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Abstract. The explicit aim of this manuscript is to obtain fixed point consequences under novel ¢-contraction mappings
in a complete cone metric space over Banach algebra. We connect and relate different fixed point theorems by using the
idea of y-contraction mappings, providing a thorough viewpoint that deepens our comprehension of this topic. Our
theorems generalize and unify many results in the scientific literature. These prospective extensions offer intriguing
research directions and have the potential to further advance the study of fixed point theory. The investigation of
examples plays an extremely crucial role in verifying the effectiveness and validity of our theoretical results. Moreover,
to support the theoretical results, some examples are investigated to emphasize these results. Ultimately, the existence
and uniqueness of the solution to the Urysohn integral and nonlinear fractional differential equation are cooperated as

applications to provide an authoritative basis for dealing with actual problems that include these equations.

1. INTRODUCTION

Topology and analysis both benefit from, depend on, and mutually supportive of fixed point (FP)
theory in important ways. This theory provides fundamental tools and insights that expand our
knowledge of various mathematical structures and functions, serving as an essential component

forboth fields. The basis for investigating the characteristics and behaviors of mappings in a variety
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of spaces is laid by the fixed point theory (FP), which enhances the fabric of topology and analysis
by proving the presence of fixed points under particular circumstances. Mathematical modelling,
mathematical physics, economics, chemistry, and biology are just a few of the disciplines where
the FP theory is useful. In mathematical modelling, for instance, and not as a limitation, FP theory
presents crucial resources for studying dynamic systems and identifying equilibrium states. FP
analysis can be used to describe the stable states and long-term behaviors of these complex systems,
whether researchers are simulating ecological interactions, population increase, or the spread of
diseases.

Using Banach’s contraction principle (BCP) [1], the fixed point technique may solve a variety
of ordinary deferential equations (ODEs), partial deferential equations (PDEs), integral equations
(IEs), fractional differential equations (FDEs) and current optimization problems (see [2-5]). The
BCP is the most powerful and fundamental result in metric FP theory. By altering the axioms of
the metric notion, the concept of metric has been expanded in a number of ways: quasi-metric,
symmetric, dislocated, 2-metric, b-metric, D-metric, G-metric, S-metric, ultra-metric, partial metric,
etc. We will concentrate on Banach-valued metric space, or more specifically, cone metric spaces
(CMSs) over Banach algebra (BA).

In 1695, Leibniz introduced the idea of fractional calculus (FC) [6], which is one of the devol-
opments of ordinary calculus. Lately, the FC theory has an influential role in fluid mechanics,
entropy, engineering and physics [7-10]. Some engineering techniques and physical models can
be interpreted more practically and accurately using FC. As an instance, FC-based entropies may
be used more widely than the entropy of Shannon [11]. Fractional entropy has been an extensively
investigated topic because of how widely it is used [12]. In addtion, the fractional differential
equations (FDEs) are very useful for modeling and describing a variety of phenomena [13]. This is
due to the fact that a system’s next state is determined by all of its previous circumstances, not sim-
ply its current form. Compared to integer-order differential equations, these equations may better
reflect physical reality. It’s crucial to highlight that the theory and applications of FC have been
extensively disscused within the literature [14-18]. FDEs have attracted a lot of attention in recent
years due to their precise explanation of complex events in viscoelastic materials, system identifi-
cation, control issues, signal processing, non-Brownian motion and polymers [19]. Recent studies
have concentrated on fractional functional analysis and many applications have been investigated
to fractional ordinary differential systems, fractional ODEs, and fractional PDEs [20-28].

In 2007, Zhang and Huang [29] presented the idea of CMSs using ordered Banach space instead
of the set of real numbers. They discussed some properties of the convergence sequences and
showed some FP results of contractive mappings in such spaces. Many articles have recently used
the same methodology to generalize the results from the ordinary metric space to the CMSs; For
more details, see [30-37].

On the other hand, Xu and Liu [38] presented the idea of a CMSs over BA, which generalizes and

extends the BCP in ordinary metric spaces. Numerous authors used CMSs over Banach algebras
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(BAs) to unify the BCP in many directions. Without making the assumption of normality, the
authors established a number of FP results for generalized Lipschitz mappings in the new circum-
stances, which have no connection to metric space in relation to the existence of the mapping’s
FP. Many studies have been written regarding FPs in spaces that resemble cone b-metrics over BA
and other spaces; see [39-49] for more information.

