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Abstract. In the light of great importance of curves and their frames in many different branches of science, especially

differential geometry as well as geometric properties and their uses in various fields, we are interested here to study

a special kind of curves called rectifying curves. We consider some characterizations of a non-lightlike curve has a

spacelike or timelike rectifying plane in pseudo-Euclidean space E3
1. Then, we demonstrate that the proportion of

curvatures of any spacelike or timelike rectifying curve is a non-constant linear function of the arc length parameter s.

Finally, we defray a computational example to support our main findings.

1. Introduction

The curves and their frames assume a significant part in differential geometry, and in many parts

of science like mechanics and physical science, we are intrigued here with regards to concentrating

on one of these curves which has numerous applications in computer-aided design, and numerical

demonstrating. Additionally, these curves can be utilized in the discrete model also, as identical

models are generally taken on for the design and mechanical investigation of grid structures [1–5].

In the differential geometry of a regular curve in E3, it is notable that one of the significant issues is

the characterization of a regular curve. Space curves that have a property that their position vector

generally lies in their rectifying plane are called rectifying curves [6, 7]. The notion of rectifying

curves was presented by B. Y. Chen in [1]. One of the most interesting characteristics of such

curves is that the ratio between the torsion and curvature of the curve is a non-constant linear

function. Kinematically, rectifying curves are these curves whose instantaneous axis of rotation

always passes through a fixed point. In this work, we use vector differential equations established

by means of Serret-Frenet equations to give some characterizations of the above mentioned classes

of curves that lie fully in E3
1. The paper can be organized as follows: Section 2 presents the basic
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concepts. In Section 3, we characterize non–null (spacelike and timelike) rectifying curves lying

fully in E3
1. The computational examples are given in Section 4. We conclude the work in Section

5.

2. Geometric Properties

To meet the prerequisites in the following segments, the essential components of the hypothesis

of curves in E3
1 are momentarily introduced. There exists a tremendous writing regarding the

matter including a few monographs (see for instance [3, 5, 6]).

Suppose that the metric in E3
1 is expressed as follows:

〈da,da〉=da2
1 + da2

2 − da2
3 ,

where (a1, a2, a3) ∈ E3. A vector a of E3
1 is supposed to be spacelike if 〈a, a〉>0 or a =

0, timelike if 〈a, a〉<0 and lightlike if 〈a, a〉=0 and a , 0. A timelike or lightlike vector

in E3
1 is supposed to be causal. For a ∈E3

1, the norm is characterized by ‖a‖ =
√
|〈a, a〉| ,

then a is a spacelike if 〈a, a〉=1 and a timelike if 〈a, a〉= −1. For a = (a1, a2, a3) and

b = (b1, b2, b3) of E3
1, the scalar product is 〈a, b〉 = a1b1 + a2b2 − a3b3, and cross product is

a× b = ((a2b3 − a3b2), (a3b1 − a1b3),−(a1b2 − a2b1)) [8–11].

Let C : r = r(s) be a non-null curve in E3
1, which has a non-null rectifying plane. By σ1(s) and

σ2(s), we mean the natural curvature and torsion of C, individually. Consider the Serret-Frenet

frame {e1(s), e2(s), e3(s)} related with C, then the Frenet equations are:
e′1
e′2
e′3

 =


0 σ1 0

−ε0ε1σ1 0 σ2

0 −ε1ε2σ2 0




e1

e2

e3

 , ′ =
d
ds

, (2.1)

where ε0 = 〈e1, e1〉= ±1, ε1=〈e2, e2〉= ± 1, ε2 = 〈e3, e3〉 = ±1, ε0ε1ε2 = −1.

Let q be a fixed point in E3
1. Then

S2
1(1) = {a ∈E

3
1 |

∥∥∥a− q
∥∥∥2

= 1}, (2.2)

is the Lorentzian unit sphere and

H2
+(1) = {a ∈E

3
1 |

∥∥∥a− q
∥∥∥2

= −1}, (2.3)

is the hyperbolic unit sphere.

3. Geometrical analysis of non-null rectifying curves

In this section, we characterize non-null (spacelike and timelike) rectifying curves lying fully in

E3
1. We demonstrate that the proportion of curvature and torsion of any spacelike or timelike curve

is a non-constant linear function of the arc length s. Likewise, we accentuate that this property is

invariant regarding the causal character of a curve and its rectifying plane.



