International Journal of Analysis and Applications

Some Results on the Degree of Vertices of the Power Digraph and Its Complement

Sanjay Kumar Thakur¹ **, Pinkimani Goswami**² **, Gautam Chandra Ray**3,[∗]

¹*Department of Mathematics, CIT, Kokrajhar, Assam, India* ²*Department of Mathematics, University of Science and Technology, Meghalaya* ³*Department of Mathematics, CIT, Kokrajhar, Assam, India*

[∗]*Corresponding author:* gautomofcit@gmail.com

Abstract. This work is based on the ideas of L. Somer and M. Krizek, On a connection of Number theory with Graph theory. In this work, we introduce the concept of Universal directed graph **Un** and we also define the complement of the digraph Γ(*n*, 2). We study some relations between the digraph Γ(*n*, 2) and its complement digraph Γ(*n*, 2) in terms of degree of a vertex and directed arcs. A result for the number of fixed points in the digraph Γ(*n*, 2) is established. We also established some results on the degree of a vertex w. r. t. a subset of the vertex set of the digraphs Γ(*n*, 2) and $\overline{\Gamma(n,2)}$.

1. Introduction

In the last few years establishing the relationship between Graph theory, Group theory, and number theory became an interesting topic, for example, see [\[1](#page-11-0)[–4,](#page-11-1) [6,](#page-11-2) [7,](#page-11-3) [9–](#page-11-4)[12,](#page-11-5) [14\]](#page-11-6). In this article, let $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ denote the complete set of residues modulo *n*, which forms a commutative ring under addition and multiplication modulo *n*. For each positive integer *n*, a power digraph modulo *n* denoted by $\Gamma(n, 2)$ is a digraph with vertex set $\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}$ and the ordered pair (x, y) is a directed arc of $\Gamma(n, 2)$ from *x* to *y* if and only if $x^2 \equiv y (mod \ n)$, where $x, y \in \mathbb{Z}_n$. In [\[1,](#page-11-0) [3,](#page-11-7) [5,](#page-11-8) [8,](#page-11-9) [10–](#page-11-10)[12\]](#page-11-5) some properties of the digraph Γ(*n*, 2) were investigated.

In this paper, we define universal directed graph and complement of the digraph Γ(*n*, 2). We study some properties of the degree of a vertex and directed arcs of the digraph Γ(*n*, 2) and its complement digraph Γ(*n*, 2). Also, we study the degree of a vertex w. r. t. a subset of the vertex set of the digraph Γ(*n*, 2) and its complement digraph. We organize our paper as follows:

In section 2, we provide some definitions and basic results. In section 3, we define universal directed graph and in section 4, we define the complement of the digraph Γ(*n*, 2) and establish

Journal of
and Applic

Received: May 24, 2024.

²⁰²⁰ *Mathematics Subject Classification.* 05C20, 11A07, 11A15.

Key words and phrases. digraph; complement digraph; degree of a vertex; power digraph; fixed point.

some relations between the digraph Γ(*n*, 2) and its complement digraph Γ(*n*, 2) using the definition of degree of a vertex and directed arcs. A result for the number of fixed points in the digraph Γ(*n*, 2) is also established. Finally, in section 5, we established some results on the degree of a vertex w. r. t. a subset of the vertex set of the digraphs Γ(*n*, 2) and Γ(*n*, 2).

2. Preliminaries

For a positive integer *n*, we consider a directed graph Γ(*n*, 2) whose vertex set is **Z***ⁿ* and any two vertices *x*, *y* ∈ \mathbb{Z}_n are connected by exactly one directed arc from *x* to *y* iff

$$
x^2 \equiv y (mod\ n).
$$

We denote the vertex set and arc set of the digraph $\Gamma(n, 2)$ by $V(\Gamma)$ (= \mathbb{Z}_n) and $A(\Gamma)$ respectively. The distinct vertices $v_1, v_2, v_3, \ldots, v_t$ in $V(\Gamma)$ will form a cycle of length t if

$$
v_1^2 \equiv v_2 \pmod{n}
$$

\n
$$
v_2^2 \equiv v_3 \pmod{n}
$$

\n
$$
v_3^2 \equiv v_4 \pmod{n}
$$

\n
$$
\vdots
$$

\n
$$
v_t^2 \equiv v_1 \pmod{n}
$$

We call a cycle of length *t* as a *t*- cycle and a cycle of length 1 is named as a fixed point (or a self-loop). A vertex is isolated if it is not connected to any other vertex in $\Gamma(n, 2)$.

Theorem 2.1. [\[13\]](#page-11-11)(Szalay) The number of fixed points in $\Gamma(n,2)$ is $\,2^{\omega(n)}$, where $\omega(n)$ denotes the number *of distinct primes dividing n.*

The in-degree of a vertex $v \in V(\Gamma)$, denoted by d_{Γ}^{-} $\overline{\Gamma}(\overline{v})$ is the number of directed arcs incident into the vertex v and the out-degree of a vertex v , denoted by d_{Γ}^+ $_{\Gamma}^{+}(v)$ is the number of directed arcs incident out of the vertex *v*. Since the residue of a number modulo *n* is unique, so d_{Γ}^+ $_{\Gamma}^{+}(v)=1$ and *d* − $\Gamma(\nu) \ge 0$ for each vertex $\nu \in V(\Gamma)$. Also, for an isolated fixed point $\nu \in V(\Gamma)$, d_{Γ}^+ $f_{\Gamma}^{+}(v) = d_{\Gamma}^{-}$ $_{\Gamma}^{-}(v)=1.$ The total degree (or simply degree) of a vertex $v \in V(\Gamma)$, denoted by $d_{\Gamma}(v)$ is the sum of out-degree and in-degree of *v* i.e., $d_{\Gamma}(v) = d_{\Gamma}^+$ $f_{\Gamma}^{+}(v) + d_{\Gamma}^{-}$ Γ (*v*).

