note 2.1. From the definition of the digraph Γ(n, 2), it is clear that Γ(n, 2) is a disconnected graph, and the
components of Γ(n, 2) are weakly connected.

Definition 2.1. [15] A simple digraph D =(V(D), A(D)) is said to be a Complete symmetric digraph (or
simply complete) if both directed arcs uv and vu ∈ A(D), for all u, v ∈ V(D). It is denoted by Kn

∗. The
number of arcs in Kn

∗ is n(n− 1).

3. Universal directed graph Un

Definition 3.1. We define a Universal directed graph (or Universal digraph) as a complete symmetric
digraph with self-loops at each vertex. We denote a universal directed graph having n vertices by Un.

Figure 1. Universal directed graph U5
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Some observations:

i. The number of vertices in Un is n i.e. |V(Un)| = n.

ii. The number of directed arcs in Un is n2 i.e. |A(Un)| = n2.

iii. The number of self-loops (or fixed points) in Un is n.

iv. Indeg (v) = Outdeg (v) = n, for all v ∈ V(Un).

v. Un is a balanced digraph.

vi. Un is a n-regular digraph.

vii. Un is a strongly connected digraph.

4. Complement digraph Γ(n, 2)

Definition 4.1. We define the complement of the digraph Γ(n, 2) denoted by Γ(n, 2) as the digraph having
the same vertex set V(Γ(n, 2)) as of Γ(n, 2) and there will be a directed arc from x to y in Γ(n, 2) iff
x2 . y(mod n), where x, y ∈ V(Γ(n, 2)).

Figure 2. Digraph Γ(5, 2) and its complement digraph Γ(5, 2)

Some observations:

i. V(Γ) = V(Γ)

ii. A(Γ) = A(Un) −A(Γ)

iii. Γ(n, 2)∪ Γ(n, 2) = Un

iv. |A(Γ)|+ |A(Γ)| = |A(Un)| = n2

v. Γ(n, 2) is not necessarily a balanced digraph.

In the digraph Γ(n, 2), we denote the in-degree, the out-degree, and the total degree (or degree)

of a vertex v ∈ V(Γ) by d−
Γ
(v), d+

Γ
(v) and dΓ(v) respectively.

We now try to establish some results between the degree of a vertex of the digraph Γ(n, 2) and

its complement digraph Γ(n, 2). Also, we try to establish some results on the directed arcs of the

digraphs Γ(n, 2) and Γ(n, 2).

Theorem 4.1. d−Γ (v) + d−
Γ
(v) = n, for every vertex v ∈ V(Γ).
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Proof. Let d−Γ (v) = k, then there is k number of directed arcs coming into v in Γ and so by definition

of Γ(n, 2), there will be (n− k) number of arcs coming into v in Γ(n, 2) giving d−
Γ
(v) = n− k Thus,

d−Γ (v) + d−
Γ
(v) = k + (n− k) = n. �

Theorem 4.2. d+Γ (v) + d+
Γ
(v) = n, for every vertex v ∈ V(Γ).

Proof. The proof is straightforward using the definition. �

Theorem 4.3. dΓ(v) + dΓ(v) = 2n, for every vertex v ∈ V(Γ).

Proof. we have,

dΓ(v) + dΓ(v) = (d+Γ (v) + d−Γ (v)) + (d+
Γ
(v) + d−

Γ
(v))

= (d+Γ (v) + d+
Γ
(v)) + (d−Γ (v) + d−

Γ
(v))

= n + n [By Theorem 4.1 and Theorem 4.2]

= 2n.

�

Theorem 4.4. In Γ(n, 2), the outdegree of each vertex is (n− 1) i.e. d+
Γ
(v) = n− 1, for any v ∈ V(Γ).

Proof. In Γ(n, 2), we have d+Γ (v) = 1, for any v ∈ V(Γ). Also, by using Theorem 4.2 we get

d+Γ (v) + d+
Γ
(v) = n

⇒ d+
Γ
(v) = n− d+Γ (v)

⇒ d+
Γ
(v) = n− 1.

�

Theorem 4.5. The degree of a vertex of the graph Γ(n, 2) can not exceed (2n− 1).

Proof. For any vertex v ∈ Γ(n, 2), d+Γ (v) = 1 and d−Γ (v) ≥ 0.