Int. J. Anal. Appl. (2024), 22:108 3

Proposition 3.1. Let C : r = r(s) be a spacelike or timelike curve with non-null rectifying plane in E3
1

and σ1(s) > 0. The next statements are equivalent:
(1) There is a point q ∈E3

1 such that every non-null rectifying plane of C goes through q.
(2) σ2/σ1 has the form δ1s + δ2; δ1, δ2 are not all constants.
(3) There is a point q0∈E

3
1 such that

∥∥∥r(s) − q0
∥∥∥2

=
∣∣∣ε0(s + δ3)2 + ε2δ2

4

∣∣∣. The constants are related by

δ1 =
ε0

δ4
, δ2 =

ε0δ3

δ4
; δ4 , 0. (3.1)

Furthermore, by the uniqueness of q, it is equivalent to q0.

Proof. (1) Assume that every non-null rectifying plane of C passes through q ∈ E3
1. Then we have

〈r(s) − q, e2(s)〉 = 0. (3.2)

Differentiating Eq. (3.2) and using Eqs. (2.1), we obtain

〈r(s) − q,−ε2σ1e1 + σ2e3〉 = 0. (3.3)

From Eqs. (3.2) and (3.3), it leads to, the rectifying plane is perpendicular to e2 and

−ε2σ1e1(s) + σ2e3. Thus, we find

r(s) − q =η(s)(ε0σ2e1 − σ1e3), (3.4)

where η = η(s) is any differentiable function.

Differentiating Eq. (3.3), we get

−ε1 σ1 + 〈r(s) − q, ε2σ
′

1e1 + σ
′

2e3〉 = 0. (3.5)

From Eqs. (3.4) and (3.5), we obtain

η =
σ1ε0

σ
′

2σ1 − σ
′

1σ2
. (3.6)

Substituting Eq. (3.6) in Eq. (3.4), we have

r(s) − q =

 σ1σ2

σ
′

2σ1 − σ
′

1σ2

 e1−

 σ2
1ε0

σ
′

2σ1 − σ
′

1σ2

 e3. (3.7)

Differentiating Eq. (3.6), we get

dq
ds

= (1−

 σ1σ2

σ
′

2σ1 − σ
′

1σ2

′)e1+

 σ2
1ε0

σ
′

2σ1 − σ
′

1σ2


′

e3. (3.8)

Therefore, the coefficients of Eq. (3.6) vanishing identically if

1−

 σ1σ2

σ
′

2σ1 − σ
′

1σ2

′ = 0,

 σ2
1ε0

σ
′

2σ1 − σ
′

1σ2


′

= 0,

whereby
σ1σ2

σ
′

2σ1 − σ
′

1σ2
= s + δ3,

σ2
1ε0

σ
′

2σ1 − σ
′

1σ2
= δ4, δ3 ∈ R. (3.9)
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Since σ1(s) , 0, then δ4 , 0.

From Eqs. (3.6) and (3.8), we have

r(s) − q = (s + δ3)e1−δ4e3,
σ2
σ1

= δ1s + δ2; δ1 = ε0
δ4

, δ2 = ε0δ3
δ4

, δ4 , 0.

 (3.10)

Therefore, we can calculate ∥∥∥r(s) − q0
∥∥∥2

=
∣∣∣ε0(s + δ3)

2 + ε2δ
2
4

∣∣∣ . (3.11)

From which, we obtain: (1) leads to (2) and (3). If every non-null rectifying plane passes through

another point q0, then assume that γ(t) is the geodesic line through q0 and q. So, for each t ∈ R, we

have

r(s) − γ(t)= (s + δ3(t))e1(s)+δ4(t)e3(s). (3.12)

where δ3(t) and δ4(t) are non-zero functions.

If dot denotes the differentiation with respect to t, then from Eq. (3.11) we obtain

−
.
γ(t)=

.
δ3(t))e1(s)+

.
δ4(t)e3(s). (3.13)

From Eqs. (3.9), we have

σ2

σ1
= δ1(t)s + δ2(t); δ1(t) =

ε0

δ4(t)
, δ2(t) =

ε0δ3(t)
δ4(t)

.

Therefore, by differentiating with respect to t, we get
.
δ1(t)s +

.
δ2(t) = 0.