If d_{Γ}^+ $f_{\Gamma}^{+}(v) = d_{\Gamma}^{-}$ Γ (*v*) for every vertex *v* ∈ *V*(Γ), then the digraph Γ(*n*, 2) is said to be an isodigraph (mod *n*) or balanced digraph (mod *n*) and if d_{Γ}^+ $^{+}_{\Gamma}(v) = d^{-}_{\Gamma}$ $\Gamma(\mathbf{v}) = k$ for every vertex $\mathbf{v} \in V(\Gamma)$, then the digraph Γ(*n*, 2) is said to be a regular graph of degree *k* (or *k*-regular digraph).

A component of a digraph is a subdigraph which is a maximal connected subgraph of the associated nondirected graph. As the outdegree of each vertex of the digraph Γ(*n*, 2) is equal to 1, so the number of components of Γ(*n*, 2) is equal to the number of all cycles. The cycles may or may not be isolated.

From definition of $\Gamma(n, 2)$, it is clear that $|A(\Gamma)| = n$. Since, the number of arcs in a directed graph is equal to the number of their tails (or their heads), we have the following theorem.

Theorem 2.2. *[\[15\]](#page-11-12) (Handshaking theorem) In the digraph* Γ(*n*, 2)*,*

$$
\Sigma_{v \in V(\Gamma)} d_{\Gamma}^+(v) = \Sigma_{v \in V(\Gamma)} d_{\Gamma}^-(v) = |A(\Gamma)|
$$

A directed walk in a digraph D is an alternating sequence $v_1, e_1, v_2, e_2, v_3, \ldots, e_{n-1}, v_n$ of vertices and arcs in which each arc e_i is $v_i v_{i+1}$. A directed path is a walk in which all vertices are distinct. If there is a directed path from a vertex *u* to a vertex *v*, then *v* is said to be reachable from *u*.

In a digraph D, a semi-walk is an alternating sequence $v_1, e_1, v_2, e_2, v_3, \ldots, e_{n-1}, v_n$ of vertices and arcs in which each arc *eⁱ* may be either *vivi*+¹ or *vi*+1*vⁱ* . A semi-path is a semi-walk in which all vertices are distinct.

A digraph is strongly connected (or strong) if every two vertices are mutually reachable. A digraph is unilaterally connected (or unilateral) if for any two vertices at least one is reachable from the other. A digraph is weakly connected (or weak) if every two vertices are joined by a semi-path.

Every strongly connected (or strong) digraph is unilateral digraph and every unilateral digraph is weak. But the converse statements are not true.

A digraph is disconnected if it is not even weak.

Note 2.1. *From the definition of the digraph* Γ(*n*, 2)*, it is clear that* Γ(*n*, 2) *is a disconnected graph, and the components of* $\Gamma(n, 2)$ *are weakly connected.*

Definition 2.1. *[\[15\]](#page-11-12) A simple digraph D* =*(V(D), A(D)) is said to be a Complete symmetric digraph (or simply complete) if both directed arcs uv and* $vu \in A(D)$ *, for all* $u, v \in V(D)$ *. It is denoted by* K_n^* *. The number of arcs in* K_n^* *is* $n(n-1)$ *.*

3. Universal directed graph **Uⁿ**

Definition 3.1. *We define a Universal directed graph (or Universal digraph) as a complete symmetric digraph with self-loops at each vertex. We denote a universal directed graph having n vertices by* **Un***.*

Figure 1. Universal directed graph **U⁵**

Some observations:

- i. The number of vertices in U_n is *n* i.e. $|V(U_n)| = n$.
- ii. The number of directed arcs in U_n is n^2 i.e. $|A(U_n)| = n^2$.
- iii. The number of self-loops (or fixed points) in **Uⁿ** is *n*.
- iv. Indeg (v) = Outdeg (v) = *n*, for all $v \in V(U_n)$.
- v. **Uⁿ** is a balanced digraph.
- vi. **Uⁿ** is a *n*-regular digraph.
- vii. **Uⁿ** is a strongly connected digraph.

4. Complement digraph Γ(*n*, 2)

Definition 4.1. We define the complement of the digraph $\Gamma(n, 2)$ denoted by $\overline{\Gamma(n, 2)}$ as the digraph having *the same vertex set* $V(\Gamma(n,2))$ *as of* $\Gamma(n,2)$ *and there will be a directed arc from x to y in* $\Gamma(n,2)$ *iff* $x^2 \neq y \pmod{n}$, where $x, y \in V(\Gamma(n, 2))$.

FIGURE 2. Digraph $\Gamma(5,2)$ and its complement digraph $\Gamma(5,2)$

Some observations:

- i. $V(\Gamma) = V(\overline{\Gamma})$
- ii. $A(\overline{\Gamma}) = A(\mathbf{U}_n) A(\Gamma)$
- iii. $\Gamma(n, 2) \cup \overline{\Gamma(n, 2)} = U_n$
- iv. $|A(\Gamma)| + |A(\overline{\Gamma})| = |A(\mathbf{U}_n)| = n^2$
- v. Γ(*n*, 2) is not necessarily a balanced digraph.

In the digraph $\Gamma(n,2)$, we denote the in-degree, the out-degree, and the total degree (or degree) of a vertex $v \in V(\overline{\Gamma})$ by $d_{\overline{\Gamma}}^ \frac{1}{\Gamma}$ (*v*), $d\frac{1}{\Gamma}$ $\frac{1}{\Gamma}(v)$ and $d_{\overline{\Gamma}}(v)$ respectively.

We now try to establish some results between the degree of a vertex of the digraph Γ(*n*, 2) and its complement digraph Γ(*n*, 2). Also, we try to establish some results on the directed arcs of the digraphs $\Gamma(n, 2)$ and $\Gamma(n, 2)$.