So, d+
Γ
(v) = n− 1 and d−

Γ
(v) ≤ n and

we have,

dΓ(v) = d+
Γ
(v) + d−

Γ
(v)

≤ (n− 1) + n

= 2n− 1

Thus, d+Γ (v) ≤ (2n− 1). �

Theorem 4.6. In the digraph Γ(n, 2),
∑n

i=1 dΓ(vi) = 2n ; vi ∈ V(Γ).
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Proof. By the Handshaking theorem, we have

n∑
i=1

d+Γ (vi) =
n∑

i=1

d−Γ (vi) = |A(Γ)|

⇒

n∑
i=1

d+Γ (vi) +
n∑

i=1

d−Γ (vi) = 2n, where |A(Γ)| = n

⇒

n∑
i=1

(d+Γ (vi) + d−Γ (vi)) = 2n

⇒

n∑
i=1

dΓ(vi) = 2n

�

Theorem 4.7. The number of directed arcs in the digraph Γ(n, 2) is n2
− n .

Proof. Let, v1, v2, v3, . . . , vn ∈ V(Γ). By Handshaking theorem, we have

n∑
i=1

d+
Γ
(vi) =

n∑
i=1

d−
Γ
(vi) = a, where|A(Γ)| = a

⇒

n∑
i=1

d+
Γ
(vi) +

n∑
i=1

d−
Γ
(vi) = 2a

⇒

n∑
i=1

(d+
Γ
(vi) + d−

Γ
(vi)) = 2a

⇒

n∑
i=1

dΓ(vi) = 2a

⇒

n∑
i=1

(2n− dΓ(vi)) = 2a [By Theorem 4.3]

⇒ n · 2n−
n∑

i=1

dΓ(vi) = 2a

⇒ 2n2
− 2n = 2a [By Theorem 4.6]

⇒ a = n2
− n

i.e. |A(Γ)| = n2
− n.

�

Corollary 4.1. In Γ(n, 2),
∑n

i=1 dΓ(vi) = 2(n2
− n).

Corollary 4.2. |A(Γ)|+ |A(Γ)| = n2.

Theorem 4.8. The number of fixed points in Γ(n, 2) is n− 2ω(n).
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Proof. By Theorem 2.1, the number of fixed points in Γ(n, 2) is 2ω(n). So, there are n− 2ω(n) number

of points in Γ(n, 2) which are not fixed points. By definition of Γ(n, 2), the points which are not

fixed points in Γ(n, 2) are fixed points in Γ(n, 2). Therefore, number of fixed points in Γ(n, 2) is

n− 2ω(n). �

Theorem 4.9. The digraph Γ(n, 2) is strongly connected.

Proof. From the definition of the digraph Γ(n, 2), it is clear that the digraph Γ(n, 2) is disconnected

and V(Γ) = V(Γ). Let u and v be any two distinct vertices in V(Γ). Then u, v ∈ V(Γ). As the

digraph Γ(n, 2) is disconnected so there must exist at least two components C1 and C2 (say) with

the following two cases:

Case I: Suppose, u and v are in different components and let u ∈ C1 & v ∈ C2. Then arc uv < A(Γ)

and arc vu < A(Γ). By definition of Γ, we get arc uv ∈ A(Γ) and arc vu ∈ A(Γ), which means v is

reachable from u and u is reachable from v in Γ.

Case II: Suppose, u and v are in the same component and let u, v ∈ C1. As Γ(n, 2) is disconnected

so there must exist at least one vertex w ∈ C2 such that arc uw & arc wu < A(Γ) and arc vw & arc

wv < A(Γ). By definition of Γ , we get arc uw & arc wu ∈ A(Γ) and arc vw & arc wv ∈ A(Γ) . As arc

uw & arc wv ∈ A(Γ), so v is reachable from u in Γ. Also, arc vw & arc wu ∈ A(Γ), so u is reachable

from v in Γ.

Thus, any two vertices u, v ∈ V(Γ) are reachable from one another, and hence the digraph Γ(n, 2)

is strongly connected. �

Corollary 4.3. The digraph Γ(n, 2) is unilaterally connected as well as weakly connected.

Corollary 4.4. There is no isolated fixed point in Γ(n, 2).

5. Degree with respect to a subset of the vertex set of the digraphs Γ(n, 2) and Γ(n, 2)

Let S ⊆ V(Γ). The out-degree of any vertex v ∈ V(Γ) of the digraph Γ(n, 2) with respect to S
(denoted by d+ΓS

(v)) is the number of directed arcs coming from the vertex v into a vertex of S and

the in-degree of any vertex v ∈ V(Γ) of the digraph Γ(n, 2) with respect to S (denoted by d−ΓS
(v) ) is

the number of directed arcs coming from a vertex of S into the vertex v. The degree of any vertex

v ∈ V(Γ) of the digraph Γ(n, 2) with respect to S (denoted by dΓS(v)) is the sum of the out-degree

and in-degree of the vertex v w. r. t. S i.e., dΓS(v) = d+ΓS
(v) + d−ΓS

(v).