Motivated by the previous results, the explicit purpose of this manuscript is to launch the notion
of Y-contraction mappings and examine various FP results in CMSs over BA. Our crucial results
have been supported by many corollaries, illustrative examples and applications for the existence
and uniqueness to IEs and nonlinear FDEs. our results represent a generalization, development

and an extension to the scientific research in the literature.

2. Basic racTs

This part is devoted to presenting basic concepts that help us for obtaining our goals.

Definition 2.1. [50] Suppose that 8 denotes a real BA, yield to the following properties (for every
®,0,9€8B, yeR):

(BA) @(09) = (@0)9;

(BA) o(0+9) =wp+@d and (@ + 0)d = @9+ 09;

(BA3) y(w0) = (yo)o = @(y0);
(BAY) llooll < llollloll.

Proposition 2.1. [51] Let (4, d) be a complete metric space and let dg(f(®), f(0) < ¢(dg(®, 0)) for
all@, g € A where ¢ : [0,00) — [0, c0) is any monotone non-decresing function with &im Y'(t) =

0 for any fixed 7 > 0. Then f has a unique FP.

Definition 2.2. [42] A subset P of B is called a cone if

1. P is closed, non-empty and {0, I} € P;
2.aP+pP CP forall a,peRy;
3.PP=P>CP;
4. (-P)NP =1{06};
where 6 denotes the null of the BA 8.
For a given cone # C B, define a partial order < with respect to by @ < ¢ if and only if
0—@ €P. @ < pwill denote ® < p and @ # p. While @ < ¢ will denote ¢ — @ € int P where intP
represents the interior of P. If intP # @, then P is called a solid cone.

The cone P is called normal if there exist a number W > 0 such that for all ®,p € B,
0<a<o = |all<W|d-
The smallest positive number verifying the above inequality is called a normal constant [52].

Definition 2.3. [29] Let A be a non-empty set. Suppose that the mapping dg : A X A — B verifies,
forall @,09,9€ A
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(i) 6 <dg(®,0) with @ # ¢ and dg(®,0) =0 if @ = g;

(if) dg(@,0) = ds(¢,@);

(ZZZ) dg;((D, Q) =< dB(CD, \9) + dB(S, Q)

Then dg is called a cone metric on A, and (4, dg) is called a CMS over BA.

Example 2.1. Assume thatB le,P ={(0,0) €B:0<®,0lcR%, A=Rand dg: AXA — B
such that dg(®, 0) ), where a > 0 is a constant. Then (A,dg) is a CMS over BA.

Definition 2.4. [38] Let (4,dg) be a CMS over BA 8, ® € A and {®,} be a sequence in A.

Consequently,

(i) for each 6 < ¢, there exists N € IN such that dg(@,, ®) < cforalln > N.

This means that {®,} converges to @ and it can be written briefly as

lim @, =® or @, — oo (n — c0);
n—oo

(ii) for each 6 < ¢, there exists N € IN such that dg(@,,, ®,) < c for all m,n > N.
Then, @, is a Cauchy sequence (CS);

(iii) if every CS in A is convergent then, (4,dg) is complete.

Remark 2.1. [50] The spectral radius (SR) p(@) of @ verifies p(®) < @ for all ® € B, where Bis a
BA with a unit 7.

Remark 2.2. [50] The SR p(®) of @ satisfies

p(@) < llall,

for all ® € B, where B is a BA with a unit 7.

Remark 2.3. [53] If p(®@) < 1 then ||@"]| = 0 as n — co.