Theorem 4.1. $d_{\Gamma}^ T^{-}(v) + d^{-}_{\overline{\Gamma}}$ $\frac{1}{\Gamma}$ (*v*) = *n*, for every vertex $v \in V(\Gamma)$. *Proof.* Let *d* − $\Gamma_{\Gamma}(v) = k$, then there is *k* number of directed arcs coming into *v* in Γ and so by definition of $\overline{\Gamma(n,2)}$, there will be $(n-k)$ number of arcs coming into *v* in $\overline{\Gamma(n,2)}$ giving $d_{\overline{n}}$ $\frac{1}{\Gamma}$ (*v*) = *n* – *k* Thus, d^-_{Γ} $T_{\Gamma}^{-}(v) + d_{\overline{\Gamma}}^{-}$ $\frac{1}{\Gamma}(v) = k + (n - k) = n.$

Theorem 4.2. d_{Γ}^+ $^{+}_{\Gamma}(v) + d^{+}_{\overline{\Gamma}}$ $\frac{1}{\Gamma}(v) = n$, for every vertex $v \in V(\Gamma)$.

Proof. The proof is straightforward using the definition.

Theorem 4.3. $d_{\Gamma}(v) + d_{\overline{\Gamma}}(v) = 2n$, for every vertex $v \in V(\Gamma)$.

Proof. we have,

$$
d_{\Gamma}(v) + d_{\overline{\Gamma}}(v) = (d_{\Gamma}^{+}(v) + d_{\Gamma}^{-}(v)) + (d_{\overline{\Gamma}}^{+}(v) + d_{\overline{\Gamma}}^{-}(v))
$$

= $(d_{\Gamma}^{+}(v) + d_{\overline{\Gamma}}^{+}(v)) + (d_{\Gamma}^{-}(v) + d_{\overline{\Gamma}}^{-}(v))$
= $n + n$ [By Theorem 4.1 and Theorem 4.2]
= 2n.

Theorem 4.4. In $\overline{\Gamma(n,2)}$, the outdegree of each vertex is $(n-1)$ i.e. $d_{\overline{\Gamma}}^+(v) = n-1$, for any $v \in V(\overline{\Gamma})$.

Proof. In $\Gamma(n, 2)$, we have d_{Γ}^+ $T_{\Gamma}^+(v) = 1$, for any $v \in V(\Gamma)$. Also, by using Theorem [4.2](#page-4-0) we get

$$
d_{\Gamma}^{+}(v) + d_{\overline{\Gamma}}^{+}(v) = n
$$

\n
$$
\Rightarrow d_{\overline{\Gamma}}^{+}(v) = n - d_{\Gamma}^{+}(v)
$$

\n
$$
\Rightarrow d_{\overline{\Gamma}}^{+}(v) = n - 1.
$$

Theorem 4.5. *The degree of a vertex of the graph* $\overline{\Gamma(n,2)}$ *can not exceed* $(2n - 1)$ *.*

Proof. For any vertex $v \in \Gamma(n, 2)$, d_{Γ}^+ $T_{\Gamma}^+(v) = 1$ and $d_{\Gamma}^ ⁻⁄_Γ(v) ≥ 0.$ </sup> So, $d_{\overline{n}}^+$ $\frac{1}{\Gamma}$ (*v*) = *n* – 1 and $d_{\overline{\Gamma}}$ $\frac{1}{\Gamma}$ (*v*) $\leq n$ and we have,

$$
d_{\overline{\Gamma}}(v) = d_{\overline{\Gamma}}^+(v) + d_{\overline{\Gamma}}^-(v)
$$

\n
$$
\leq (n-1) + n
$$

\n
$$
= 2n - 1
$$

Thus, d_{Γ}^+ $T(T) \le (2n-1).$

Theorem 4.6. In the digraph $\Gamma(n, 2)$, $\sum_{i=1}^{n} d_{\Gamma}(v_i) = 2n$; $v_i \in V(\Gamma)$.

Proof. By the Handshaking theorem, we have

$$
\sum_{i=1}^{n} d_{\Gamma}^{+}(v_{i}) = \sum_{i=1}^{n} d_{\Gamma}^{-}(v_{i}) = |A(\Gamma)|
$$

\n
$$
\Rightarrow \sum_{i=1}^{n} d_{\Gamma}^{+}(v_{i}) + \sum_{i=1}^{n} d_{\Gamma}^{-}(v_{i}) = 2n, \text{ where } |A(\Gamma)| = n
$$

\n
$$
\Rightarrow \sum_{i=1}^{n} (d_{\Gamma}^{+}(v_{i}) + d_{\Gamma}^{-}(v_{i})) = 2n
$$

\n
$$
\Rightarrow \sum_{i=1}^{n} d_{\Gamma}(v_{i}) = 2n
$$

Theorem 4.7. *The number of directed arcs in the digraph* $\overline{\Gamma(n,2)}$ *is* $n^2 - n$.

Proof. Let, $v_1, v_2, v_3, \ldots, v_n \in V(\overline{\Gamma})$. By Handshaking theorem, we have

$$
\sum_{i=1}^{n} d_{\overline{\Gamma}}^{+}(v_i) = \sum_{i=1}^{n} d_{\overline{\Gamma}}^{-}(v_i) = a, \text{ where } |A(\overline{\Gamma})| = a
$$

\n
$$
\Rightarrow \sum_{i=1}^{n} d_{\overline{\Gamma}}^{+}(v_i) + \sum_{i=1}^{n} d_{\overline{\Gamma}}^{-}(v_i) = 2a
$$

\n
$$
\Rightarrow \sum_{i=1}^{n} (d_{\overline{\Gamma}}^{+}(v_i) + d_{\overline{\Gamma}}^{-}(v_i)) = 2a
$$

\n
$$
\Rightarrow \sum_{i=1}^{n} d_{\overline{\Gamma}}(v_i) = 2a
$$

\n
$$
\Rightarrow \sum_{i=1}^{n} (2n - d_{\Gamma}(v_i)) = 2a \text{ [By Theorem 4.3]}
$$

\n
$$
\Rightarrow n \cdot 2n - \sum_{i=1}^{n} d_{\Gamma}(v_i) = 2a
$$

\n
$$
\Rightarrow 2n^2 - 2n = 2a \text{ [By Theorem 4.6]}
$$

\n
$$
\Rightarrow a = n^2 - n
$$

\ni.e. $|A(\overline{\Gamma})| = n^2 - n$.

Corollary 4.1. *In* $\overline{\Gamma(n, 2)}$, $\sum_{i=1}^{n} d_{\overline{\Gamma}}(v_i) = 2(n^2 - n)$ *.* **Corollary 4.2.** $|A(\Gamma)| + |A(\overline{\Gamma})| = n^2$.