Note 5.1. d+ΓS
(v), d−ΓS

(v) and dΓS
(v) denotes the out-degree, in-degree and degree of the vertex v ∈ V(Γ)

w. r. t. the set S ⊆ V(Γ) in the digraph Γ(n, 2), where S is the complement of the set S. Similarly,
d+

ΓS
(v), d−

ΓS
(v) and dΓS

(v) denotes the out-degree, in-degree and degree of the vertex v ∈ V(Γ) w. r. t. the

set S ⊆ V(Γ) in the complement digraph Γ(n, 2) and d+
ΓS

(v), d−
ΓS

(v) and dΓS
(v) denotes the out-degree,

in-degree and degree of the vertex v ∈ V(Γ) w. r. t. the set S ⊆ V(Γ) in the digraph Γ(n, 2).

Remark 5.1. If S = φ, then d+ΓS
(v) = 0, d−ΓS

(v) = 0,∀v ∈ V(Γ).
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Remark 5.2. If S = V(Γ), then d+ΓS
(v) = d+Γ (v), d−ΓS

(v) = d−Γ (v) and dΓS(v) = dΓ(v),∀v ∈ V(Γ).

Example 5.1. Consider the digraph Γ(6, 2):

Figure 3. Digraph Γ(6, 2)

Here, V(Γ) = {0, 1, 2, 3, 4, 5}. Let S = {0, 2, 3}, then S ⊆ V(Γ) .We have,

d+ΓS
(0) = 1, d+ΓS

(1) = 0, d+ΓS
(2) = 0, d+ΓS

(3) = 1, d+ΓS
(4) = 0, d+ΓS

(5) = 0

d−ΓS
(0) = 1, d−ΓS

(1) = 0, d−ΓS
(2) = 0, d−ΓS

(3) = 1, d−ΓS
(4) = 1, d−ΓS

(5) = 0

dΓS(0) = 2, dΓS(1) = 0, dΓS(2) = 0, dΓS(3) = 2, dΓS(4) = 1, dΓS(5) = 0

Also, S = {1, 4, 5}, then S ⊆ V(Γ). We have,

d+ΓS
(0) = 0, d+ΓS

(1) = 1, d+ΓS
(2) = 1, d+ΓS

(3) = 0, d+ΓS
(4) = 1, d+ΓS

(5) = 1

d−ΓS
(0) = 0, d−ΓS

(1) = 2, d−ΓS
(2) = 0, d−ΓS

(3) = 0, d−ΓS
(4) = 1, d−ΓS

(5) = 0

dΓS
(0) = 0, dΓS

(1) = 3, dΓS
(2) = 1, dΓS

(3) = 0, dΓS
(4) = 2, dΓS

(5) = 1.

Example 5.2. Consider the digraph Γ(6, 2):

Figure 4. Complement digraph Γ(6, 2)
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Here, V(Γ) = {0, 1, 2, 3, 4, 5}. Let S = {0, 2, 3}, then S ⊆ V(Γ) . We have,

d+
ΓS
(0) = 2, d+

ΓS
(1) = 3, d+

ΓS
(2) = 3, d+

ΓS
(3) = 2, d+

ΓS
(4) = 3, d+

ΓS
(5) = 3

d−
ΓS
(0) = 2, d−

ΓS
(1) = 3, d−

ΓS
(2) = 3, d−

ΓS
(3) = 2, d−

ΓS
(4) = 2, d−

ΓS
(5) = 3

dΓS
(0) = 4, dΓS

(1) = 6, dΓS
(2) = 6, dΓS

(3) = 4, dΓS
(4) = 5, dΓS

(5) = 6.

Also, S = {1, 4, 5}, then S ⊆ V(Γ). We have,

d+
ΓS

(0) = 3, d+
ΓS

(1) = 2, d+
ΓS

(2) = 2, d+
ΓS

(3) = 3, d+
ΓS

(4) = 2, d+
ΓS

(5) = 2

d−
ΓS
(0) = 3, d−

ΓS
(1) = 1, d−

ΓS
(2) = 3, d−

ΓS
(3) = 3, d−

ΓS
(4) = 2, d−

ΓS
(5) = 3

dΓS
(0) = 6, dΓS

(1) = 3, dΓS
(2) = 5, dΓS

(3) = 6, dΓS
(4) = 4, dΓS

(5) = 5

The following results on the degree of a vertex w. r. t. a subset of the vertex set V(Γ) can be

established easily using the definition.