Lemma 2.1. If B is a unital BA with unit 7, ¢ : 8, — B, and p(Y(®)) < 1. Then (I'g—¢)is
invertible and

(Ig-y) Z¢
Lemma 2.2. [50] Let 8 be a BA with a unit 7 and @, p € 8. If ® commutes with g, then

pl@+0) <p@)+plo), plag)<p(@)p(o)

Definition 2.4. [54] Let Yg be the set of all positive functions ¢g : B, — B, satisfying the
following conditions:

() (@ +0) = Y(@) + (o),
(i) p(@0) = ¥(@) ¥(0),
(iif) nl_i}r&o Y" (@) =6 forall @>0,

(iv) Y(@) =0 iff @=0.
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Let us display some major definitions, constructions and basic concepts of FC (see [55,56]). If
h : [0,00) — R s a continuous function, then the Caputo fractional derivative (CFD) of order a is
defined by
hm (s)

CD(h(t)) = fo e (e ds,

(n—1<a<n,n=[a]+1), whereT is a gamma function and [a] stands for the integer part of the

positive real number a. Also, R-Lja represents the Riemann-Liouville fractional integral (R-LFI) of

order ¢, and defined as follows:

r00) = [ g

3. FP resurts IN CMS over BA

We begin this part with proving the following lemmas:

Lemma 3.1. If ¢ : R, — R, is any monotone non-decreasing function with (®) < @ for all
@>0, p(@) <1 and [[P"(@)ll < IY|".lol* then p (Y"(@)) <1 where p is the spectral radius.

Proof.

p(¥ @) = p(¥(@).¥(@) .. p(0))

Therefore, p (Y"(®)) < 1.
Lemma 3.2. If Y < I g, then (Zg— 1) has an inverse where

Proof.

Thus, (£ —1) has an inverse.
Theorem 3.1. Suppose that (4,8,dg) be a complete CMS over BA 8. Let S: A — A and
dg : A X A — B, be mappings satisfy

dg(Sw,Sp) =< l/}(dg(@, Q)), forall @,p € 4,

where ¢ : 8, — B.,. Then, S has a unique FP in A.
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Proof. Let an arbitrary element @g in A. Define a sequence {®,} by $"@¢ = S@,-1 =

@y, n > 1. From our contraction condition, we get
dg(@ni1,@n) = dg(Son, Sdy-1)
< ¢(dg(wn, ch-l))
= ll’(dB(&Dn—L S(Dn—z))

< Lpz(dg(@n_l, (Dn—Z))

< Ip”(dg(cal,cao)).
Then, for n > m, we find

dB(CDn/CDm) =< dB(CDnr CDn—l) + dB(CDn—L(Dn—Z) + ..+ dB((Dm—l—l/ (Dm)

< Lpn_l(dB(CDLCDO)) + ‘/’n_Z(dB(CDlzCDO)) + ot ‘Pm(dB(@l"Do))
n—1

<) ‘Pk(dg(cal,coo)) — 0g,  forall dg(@y, @) >0g, n,m— co.
k=m

Hence {®;,} is a CS in A. Based on the completeness of A, there exists ®* € A such that
lim @, = ®*. Therefore, one has

n—00
0g < dg(@,S@") =< dg(@,So,) + dg(So,, So*)
< dg(@", @p11) + llf(dB(fDm@*))-
It follows that

0g <dg(®",So*) =< dg(o*,@") + gb(dg(ca*,ca*))

IA

0g + ¥(0g).

Thus, dg(@*, S@*) < 0g, which is a contradiction. Then, dg(®*, S®*) = 0g, i.e., @ = So*
isa FP of S.
Now, if (¢* # 0) # @" is another FP of the mapping S, then

0g < dg(@%,0") = dg(Sa’,Sp")

< y(dn(@’,0)),
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that is,
(T5-y)(ds(e",0)) < 0
Since (I g — 1) is invertible, then

(Ts-9) " (Is-)ds(@,0)) = (Ts-9)" (0g)

— Ig; (dg(cD*, Q*)) < Z lpn(()g).
Again, we get a contradiction. Therefore,
dg(@*,0") =0 — & =y

This implies that the FP is unique.

The example below support Theorem 3.1:
Example 3.1. Let B, = R? and ||((D1,(D2)” = |@1| + |@y| for all (@1, @;) € B. Define the
operation of multiplication by

@0 = (@1, @2).(01,02) = (@101, @102 + @201).

Then B is a BA with unit 7 = (1,0).
LetP = { (01,@) € R? | @1,02 > 0}.
Let A = R and the metricdg : AX A — IR2+ be defined by

dg(@, 0) :(|(D—Q ,ﬁ|®—g|)€?, with B >0.