Theorem 4.8. *The number of fixed points in* $\overline{\Gamma(n,2)}$ *is* $n-2^{\omega(n)}$ *.*

 \Box

Proof. By Theorem [2.1,](#page-1-0) the number of fixed points in $\Gamma(n,2)$ is 2^{ω(*n*)}. So, there are *n* − 2^{ω(*n*)} number of points in Γ(*n*, 2) which are not fixed points. By definition of Γ(*n*, 2), the points which are not fixed points in $\Gamma(n, 2)$ are fixed points in $\Gamma(n, 2)$. Therefore, number of fixed points in $\Gamma(n, 2)$ is $n-2^{\omega(n)}$. The contract of the contract
The contract of the contract o

Theorem 4.9. *The digraph* Γ(*n*, 2) *is strongly connected.*

Proof. From the definition of the digraph Γ(*n*, 2), it is clear that the digraph Γ(*n*, 2) is disconnected and $V(\Gamma) = V(\overline{\Gamma})$. Let *u* and *v* be any two distinct vertices in $V(\overline{\Gamma})$. Then $u, v \in V(\Gamma)$. As the digraph Γ(*n*, 2) is disconnected so there must exist at least two components *C*¹ and *C*² (say) with the following two cases:

Case I: Suppose, *u* and *v* are in different components and let $u \in C_1 \& v \in C_2$. Then arc $uv \notin A(\Gamma)$ and arc *vu* $\notin A(\Gamma)$. By definition of $\overline{\Gamma}$, we get arc $uv \in A(\overline{\Gamma})$ and arc $vu \in A(\overline{\Gamma})$, which means *v* is reachable from *u* and *u* is reachable from *v* in $\overline{\Gamma}$.

Case II: Suppose, *u* and *v* are in the same component and let $u, v \in C_1$. As $\Gamma(n, 2)$ is disconnected so there must exist at least one vertex *w* ∈ *C*² such that arc *uw* & arc *wu* < *A*(Γ) and arc *vw* & arc *wv* $\notin A(\Gamma)$. By definition of $\overline{\Gamma}$, we get arc *uw* & arc *wu* $\in A(\overline{\Gamma})$ and arc *vw* & arc *wv* $\in A(\overline{\Gamma})$. As arc *uw* & arc *wv* ∈ *A*(Γ), so *v* is reachable from *u* in Γ. Also, arc *vw* & arc *wu* ∈ *A*(Γ), so *u* is reachable from v in $\overline{\Gamma}$.

Thus, any two vertices $u, v \in V(\overline{\Gamma})$ are reachable from one another, and hence the digraph $\overline{\Gamma(n, 2)}$ is strongly connected.

Corollary 4.3. *The digraph* Γ(*n*, 2) *is unilaterally connected as well as weakly connected.*

Corollary 4.4. *There is no isolated fixed point in* $\Gamma(n, 2)$ *.*

5. DEGREE WITH RESPECT TO A SUBSET OF THE VERTEX SET OF THE DIGRAPHS $\Gamma(n, 2)$ and $\overline{\Gamma(n, 2)}$

Let *S* \subseteq *V*(Γ). The out-degree of any vertex $v \in V(\Gamma)$ of the digraph $\Gamma(n, 2)$ with respect to *S* (denoted by d_{Γ}^+ $T^{\text{F}}_{\text{S}}(v)$) is the number of directed arcs coming from the vertex *v* into a vertex of *S* and the in-degree of any vertex $v \in V(\Gamma)$ of the digraph $\Gamma(n, 2)$ with respect to *S* (denoted by d_{Γ}^{-} $\frac{1}{\Gamma_S}(v)$) is the number of directed arcs coming from a vertex of *S* into the vertex *v*. The degree of any vertex $v \in V(\Gamma)$ of the digraph $\Gamma(n, 2)$ with respect to *S* (denoted by $d_{\Gamma_S}(v)$) is the sum of the out-degree and in-degree of the vertex v w. r. t. *S* i.e., $d_{\Gamma_S}(v) = d_{\Gamma_S}^+$ $^{+}_{\Gamma_{S}}(v) + d^{-}_{\Gamma_{S}}$ Γ*S* (*v*).

Note 5.1. d_{Γ}^+ $^{+}_{\Gamma_{\overline{S}}}(\overline{v})$, $d_{\Gamma}^ T_{\overline{S}}(v)$ and $d_{\Gamma_{\overline{S}}}(v)$ denotes the out-degree, in-degree and degree of the vertex $v \in V(\Gamma)$ *w. r. t. the set* $\overline{S} \subseteq V(\Gamma)$ *in the digraph* $\Gamma(n, 2)$ *, where* \overline{S} *is the complement of the set S. Similarly,* $d^+_{\overline{n}}$ $\frac{1}{\overline{\Gamma}_S}(v)$, $d_{\overline{\Gamma}_S}$ $\frac{1}{\Gamma_S}(v)$ *and* $d_{\overline{\Gamma_S}}(v)$ *denotes the out-degree, in-degree and degree of the vertex* $v\in V(\overline{\Gamma})$ *<i>w. r. t. the set* $S \subseteq V(\overline{\Gamma})$ *in the complement digraph* $\overline{\Gamma(n,2)}$ *and* $d_{\overline{\Gamma}}^+$ Γ*S* (*v*), *d* − $\frac{1}{\Gamma_{\overline{S}}}(v)$ *and* $d_{\overline{\Gamma}_{\overline{S}}}(v)$ *denotes the out-degree, in-degree and degree of the vertex* $v \in V(\overline{\Gamma})$ *<i>w. r. t. the set* $\overline{S} \subseteq V(\overline{\Gamma})$ *in the digraph* $\overline{\Gamma(n, 2)}$ *.*

Remark 5.1. *If* $S = \phi$ *, then* $d_{\Gamma_S}^+(v) = 0$, $d_{\Gamma}^ \overline{\Gamma}_S(v) = 0, \forall v \in V(\Gamma).$ **Remark 5.2.** *If* $S = V(\Gamma)$ *, then* $d_{\Gamma_S}^+(v) = d_{\Gamma}^+$ Γ (*v*), *d* − $^{-}_{\Gamma_S}(v) = d^{-}_{\Gamma}$ $T(\mathbf{v})$ and $d_{\Gamma_S}(\mathbf{v}) = d_{\Gamma}(\mathbf{v})$, $\forall \mathbf{v} \in V(\Gamma)$.