Theorem 5.1. For any vertex set S ⊆ V(Γ),

(i) d+ΓS
(v) ≤ d+Γ (v)

(ii) d−ΓS
(v) ≤ d−Γ (v)

(iii) dΓS(v) ≤ dΓ(v) , ∀v ∈ V

Theorem 5.2. For any vertex set S ⊆ V(Γ),

(i) d+Γ (v) = d+ΓS
(v) + d+ΓS

(v)

(ii) d−Γ (v) = d−ΓS
(v) + d−ΓS

(v)
(iii) dΓ(v) = dΓS(v) + dΓS

(v), ∀v ∈ V
where S is the complement of the set S.

Theorem 5.3. For any vertex set S ⊆ V(Γ),

(i)
∑

v∈ V(Γ) d+ΓS
(v) =

∑
v∈S d+ΓS

(v) +
∑

v∈S d+ΓS
(v)

(ii)
∑

v∈ V(Γ) d−ΓS
(v) =

∑
v∈S d−ΓS

(v) +
∑

v∈S d−ΓS
(v)

(iii)
∑

v∈ V(Γ) dΓS(v) =
∑

v∈S dΓS(v) +
∑

v∈S dΓS(v)

Theorem 5.4. For any vertex set S ⊆ V(Γ),

(i)
∑

v∈S d+ΓS
(v) =

∑
v∈S d−ΓS

(v)

(ii)
∑

v∈S d−ΓS
(v) =

∑
v∈S d+ΓS

(v)
(iii)

∑
v∈S dΓS

(v) =
∑

v∈S dΓS(v)

We now try to establish some results related to the definition of the degree of a vertex w. r. t. a

subset of the vertex set V(Γ).

Theorem 5.5. In the digraph Γ(n, 2), for any vertex set S ⊆ V(Γ)∑
v∈ V(Γ)

dΓS(v) =
∑
v∈S

dΓ(v)
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Proof. We have,∑
v∈ V(Γ)

dΓS(v) =
∑

v∈ V(Γ)

(d+ΓS
(v) + d−ΓS

(v)) [∵ dΓS(v) = d+ΓS
(v) + d−ΓS

(v)]

=
∑

v∈ V(Γ)

d+ΓS
(v) +

∑
v∈ V(Γ)

d−ΓS
(v)

=
(∑

v∈S

d+ΓS
(v) +

∑
v∈S

d+ΓS
(v)

)
+

(∑
v∈S

d−ΓS
(v) +

∑
v∈S

d−ΓS
(v)

)
[By Theorem 5.3]

=
(∑

v∈S

d+ΓS
(v) +

∑
v∈S

d+ΓS
(v)

)
+

(∑
v∈S

d−ΓS
(v) +

∑
v∈S

d−ΓS
(v)

)
[By Theorem 5.4]

=
(∑

v∈S

d+ΓS
(v) +

∑
v∈S

d−ΓS
(v)

)
+

(∑
v∈S

d+ΓS
(v) +

∑
v∈S

d−ΓS
(v)

)
=

∑
v∈S

(
d+ΓS

(v) + d−ΓS
(v)

)
+

∑
v∈S

(
d+ΓS

(v) + d−ΓS
(v)

)
=

∑
v∈S

dΓS(v) +
∑
v∈S

dΓS
(v)

=
∑
v∈S

(
dΓS(v) + dΓS

(v)
)

=
∑
v∈S

dΓ(v) [By Theorem 5.2]

�

Theorem 5.6. In the complement digraph Γ(n, 2), for any vertex set S ⊆ V(Γ)∑
v∈ V(Γ)

dΓS
(v) =

∑
v∈S

dΓ(v)

Proof. This theorem can be proved in the same way as we have proved Theorem 5.5. �

Theorem 5.7. In the digraph Γ(n, 2), for any two sets S, T ⊆ V(Γ)∑
v∈V(Γ)

dΓS∪T(v) =
∑

v∈V(Γ)

dΓS(v) +
∑

v∈V(Γ)

dΓT(v) −
∑

v∈V(Γ)

dΓS∩T(v)

Proof. We have,∑
v∈V(Γ)

dΓS∪T(v) =
∑

v∈S∪T

dΓ(v) [By Theorem 5.5]