Then, (A, B,d) is a complete CMS over BA.
Now, define the mapping S : A — A by

@
So = Z,
andl,b:BJr —)Bery
t
pt) = 3
where B = ]Ri. Then, we obtain
15(S0,S0) = (|So-Sd|, p|So- S )
1
= g(lo=dl plo-d)
1
= 1 dg(®, )
_ 3 |ds(@0)
4 3
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dB(CD/ @)
3

= ¢(d8(®/ Q))-

Therefore all hypotheses of Theorem 3.1 are satisfied and 0 is a unique FP of S.
Theorem 3.2. Let (A4, 8B,dg) be a complete CMS with BA 8. Let S : A — A and
dg: A X A — B be mappings satisfy

IA

ds(Sa,So) < lp(dg(&a, o) + dg(So, Q)), forall @,p€ 4,

1
where ¥ : 8, — B, and p (Y(@)) < 3 Then, S has a unique FP in A.
Proof. Let an arbitrary element @y in A. Define a sequence {®,} by $"@®y = S®,-1 =

@y, n > 1. From our contraction condition, we obtain
dB(CDn—H/ ch) - S@n/ S@n 1)

=< gb(dg SCDn,CDn +d8(8@n 1, Op— 1))

= IP(dB CDn_H,ch +d8(@n/@n 1))

IA

1!’(‘18 (@nt1,@n) ) + Fb(dB(@nr@n—l))-
Then

(Ts= ) ds(@ni1,00) = 9(ds(@n0p1))
By multiplying (I — 1)~}

d5(@u:1,00) < (Tz=9)" Y{da(@1,0,1))

IA

n
(2= )" 4] (ds(@1,00)}
Now, we shall prove that

p(|Ts-9v|@) <1 i pwie) <

Q| =

Therefore,

p(|Ts-9)0]@) < p(Ts-9)@).p Wi0)
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IA
—_—
1
-
<
B
—
e
-~
8

A

S
©
=
S

Thus, for n > m, we get

dB((Dnz CDm) < dB(CDn/CDn—l) + dB((Dn—II(Dn—Z) + ...+ dB(CDnH—l/ CDm)

IA

[ (Ig—9)” ED] (dB CD1,600)) + [(IB—#’)_l Bb]n_z(dﬁ(@lzcao))
iy

T+ [(fs -y)! IP] (ds(cDLcDo))

)_\

n—

1
[(IB - gb)_l 1,0] (dg(cal,cao)) — 0g, forall dg(@1,@9) >0g, n,m— co.

IA

T
3

Hence {®;,} is a CS in A. Based on the completeness of A, there exists ®* € A such that

lim @, = ®". Therefore, one has

n—00

0 < dg(@,S@") =< dg(@*,So,) + dg(Sw,, So*)

=< dB(CD*r CDn—H) + I,L'(dgg(Sch, CDn) + dB(S(D*r CD*))

IA

1(@", @u11) + P(dn(@ni1,00) ) + {ds(So", @)

Taking lim , we get
n—oo

dg(@*,S@") =< dg(o*,@") + w(dg(w*, w*)) + t,b(dgg(@*,Sca*))

IA

0g + Og + ¢(d8(co*,&a*)),
that is,

(75~ v)(d5(0",S0")) = O
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Since (I g — 1)) is invertible, then

(Is=)" (T5-y)(ds(0",S0")) = (Z-9)7" (0s).

Thus, dg(@*, S@*) < 0g, which is a contradiction. Then, dg(®*, S®*) = 0g, i.e., @ = So*
isa FP of S.
Now, if (¢" # 0) # @" is another FP of the mapping S, then

0g < dg(@*,0") = dg(So*,So")

< y(da(So',0") + (S o)

= y(ds(@"0")+ y(dste’ o))
that is,

dg(@’,0") < 0g,
which is a contradiction. Therefore,

dg(@’,¢") =0 = @ =¢
This implies that the FP is unique.
The example below support Theorem 3.2:
Example 3.2. Assume the same hypotheses of Example 3.1 then, we get

dg(So,®) +dg(Sp,0) = (IS@—@I,ﬁIS@_@|)+( ﬁIS@—@I)
= (1o, g1l )+ 3(1d, 81d)
= 3 (101 lel 5 (1ot +1d])
3ol s -l
-l
= 3 8|S0 -5d)
= 3dg(Sa,Syp),

ie.,

d(Sa, So) < %(dB(ScD,cD)—FdB(SQ,Q)).
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It follows that
d5(Sa,S0) < ¢ (dg(&a, o) + dg(So, Q)).
Therefore all conditions of Theorem 3.2 are verified and 0 is a unique FP of S.