Example 5.1. *Consider the digraph* $\Gamma(6, 2)$ *:*

FIGURE 3. Digraph $\Gamma(6, 2)$

Here, $V(\Gamma) = \{0, 1, 2, 3, 4, 5\}$. Let $S = \{0, 2, 3\}$, then $S \subseteq V(\Gamma)$. We have,

$$
d_{\Gamma_S}^+(0) = 1, d_{\Gamma_S}^+(1) = 0, d_{\Gamma_S}^+(2) = 0, d_{\Gamma_S}^+(3) = 1, d_{\Gamma_S}^+(4) = 0, d_{\Gamma_S}^+(5) = 0
$$

$$
d_{\Gamma_S}^-(0) = 1, d_{\Gamma_S}^-(1) = 0, d_{\Gamma_S}^-(2) = 0, d_{\Gamma_S}^-(3) = 1, d_{\Gamma_S}^-(4) = 1, d_{\Gamma_S}^-(5) = 0
$$

$$
d_{\Gamma_S}(0) = 2, d_{\Gamma_S}(1) = 0, d_{\Gamma_S}(2) = 0, d_{\Gamma_S}(3) = 2, d_{\Gamma_S}(4) = 1, d_{\Gamma_S}(5) = 0
$$

Also, $\overline{S} = \{1, 4, 5\}$, then $\overline{S} \subseteq V(\Gamma)$. We have,

$$
d^+_{\Gamma_{\overline{S}}}(0) = 0, d^+_{\Gamma_{\overline{S}}}(1) = 1, d^+_{\Gamma_{\overline{S}}}(2) = 1, d^+_{\Gamma_{\overline{S}}}(3) = 0, d^+_{\Gamma_{\overline{S}}}(4) = 1, d^+_{\Gamma_{\overline{S}}} (5) = 1
$$

$$
d^-_{\Gamma_{\overline{S}}}(0) = 0, d^-_{\Gamma_{\overline{S}}}(1) = 2, d^-_{\Gamma_{\overline{S}}}(2) = 0, d^-_{\Gamma_{\overline{S}}}(3) = 0, d^-_{\Gamma_{\overline{S}}}(4) = 1, d^-_{\Gamma_{\overline{S}}}(5) = 0
$$

$$
d_{\Gamma_{\overline{S}}}(0) = 0, d_{\Gamma_{\overline{S}}}(1) = 3, d^-_{\Gamma_{\overline{S}}}(2) = 1, d^-_{\Gamma_{\overline{S}}}(3) = 0, d^-_{\Gamma_{\overline{S}}}(4) = 2, d^-_{\Gamma_{\overline{S}}}(5) = 1.
$$

Example 5.2. *Consider the digraph* $\overline{\Gamma(6,2)}$ *:*

FIGURE 4. Complement digraph $\Gamma(6,2)$

Here, $V(\overline{\Gamma}) = \{0, 1, 2, 3, 4, 5\}$. Let $S = \{0, 2, 3\}$, then $S \subseteq V(\overline{\Gamma})$. We have,

$$
d_{\overline{\Gamma}_{S}}^{+}(0) = 2, d_{\overline{\Gamma}_{S}}^{+}(1) = 3, d_{\overline{\Gamma}_{S}}^{+}(2) = 3, d_{\overline{\Gamma}_{S}}^{+}(3) = 2, d_{\overline{\Gamma}_{S}}^{+}(4) = 3, d_{\overline{\Gamma}_{S}}^{+}(5) = 3
$$

$$
d_{\overline{\Gamma}_{S}}^{-}(0) = 2, d_{\overline{\Gamma}_{S}}^{-}(1) = 3, d_{\overline{\Gamma}_{S}}^{-}(2) = 3, d_{\overline{\Gamma}_{S}}^{-}(3) = 2, d_{\overline{\Gamma}_{S}}^{-}(4) = 2, d_{\overline{\Gamma}_{S}}^{-}(5) = 3
$$

$$
d_{\overline{\Gamma}_{S}}(0) = 4, d_{\overline{\Gamma}_{S}}(1) = 6, d_{\overline{\Gamma}_{S}}(2) = 6, d_{\overline{\Gamma}_{S}}(3) = 4, d_{\overline{\Gamma}_{S}}(4) = 5, d_{\overline{\Gamma}_{S}}(5) = 6.
$$

Also, $\overline{S} = \{1, 4, 5\}$, then $\overline{S} \subseteq V(\overline{\Gamma})$. We have,

$$
d^+_{\overline{\Gamma}_{\overline{S}}}(0) = 3, d^+_{\overline{\Gamma}_{\overline{S}}}(1) = 2, d^+_{\overline{\Gamma}_{\overline{S}}}(2) = 2, d^+_{\overline{\Gamma}_{\overline{S}}}(3) = 3, d^+_{\overline{\Gamma}_{\overline{S}}}(4) = 2, d^+_{\overline{\Gamma}_{\overline{S}}}(5) = 2
$$

$$
d^-_{\overline{\Gamma}_{\overline{S}}}(0) = 3, d^-_{\overline{\Gamma}_{\overline{S}}}(1) = 1, d^-_{\overline{\Gamma}_{\overline{S}}}(2) = 3, d^-_{\overline{\Gamma}_{\overline{S}}}(3) = 3, d^-_{\overline{\Gamma}_{\overline{S}}}(4) = 2, d^-_{\overline{\Gamma}_{\overline{S}}}(5) = 3
$$

$$
d^-_{\overline{\Gamma}_{\overline{S}}}(0) = 6, d^-_{\overline{\Gamma}_{\overline{S}}}(1) = 3, d^-_{\overline{\Gamma}_{\overline{S}}}(2) = 5, d^-_{\overline{\Gamma}_{\overline{S}}}(3) = 6, d^-_{\overline{\Gamma}_{\overline{S}}}(4) = 4, d^-_{\overline{\Gamma}_{\overline{S}}}(5) = 5
$$

The following results on the degree of a vertex w. r. t. a subset of the vertex set *V*(Γ) can be established easily using the definition.