=
∑
v∈S

dΓ(v) +
∑
v∈T

dΓ(v) −
∑

v∈S∩T

dΓ(v) [∵ |S∪ T| = |S|+ |T| − |S∩ T|]

=
∑

v∈V(Γ)

dΓS(v) +
∑

v∈V(Γ)

dΓT(v) −
∑

v∈V(Γ)

dΓS∩T(v) [By Theorem 5.5]

�
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Note 5.2. If S∩ T = φ, then ∑
v∈V(Γ)

dΓS∪T(v) =
∑

v∈V(Γ)

dΓS(v) +
∑

v∈V(Γ)

dΓT(v)

Theorem 5.8. In the complement digraph Γ(n, 2), for any two sets S, T ⊆ V(Γ)∑
v∈V(Γ)

dΓS∪T
(v) =

∑
v∈V(Γ)

dΓS
(v) +

∑
v∈V(Γ)

dΓT
(v) −

∑
v∈V(Γ)

dΓS∩T
(v)

Proof. This theorem can be proved in the same way as we have proved Theorem 5.7. �

Theorem 5.9. In the digraph Γ(n, 2), for any two sets S, T ⊆ V(Γ)∑
v∈V(Γ)

dΓS−T(v) =
∑

v∈V(Γ)

dΓS(v) −
∑

v∈V(Γ)

dΓS∩T(v)

Proof. We have, ∑
v∈V(Γ)

dΓS−T(v) =
∑

v∈S−T

dΓ(v) [By Theorem 5.5]

=
∑
v∈S

dΓ(v) −
∑

v∈S∩T

dΓ(v) (∵ |S− T| = |S| − |S∩ T|)

=
∑

v∈V(Γ)

dΓS(v) −
∑

v∈V(Γ)

dΓS∩T(v) [By Theorem 5.5]

�

Theorem 5.10. In the complement digraph Γ(n, 2), for any two sets S, T ⊆ V(Γ)∑
v∈V(Γ)

dΓS−T
(v) =

∑
v∈V(Γ)

dΓS
(v) −

∑
v∈V(Γ)

dΓS∩T
(v)

Proof. This theorem can be proved in the same way as we have proved Theorem 5.9. �

Theorem 5.11. In the digraph Γ(n, 2), for any two sets S, T ⊆ V(Γ)∑
v∈V(Γ)

dΓS∆T(v) =
∑

v∈V(Γ)

dΓS(v) +
∑

v∈V(Γ)

dΓT(v) − 2
∑

v∈V(Γ)

dΓS∩T(v)

Proof. We have,∑
v∈V(Γ)

dΓS∆T(v) =
∑

v∈S∆T

dΓ(v) [By Theorem 5.5]

=
∑

v∈S−T

dΓ(v) +
∑

v∈T−S

dΓ(v) [∵ |S∆T| = |S− T|+ |T − S|]

= (
∑
v∈S

dΓ(v) −
∑

v∈S∩T

dΓ(v)) + (
∑
v∈T

dΓ(v) −
∑

v∈S∩T

dΓ(v)) [By Theorem 5.9]

=
∑
v∈S

dΓ(v) +
∑
v∈T

dΓ(v) − 2
∑

v∈S∩T

dΓ(v)

=
∑

v∈V(Γ)

dΓS(v) +
∑

v∈V(Γ)

dΓT(v) − 2
∑

v∈V(Γ)

dΓS∩T(v) [By Theorem 5.5]
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�

Theorem 5.12. In the digraph Γ(n, 2), for any two sets S, T ⊆ V(Γ)∑
v∈V(Γ)

dΓS∆T
(v) =

∑
v∈V(Γ)

dΓS
(v) +

∑
v∈V(Γ)

dΓT
(v) − 2

∑
v∈V(Γ)

dΓS∩T
(v)

Proof. This theorem can be proved in the same way as we have proved Theorem 5.11. �

6. Conclusions

In this paper, we have defined the Universal directed graph Un, and the complement digraph

Γ(n, 2) of the digraph Γ(n, 2). We have studied the structure of Γ(n, 2) and established some results

on the degree of a vertex and directed arcs of the digraphs Γ(n, 2) and Γ(n, 2). Additionally, we

have established a formula for the number of fixed points in the digraph Γ(n, 2) and proved that

the digraph Γ(n, 2) is strongly connected. Moreover, we have obtained some results on the degree

of a vertex w. r. t. a subset of the vertex set of the digraphs Γ(n, 2) and Γ(n, 2).
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