Thus, we have
.
δ1(t) =

.
δ2(t) = 0⇒

.
γ(t) = 0, q = q0.

(2) Suppose that σ2
σ1

= δ1s + δ2; δ1 , 0. If we let

q = r(s)−
(
s +

δ2

δ1

)
e1+

(
ε0

δ1

)
e3,

therefore, we find q
′

= 0. Thus q is a fixed point in E3
1 and

r(s) − q = (s + δ3)e1+δ4e3, δ4 =
ε0

δ1
, δ3 =

δ2

δ1
.

This leads to (2) implies to (1) and (3).
Now assume that (3) holds, therefore

〈r(s) − q, e1〉= ε0(s + δ3). (3.14)

Differentiating Eq. (3.13) and using Eqs. (2.1), we obtain

σ1(s)〈r(s) − q, e2〉 = 0; σ1(s) , 0⇒ 〈r(s) − q, e2〉 = 0,

and this implies that each rectifying plane of C passes through q ∈E3
1. Hence, this shows that (3)

implies (1) and the theorem is proved. �
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Now, we characterize a spacelike or timelike rectifying curve as far as its radial projection. For

this purpose, suppose that C is a spacelike with a non-null principal normal in E3
1. Therefore,

ε0 = 1, ε1 = −ε2 = ε= ± 1. For q ∈E3
1, and by using Proposition 1, assume that

ζ(s) =
1

r(s)
(r(s) − q); r(s)=

∥∥∥r(s) − q
∥∥∥ = √∣∣∣(s + δ3)2 − εδ2

4

∣∣∣, (3.15)

is the radial projection of a spacelike curve with a spacelike or timelike principal normal of r(s)
into the unit sphere S2

1(1) ( hyperbolic space H2
+(1)). Then, we have the following

e1(s) = r′(s)ζ(s) + r(s)ζ′(s),
σ1(s)e2(s) = r′′(s)ζ(s) + 2r′(s)ζ′(s) + r(s)ζ′′(s).

 (3.16)

Theorem 3.1. Let C : r = r(s) be a spacelike curve with a spacelike or timelike principal normal in E3
1

and σ1(s) > 0. If q ∈E3
1 is a fixed point, then

(1) (r(sζ) − q) is a spacelike position vector lying in a spacelike rectifying plane if and only if, up to a
parametrization, (r(sζ) − q) is obtained as

(r(sζ) − q) =
(
δ4

cos sζ

)
ζ(sζ), (3.17)

where ζ(sζ) is a spacelike curve lying in S2
1(1) and

(σ1)
2
ζ =

 r6

δ4
4

 σ2
1 − 1,

holds.
(2) (r(sζ) − q) is a spacelike lying in a timelike rectifying plane if and only if, up to a parametrization,
(r(sζ) − q) is found as

(r(sζ) − q) =
(

δ4

sinh sζ

)
ζ(sζ), (3.18)

where ζ(sζ) is a timelike curve lying in S2
1(1) and

(σ1)
2
ζ =

 r6

δ4
4

 σ2
1 + 1,

holds.
(3) (r(sζ) − q) is a timelike lying fully in a timelike rectifying plane if and only if, up to a parametrization,
(r(sζ) − q) is obtained as

(r(sζ) − q) =
(
δ4

coshζ

)
ζ(sζ), (3.19)

where ζ(sζ) is a spacelike curve lying in H2
+(1);

(σ1)
2
ζ =

 r6

δ4
4

 σ2
1 − 1,

holds.
Here σ1ζ denotes the geodesic curvature of the curve ζ = ζ(s).
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Proof. Assume that ζ(s) is lying fully in S2
1(1). Then, we can write

〈ζ(s), ζ(s)〉 = 1, 〈ζ(s), ζ
′

(s)〉 = 0, r2(s)= (s + δ3)
2
− εδ2

4. (3.20)

From Eqs. (19) and (23), we get ∥∥∥ζ′(s)∥∥∥2
= −

εδ2
4

r4
, (3.21)

which leads to, ζ(s) is a non-null curve if ε = −1 or ε = 1, respectively. Thus, without loss of

generality, we may assume that δ4 > 0 and apply a translation with respect to s, such that the arc

length of ζ(s) is

sζ :=
∫ ∥∥∥ζ′(s)∥∥∥ ds =

∫  δ4

s2 − εδ2
4

 ds. (3.22)

(i) On account of ε = −1, the position vector (r(sζ) − q) is lying in a spacelike rectifying plane.