Theorem 5.1. *For any vertex set* $S \subseteq V(\Gamma)$ *,*

(i) d_{Γ}^{+} $^{+}_{\Gamma_S}(v) \leq d^{+}_{\Gamma}$ Γ (*v*) (iii) d_{Γ}^{-} $\overline{\Gamma_S}(v) \leq d_\Gamma^-$ Γ (*v*) (iii) $d_{\Gamma_S}(v) \leq d_{\Gamma}(v)$, $\forall v \in V$

Theorem 5.2. *For any vertex set* $S \subseteq V(\Gamma)$ *,*

- (i) d_{Γ}^{+} $_{\Gamma}^{+}(v)=d_{\Gamma_{S}}^{+}% (v)=d_{\Gamma_{S}}^{+}(v)$ $^{+}_{\Gamma_{S}}(v) + d^{+}_{\Gamma_{\bar{S}}}$ $^{+}_{\Gamma_{\overline{S}}} (v)$
- (ii) $d_{\Gamma}^ T_{\Gamma}^{-}(v) = d_{\Gamma}^{-}$ $\frac{1}{\Gamma_S}(v) + d_{\Gamma}^ \frac{1}{\Gamma_{\overline{S}}}(v)$
- (iii) $d_{\Gamma}(v) = d_{\Gamma_s}(v) + d_{\Gamma_s}(v)$, $\forall v \in V$ *where S is the complement of the set S.*

Theorem 5.3. *For any vertex set* $S \subseteq V(\Gamma)$ *,*

(i) $\sum_{v \in V(\Gamma)} d_{\Gamma_v}^+$ $T_S^+(v) = \sum_{v \in S} d_{\Gamma_S}^+$ $^{+}_{\Gamma_{S}}(v) + \sum_{v \in \overline{S}} d^{+}_{\Gamma_{S}}$ $_{\Gamma_{S}}^{+}(v)$ (ii) $\sum_{v \in V(\Gamma)} d_{\Gamma}$ $\sum_{\tau_s}^{\infty} (v) = \sum_{v \in S} d_{\Gamma}^{-}$ $\sum_{\overline{\Gamma}_S}^{\overline{\Gamma}_S}(v) + \sum_{v \in \overline{S}} d_{\overline{\Gamma}_S}^{-1}$ $^{-}_{\Gamma_S}(v)$ (iii) $\sum_{v \in V(\Gamma)} d_{\Gamma_S}(v) = \sum_{v \in S} d_{\Gamma_S}(v) + \sum_{v \in \overline{S}} d_{\Gamma_S}(v)$

Theorem 5.4. *For any vertex set* $S \subseteq V(\Gamma)$ *,*

(i) $\sum_{v \in S} d_{\Gamma_{z}}^{+}$ $\frac{1}{\Gamma_{\overline{S}}}(v) = \sum_{v \in \overline{S}} d_{\Gamma}^ _{\Gamma_{S}}^{-}(\mathcal{v})$ (ii) $\sum_{v \in S} d_{\Gamma}^ \frac{1}{\Gamma_{\overline{S}}}(v) = \sum_{v \in \overline{S}} d_{\Gamma_{S}}^+$ $_{\Gamma_{S}}^{+}(v)$ (iii) $\sum_{v \in S} d_{\Gamma_{\overline{S}}}(v) = \sum_{v \in \overline{S}} d_{\Gamma_{S}}(v)$

We now try to establish some results related to the definition of the degree of a vertex w. r. t. a subset of the vertex set $V(\Gamma)$.

Theorem 5.5. *In the digraph* $\Gamma(n, 2)$ *, for any vertex set* $S \subseteq V(\Gamma)$

$$
\sum_{v \in V(\Gamma)} d_{\Gamma_S}(v) = \sum_{v \in S} d_{\Gamma}(v)
$$

Proof. We have,

$$
\sum_{v \in V(\Gamma)} d_{\Gamma_{S}}(v) = \sum_{v \in V(\Gamma)} (d_{\Gamma_{S}}^{+}(v) + d_{\Gamma_{S}}^{-}(v)) [\because d_{\Gamma_{S}}(v) = d_{\Gamma_{S}}^{+}(v) + d_{\Gamma_{S}}^{-}(v)]
$$
\n
$$
= \sum_{v \in V(\Gamma)} d_{\Gamma_{S}}^{+}(v) + \sum_{v \in V(\Gamma)} d_{\Gamma_{S}}^{-}(v)
$$
\n
$$
= \left(\sum_{v \in S} d_{\Gamma_{S}}^{+}(v) + \sum_{v \in \overline{S}} d_{\Gamma_{S}}^{+}(v) \right) + \left(\sum_{v \in S} d_{\Gamma_{S}}^{-}(v) + \sum_{v \in \overline{S}} d_{\Gamma_{S}}^{-}(v) \right) [\text{By Theorem 5.3}]
$$
\n
$$
= \left(\sum_{v \in S} d_{\Gamma_{S}}^{+}(v) + \sum_{v \in S} d_{\Gamma_{S}}^{+}(v) \right) + \left(\sum_{v \in S} d_{\Gamma_{S}}^{-}(v) + \sum_{v \in S} d_{\Gamma_{S}}^{-}(v) \right) [\text{By Theorem 5.4}]
$$
\n
$$
= \left(\sum_{v \in S} d_{\Gamma_{S}}^{+}(v) + \sum_{v \in S} d_{\Gamma_{S}}^{-}(v) \right) + \left(\sum_{v \in S} d_{\Gamma_{S}}^{+}(v) + \sum_{v \in S} d_{\Gamma_{S}}^{-}(v) \right)
$$
\n
$$
= \sum_{v \in S} (d_{\Gamma_{S}}(v) + d_{\Gamma_{S}}^{-}(v) + \sum_{v \in S} d_{\Gamma_{S}}^{-}(v)
$$
\n
$$
= \sum_{v \in S} d_{\Gamma_{S}}(v) + \sum_{v \in S} d_{\Gamma_{S}}^{-}(v)
$$
\n
$$
= \sum_{v \in S} (d_{\Gamma_{S}}(v) + d_{\Gamma_{S}}^{-}(v))
$$
\n
$$
= \sum_{v \in S} d_{\Gamma}(v) [\text{By Theorem 5.2}]
$$

Theorem 5.6. *In the complement digraph* $\overline{\Gamma(n,2)}$ *, for any vertex set* $S \subseteq V(\overline{\Gamma})$

$$
\sum_{v \in V(\overline{\Gamma})} d_{\overline{\Gamma}_S}(v) = \sum_{v \in S} d_{\overline{\Gamma}}(v)
$$

Proof. This theorem can be proved in the same way as we have proved Theorem [5.5.](#page-8-3)

Theorem 5.7. *In the digraph* $\Gamma(n, 2)$ *, for any two sets* $S, T \subseteq V(\Gamma)$

$$
\sum_{v \in V(\Gamma)} d_{\Gamma_{S \cup T}}(v) = \sum_{v \in V(\Gamma)} d_{\Gamma_S}(v) + \sum_{v \in V(\Gamma)} d_{\Gamma_T}(v) - \sum_{v \in V(\Gamma)} d_{\Gamma_{S \cap T}}(v)
$$

Proof. We have,

$$
\sum_{v \in V(\Gamma)} d_{\Gamma_{S \cup T}}(v) = \sum_{v \in S \cup T} d_{\Gamma}(v) \text{ [By Theorem 5.5]}
$$
\n
$$
= \sum_{v \in S} d_{\Gamma}(v) + \sum_{v \in T} d_{\Gamma}(v) - \sum_{v \in S \cap T} d_{\Gamma}(v) \text{ } [\because |S \cup T| = |S| + |T| - |S \cap T|]
$$
\n
$$
= \sum_{v \in V(\Gamma)} d_{\Gamma_{S}}(v) + \sum_{v \in V(\Gamma)} d_{\Gamma_{T}}(v) - \sum_{v \in V(\Gamma)} d_{\Gamma_{S \cap T}}(v) \text{ [By Theorem 5.5]}
$$

Note 5.2. *If* $S \cap T = \phi$ *, then*

$$
\sum_{v \in V(\Gamma)} d_{\Gamma_{S \cup T}}(v) = \sum_{v \in V(\Gamma)} d_{\Gamma_S}(v) + \sum_{v \in V(\Gamma)} d_{\Gamma_T}(v)
$$

Theorem 5.8. *In the complement digraph* $\overline{\Gamma(n,2)}$ *, for any two sets* $S, T \subseteq V(\overline{\Gamma})$

$$
\sum_{v \in V(\overline{\Gamma})} d_{\overline{\Gamma}_{S \cup T}}(v) = \sum_{v \in V(\overline{\Gamma})} d_{\overline{\Gamma}_S}(v) + \sum_{v \in V(\overline{\Gamma})} d_{\overline{\Gamma}_T}(v) - \sum_{v \in V(\overline{\Gamma})} d_{\overline{\Gamma}_{S \cap T}}(v)
$$

Proof. This theorem can be proved in the same way as we have proved Theorem [5.7.](#page-9-0)

Theorem 5.9. *In the digraph* $\Gamma(n, 2)$ *, for any two sets* $S, T \subseteq V(\Gamma)$

$$
\sum_{v \in V(\Gamma)} d_{\Gamma_{S-T}}(v) = \sum_{v \in V(\Gamma)} d_{\Gamma_S}(v) - \sum_{v \in V(\Gamma)} d_{\Gamma_{S \cap T}}(v)
$$

Proof. We have,

$$
\sum_{v \in V(\Gamma)} d_{\Gamma_{S-T}}(v) = \sum_{v \in S-T} d_{\Gamma}(v) \text{ [By Theorem 5.5]}
$$

$$
= \sum_{v \in S} d_{\Gamma}(v) - \sum_{v \in S \cap T} d_{\Gamma}(v) \quad (\because |S - T| = |S| - |S \cap T|)
$$

$$
= \sum_{v \in V(\Gamma)} d_{\Gamma_{S}}(v) - \sum_{v \in V(\Gamma)} d_{\Gamma_{S \cap T}}(v) \text{ [By Theorem 5.5]}
$$

Theorem 5.10. *In the complement digraph* $\overline{\Gamma(n,2)}$ *, for any two sets S, T* \subseteq *V*($\overline{\Gamma}$)

$$
\sum_{v \in V(\overline{\Gamma})} d_{\overline{\Gamma}_{S-T}}(v) = \sum_{v \in V(\overline{\Gamma})} d_{\overline{\Gamma}_S}(v) - \sum_{v \in V(\overline{\Gamma})} d_{\overline{\Gamma}_{S \cap T}}(v)
$$

Proof. This theorem can be proved in the same way as we have proved Theorem [5.9.](#page-10-0)

Theorem 5.11. *In the digraph* $\Gamma(n, 2)$ *, for any two sets* $S, T \subseteq V(\Gamma)$

$$
\sum_{v \in V(\Gamma)} d_{\Gamma_{SAT}}(v) = \sum_{v \in V(\Gamma)} d_{\Gamma_S}(v) + \sum_{v \in V(\Gamma)} d_{\Gamma_T}(v) - 2 \sum_{v \in V(\Gamma)} d_{\Gamma_{SAT}}(v)
$$