From Eq. (3.21), since we have sζ = δ4 tan sζ, we obtain r = δ4 sec sζ. Substituting in (17), we

obtain Eq. (3.16).

Conversely, assume that (r(sζ) − q) is given by Eq. (3.16), where ζ(sζ) is unit speed spacelike

curve lying on S2
1(1). If we calculate the derivative of Eq. (3.16), we have

(r(sζ) − q)′ = ζ(sζ) sin sζ +
dζ(sζ)

dsζ
cos ζ(sζ). (3.23)

By the assumption,
∥∥∥ζ(s)∥∥∥ = ∥∥∥∥ dζ(sζ)

dsζ

∥∥∥∥ = 1 and from Eqs. (3.16) and (3.22), we obtain∥∥∥(r(sζ) − q)′
∥∥∥2

= sin2 sζ + cos2 sζ = 1,

〈(r(sζ) − q)′, r(sζ) − q〉 = δ4 tan sζ.

 (3.24)

Let us write

(r(sζ) − q) = µ(s)(r(sζ) − q)′ + (r(sζ) − q)⊥,

for any function µ(s), where (r(sζ) − q)⊥ is the normal component of (r(sζ) − q). Thus, in the light

of Eqs. (3.22) and (3.23), we easily find that

µ(s) =
〈(r(sζ) − q)′, r(sζ) − q〉∥∥∥(r(sζ) − q)′

∥∥∥2 = δ4 tan sζ.

Therefore, we have∥∥∥(r(sζ) − q)⊥
∥∥∥2

=
∥∥∥(r(sζ) − q)

∥∥∥2
− µ2(s)

∥∥∥(r(sζ) − q)′
∥∥∥2

= δ2
4 = δonst,

which means that (r(sζ) − q) is lying fully in a spacelike rectifying plane.

We now calculate the curvature of ζ(s). By the assumption and using Eqs. (3.19) and (3.20), we

have

〈ζ′(s), ζ
′′

(s)〉 = −
2δ2

4r′

r5 , 〈ζ(s), ζ
′′

(s)〉 = −
δ2

4

r4
. (3.25)

Since

ζ′(s) =
∥∥∥ζ′(s)∥∥∥ e1ζ(s),

∥∥∥ζ′(s)∥∥∥ = δ4

r2 ,
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we also have

ζ′′(s) =

δ2
4

r4

 σ1ζ(s)e2ζ(s) − 2
(r′δ4

r3

)
e1ζ(s)⇒

∥∥∥ζ′′(s)∥∥∥2
=

4δ2
4r′2

r6

− δ4
4

r8

 (σ1)
2
ζ . (3.26)

Therefore, by using Eqs. (3.24) and (3.25) in Eqs. (3.12), we can calculate

σ2
1 :=

∥∥∥r′′(s)
∥∥∥2

=
δ4

4

r6 (1 + (σ1)
2
ζ),

as it is claimed.

(2) The confirmation is practically equivalent to the proof of the statement (1). Moreover, that’s

what a comparable to contentions show that

〈ζ′(s), ζ
′′

(s)〉 =

2δ2
4r′

r5

 , 〈ζ(s), ζ
′′

(s)〉 =
δ2

4

r4
,

∥∥∥ζ′′(s)∥∥∥2
= −

4δ2
4r′

r6

+ δ4
4

r8

 (σ1)
2
ζ , (3.27)

therefore, we get

(σ1)
2
ζ =

 r6

δ4
4

 σ2
1 + 1.

Because ζ(sζ) is lying fully in H2
+(1). Then, we can write

〈ζ(s), ζ(s)〉 = −1, 〈ζ(s), ζ
′

(s)〉 = 0, r2(s)= −(s + δ3)
2 + εδ2

4. (3.28)

Also, we get ∥∥∥ζ′(s)∥∥∥2
=
εδ2

4

r4
, (3.29)

which leads to ζ(s) is a non-null curve if ε = 1(= −1).