Proof. We have,

$$
\sum_{v \in V(\Gamma)} d_{\Gamma_{SAT}}(v) = \sum_{v \in SAT} d_{\Gamma}(v) \text{ [By Theorem 5.5]}
$$
\n
$$
= \sum_{v \in S-T} d_{\Gamma}(v) + \sum_{v \in T-S} d_{\Gamma}(v) \text{ } [\because |\mathcal{S}\Delta T| = |S - T| + |T - S|]
$$
\n
$$
= (\sum_{v \in S} d_{\Gamma}(v) - \sum_{v \in S \cap T} d_{\Gamma}(v)) + (\sum_{v \in T} d_{\Gamma}(v) - \sum_{v \in S \cap T} d_{\Gamma}(v)) \text{ [By Theorem 5.9]}
$$
\n
$$
= \sum_{v \in S} d_{\Gamma}(v) + \sum_{v \in T} d_{\Gamma}(v) - 2 \sum_{v \in S \cap T} d_{\Gamma}(v)
$$
\n
$$
= \sum_{v \in V(\Gamma)} d_{\Gamma_{S}}(v) + \sum_{v \in V(\Gamma)} d_{\Gamma_{T}}(v) - 2 \sum_{v \in V(\Gamma)} d_{\Gamma_{SAT}}(v) \text{ [By Theorem 5.5]}
$$

Theorem 5.12. *In the digraph* $\overline{\Gamma(n,2)}$ *, for any two sets* $S, T \subseteq V(\overline{\Gamma})$

$$
\sum_{v \in V(\overline{\Gamma})} d_{\overline{\Gamma}_{SAT}}(v) = \sum_{v \in V(\overline{\Gamma})} d_{\overline{\Gamma}_S}(v) + \sum_{v \in V(\overline{\Gamma})} d_{\overline{\Gamma}_T}(v) - 2 \sum_{v \in V(\overline{\Gamma})} d_{\overline{\Gamma}_{SAT}}(v)
$$

Proof. This theorem can be proved in the same way as we have proved Theorem [5.11.](#page-10-1) □

6. Conclusions

In this paper, we have defined the Universal directed graph **Un**, and the complement digraph Γ(*n*, 2) of the digraph Γ(*n*, 2). We have studied the structure of Γ(*n*, 2) and established some results on the degree of a vertex and directed arcs of the digraphs Γ(*n*, 2) and Γ(*n*, 2). Additionally, we have established a formula for the number of fixed points in the digraph Γ(*n*, 2) and proved that the digraph $\Gamma(n, 2)$ is strongly connected. Moreover, we have obtained some results on the degree of a vertex w. r. t. a subset of the vertex set of the digraphs Γ(*n*, 2) and Γ(*n*, 2).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

REFERENCES

- [1] E. Blanton, S. Hurd, J. McCranie, On a Digraph Defined by Square Modulo *n*, Fibonacci Quart. 34 (1992), 322–334.
- [2] S. Bryant, Groups, Graphs, and Fermat's Last Theorem, Amer. Math. Mon. 74 (1967), 152–156. https://[doi.org](https://doi.org/10.1080/00029890.1967.11999934)/10. 1080/[00029890.1967.11999934.](https://doi.org/10.1080/00029890.1967.11999934)
- [3] W. Carlip, M. Mincheva, Symmetry of Iteration Graphs, Czech. Math. J. 58 (2008), 131–145. https://doi.org/[10.1007](https://doi.org/10.1007/s10587-008-0009-8)/ [s10587-008-0009-8.](https://doi.org/10.1007/s10587-008-0009-8)
- [4] P. Goswami, S.K. Thakur, G.C. Ray, The Structure of Power Digraph Connected With the Congruence $a^{11} \equiv b$ (mod *n*), Proyecciones, 42 (2023), 457–477. https://doi.org/10.22199/[issn.0717-6279-5600.](https://doi.org/10.22199/issn.0717-6279-5600)
- [5] Y. Wei, G. Tang, The square mapping graphs of the ring **Z***n*[*i*], J. Math. 3 (2016), 676–682.
- [6] C. Lucheta, E. Miller, C. Reiter, Digraphs from Powers Modulo *p*, Fibonacci Quart. 34 (1996), 226–239.
- [7] M.H. Mateen, M.K. Mahmood, Power Digraphs Associated with the Congruence $x^n \equiv y \pmod{m}$, Punjab Univ. J. Math. 51 (2019), 93–102.
- [8] E.A. Osba, S. Al-Addasi, N.A. Jaradeh, Zero Divisor Graph for the Ring of Gaussian Integers Modulon *n*, Commun. Algebra 36 (2008), 3865–3877. https://doi.org/10.1080/[00927870802160859.](https://doi.org/10.1080/00927870802160859)
- [9] M. Rahmati, Some Digraphs Attached With Congruence $x^5 \equiv y \pmod{n}$, J. Math. Ext. 11 (2017), 47–56.
- [10] T.D. Rogers, The Graph of the Square Mapping on the Prime Fields, Discr. Math. 148 (1996), 317–324. [https:](https://doi.org/10.1016/0012-365x(94)00250-m) //doi.org/10.1016/[0012-365x\(94\)00250-m.](https://doi.org/10.1016/0012-365x(94)00250-m)
- [11] L. Somer, M. Kˇrížek, On a Connection of Number Theory with Graph Theory, Czech. Math. J. 54 (2004), 465–485. https://doi.org/10.1023/[b:cmaj.0000042385.93571.58.](https://doi.org/10.1023/b:cmaj.0000042385.93571.58)
- [12] L. Somer, M. Křížek, Structure of Digraphs Associated With Quadratic Congruences With Composite Moduli, Discr. Math. 306 (2006), 2174–2185. https://doi.org/10.1016/[j.disc.2005.12.026.](https://doi.org/10.1016/j.disc.2005.12.026)
- [13] L. Szalay, A Discrete Iteration in Number Theory, BDTF Tud. Közl. 8 (1992), 71–91. (in Hungarian).
- [14] S.K. Thakur, P. Goswami, G.C. Ray, Enumeration of Cyclic Vertices and Components Over the Congruence $a^{11} \equiv b$ (mod *n*), Notes Numb. Theory Discr. Math. 29 (2023), 525–537. https://doi.org/10.7546/[nntdm.2023.29.3.525-537.](https://doi.org/10.7546/nntdm.2023.29.3.525-537)
- [15] C. Vasudeva, Graph Theory with Applications, New Age International Publishers, New Delhi, 2006.