(3) On account of ε = 1, ( r(sζ) − q) is lying in a timelike rectifying plane. By a similar arguments

as in Case (1), we have

sζ :=
∫  δ4

δ2
4 − s2

 ds; |s| < δ4, (3.30)

and therefore

r =
δ4

coshζ
. (3.31)

Substituting in Eq. (3.14), we obtain Eq. (3.18).

Conversely, assume that (r(sζ) − q) is given by Eq. (22) where ζ(sζ) is a spacelike curve lying

on H2
+(1). If we calculate the derivative of Eq. (3.18), we get

(r(sζ) − q)′ = −ζ(sζ) sinh sζ +
dζ(sζ)

dsζ
cosh ζ(sζ). (3.32)

By the assumption
∥∥∥ζ(s)∥∥∥ = −1,

∥∥∥∥ dζ(sζ)
dsζ

∥∥∥∥ = 1 and from Eqs. (3.18) and (3.31), it follows that∥∥∥(r(sζ) − q)′
∥∥∥2

= − sinh2 sζ + cosh2 sζ = 1,

〈(r(sζ) − q)′, r(sζ) − q〉 = δ4 tanh sζ.

 (3.33)

By a similar procedure as in Case (1), we obtain∥∥∥(r(sζ) − q)⊥
∥∥∥ = |δ4| = const,
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which means that (r(sζ) − q) is lying in a timelike rectifying plane.

Finally, if we repeat the above discussion as in Case (1), we obtain (σ1)
2
ζ =

(
r6

δ4
4
σ2

1 − 1
)

as well. Thus,

the proof of the theorem is completed. �

According to the Case (1) in Theorem 2, we have the following proposition:

Proposition 3.2. The arc length of the unit speed spacelike curve ζ(s) lying fully in S2
1(1) is less than π.

Proof. If (s1, s2) be the domain of r(s), then the pseudo arc length of ζ(s) satisfies the following:

sζ =
∫ s2

s1

∥∥∥ζ′(s)∥∥∥ ds = tan−1
(s2 + δ3

|δ4|

)
− tan−1

(s1 + δ3

|δ4|

)
<
π
2
−

(
−
π
2

)
= π.

Hence, the result is clear. �

Proposition 3.3. Let r = r(s) be a timelike curve in E3
1 and σ1(s) > 0. Then, for a fixed point q ∈E3

1, we
have the following:
(1) (r(sζ) − q) is a spacelike lying in a timelike rectifying plane if and only if, up to a parametrization,
(r(sζ) − q) is found as

r(sζ) − q =

(
δ4

sinh sζ

)
ζ(sζ), (3.34)

where ζ(sζ) is a timelike curve lying on S2
1(1) and

(σ1)
2
ζ = 1−

 r6

δ4
4

 σ2
1,

holds.
(2) (r(sζ) − q) is a timelike lying in a timelike rectifying plane if and only if, up to a parametrization,
(r(sζ) − q) is obtained as

(r(sζ) − q) =
(

δ4

cosh sζ

)
ζ(sζ), (3.35)

where ζ(sζ) is a spacelike curve lying in H2
+(1) and

(σ1)
2
ζ = 1−

 r6

δ4
4

 σ2
1,

holds.

4. Application

In this section, we give an example as an application of spacelike and timelike slant helices in

Minkowski 3-space E3
1 and illustrate their pictures by using Mathematica program.

Let us first consider the following parametric representation of a spacelike slant helix of E3
1:

r1(u) =


15

136 sin(17u),
25
144 sin(9u) + 9

400 sin(25u),
25
144 cos(9u) − 9

400 cos(25u)

 .
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The tangent, normal, and binormal vector fields of r1(u) are computed as follows:

e1 =
1
µ1

(30 cos (17u) , 25cos (9u) + 9 cos (25u) ,−25 sin(9u) + 9 sin(25u)) ;

µ1 =
√

450 cos (16u) + 625 cos (18u) + 9(50 + 50 cos (34u) + 9 cos (50u)),

e2 =
1
µ2

(625 cos (18u) − 81 cos (50u) , 480 cos (8u) , 30(25 sin(26u) + 9 sin(42u))) ;

µ2 =

 450 cos (16u) − 625 cos (18u) − 9(−50 + 50 cos (34u) + 9 cos (50u))
450 cos (16u) + 625 cos (18u) + 9(50 + 50 cos (34u) + 9 cos (50u))


1
2

,

e3 =
1

2µ3


−60 sin(17u),

(34 cos (8u) − 25 cos (26u) − 9 cos (42u)) csc (17u) ,

csc (17u) (−34 sin(8u) − 25 sin(26u) + 9 sin(42u))

 ;

µ3 =
√

450 cos (16u) − 625 cos (18u) − 9(−50 + 50 cos (34u) + 9 cos (50u)),

and its curvatures are obtained as

σ1 =
3840

√
450 cos (16u) − 625 cos (18u) − 9(−50 + 50 cos (34u) + 9 cos (50u)) sin(17u)
(450 cos (16u) + 625 cos (18u) + 9(50 + 50 cos (34u) + 9 cos (50u)))3/2

,

σ2 =
3840 cos (17u)

−450 cos (16u) + 625 cos (18u) + 9(−50 + 50 cos (34u) + 9 cos (50u))
.

The position vector of this curve is a spacelike vector, and it lies on a pseudo-sphere of E3
1 (see Fig.

1).

Now, we consider a timelike slant helix parameterized by:

r2(u) =


25
144 sinh(9u) + 9

400 sinh(25u),
−

25
144 cosh(9u) + 9

400 cosh(25u),
15

136 sinh(17u)

 .

The trihedron vectors of r2(u) are computed as follows:

e1 =
1
υ1

(25 cosh(9u) + 9 cosh(25u),−25 sinh(9u) + 9 sinh(25u), 30 cosh(17u)) ;

υ1 =
√

450 cosh(16u) − 900 cosh(17u)2 + 625 cosh(18u) + 81 cosh(50u)
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Figure 1. The spacelike slant helix lies on a pseudo-sphere of E3
1.

e2 =
1
υ2


(30(25 sinh(9u) − 9 sinh(25u) − 25 sinh(43u) + 9 sinh(59u)))

(480(− cosh(9u) + cosh(25u)))
(625 sinh(u) − 81 sinh(33u) − 625 sinh(35u) + 81 sinh(67u))

 ;

υ2 =


√

450 cosh(16u) − 900 cosh(17u)2 + 625 cosh(18u) + 81 cosh(50u)√√
(−34 cosh(8u) + 25 cosh(26u) + 9 cosh(42u))2

− 3600Sinh[17u]4

+(34 sinh(8u) + 25 sinh(26u) − 9 sinh(42u))2

 ,

e3 =
1
υ3


34 cosh(8u) − 25 cosh(26u) − 9 cosh(42u),
−34 sinh(8u) − 25 sinh(26u) + 9 sinh(42u),

60 sinh(17u)2

 ;

υ3 =

√√
(−34 cosh(8u) + 25 cosh(26u) + 9 cosh(42u))2

− 3600 sinh(17u)4

+(34 sinh(8u) + 25 sinh(26u) − 9 sinh(42u))2 ,

and its curvatures are calculated as follows:

σ1 =

1920

√√
(−34 cosh(8u) + 25 cosh(26u) + 9 cosh(42u))2

− 3600 sinh(17u)4

+(34 sinh(8u) + 25 sinh(26u) − 9 sinh(42u))2

(450 cosh(16u) − 900 cosh(17u)2 + 625 cosh(18u) + 81 cosh(50u))3/2
,
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σ2 = −
15360 cosh(17u) sinh(17u)2

(−34 cosh(8u) + 25 cosh(26u) + 9 cosh(42u))2
− 3600 sinh(17u)4

+(34 sinh(8u) + 25 sinh(26u) − 9 sinh(42u))2

.

In this case, the position vector is a timelike vector, and it lies on a hyperboloid of one sheet in E3
1

(see Fig. 2).

Figure 2. The timelike slant helix lies on a hyperboloid of one sheet in E3
1.

5. Conclusion

In the three-dimensional Minkowski space, some characterizations of spacelike and timelike

slant helices have a non-null axis are presented. By using vector differential equations established

by means of Serret-Frenet equations in Lorentz-Minkowski space E3
1, the differential geometric

properties of these curves are investigated. Finally, by using Wolfram Mathematica 0.7, an example

for spacelike and timelike slant helices is given and plotted. In future works, we plan to study the

rectifying curves in Galilean and pseudo-Galilean spaces for different queries and further improve

the results in this paper, combined with the techniques and results in our latest publications [12–16].

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the

publication of this paper.
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