Theorem 3.3. Let (4,8B,dg) be a complete CMS over BA 8. Let S : A — A and
dg: A X A — B be mappings satisfy

dg(Sw,Sp) < l,b(dg(ScD, o)+ dB(SQ,(D)), forall @,p € A,
where ¢ : B, — B, and p (Y(@)) < % Then, S has a unique FP in A.

Proof. Let @ be an arbitrary element in A. Define a sequence {®,} by S"®¢ = S®,-1 =

@y, n > 1. From our contraction condition, we get
dg(@pi1,@n) = dg(Sou, S@y-1)

< v dB SCDn/CDn 1 +dB(S(Dn 1/‘071))

dB @n—i—l/CDn +d8(@n1@n 1))

(
- lp(dg @1, @n-1 +d8(@nz@n))
< ¥

(

IA

Y(ds(@n:1,00) + {ds(@1,001))
It follows that
(T~ ) ds(@ni1,00) = {ds(@r,001))
By multiplying (I —)~!
d5(@ni,@1) < (Is=9)" 9(ds(@n00))

IA

[(IB -y) l,b]n(dB(cDL cDo))-
Now, we show that
p[Ts-ve]@) <1 i pwie) <3

Therefore,

p(|Ts-9)v]@) = p(Ts-9)@).p Wi0)
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IA
—_—
1
-
<
B
—
e
-~
8

A
o)

=
S

Thus, for n > m, we get

dg(@n, @n) < dg(@n, @p—1) + dg(@p-1, ®n-2) + ... + dg(@p11, @m)
< |@s—vro| " (s@n,00) + [@s-v) 9| (dstor,an)
4+ [(IB —y)! w]m(ds(wl,coo))

—_

n—

1
< [(Igg - IP)_l l,b] (dg(ch,cD())) —> 0g, forall dg(@1,@9) > 0g, n,m— oo.

T
S

Hence {®;,} is a CS in A. Based on the completeness of A, there exists @* € A such that

lim @, = ®*. Therefore, one has

n—oo

0g < dg(@,S@") < dg(@,So,) + dg(S@,, So)
< dg(@", @p41) + l/)(dB(S(Dn,CD*) +d3(&a*,(an))

< dp(@,001) + P(ds(@n1,0)) + p(ds(Se",0n))

Taking lim , we get

n—o00

dg(@*,So") =< dg(o*,@") + yb(dg((a*, (D*)) + gb(dB(Sca*,ca*))

IA

Og + 0g + IP(dB((D*/ScD*))/
that is,

(Ig—gb)(dg(ca*,&a*)) < 0g.
Since (I g — ) is invertible, then

(ITg-y)™" (IB—BU)(CZB(@*/SCD*)) < (Ig-y)7" (0g).
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Thus, dg(®*, S@*) < 0g, which is a contradiction. Then, dg(®*, S®@*) = 0g, i.e., @ = S®*
isa FP of S.
Now, if (¢* # 0) # @ is another FP of the mapping S, then

Og < dg(@’,¢") = dp(Sa’,S¢")
< y(ds(S’,0) +da(Se', @)
< y(as(0",0)) + v(ds(e,0")
that is,

(Ig-2 IP)(dB(CD*/ Q*)) < 0g.
Since Y(@) =0 ifff a =0 and 7g(®) # 2Y(@). Then,

dg(@*,0") =0 — & ="

This implies that the FP is unique.
The example below support Theorem 3.3:
Example 3.3. Assume the same assumptions of Example 3.1 then, we have

dg(So,Sp) = (|So-Sp ,ﬁ|SfD—30|)

= 1 (lo-el  plo-d)

- %(|w—8@+$@—g,ﬁ|CD—ScD+SCD—@|)

< i(|@_3@|+|3@_@,5(|@—S@|+|Sco—g|))

= H(|@—3@|,ﬁ|@—&a|)]+ji[(IS®—0|,ﬁ|3<D‘@|)]

- i[(|@—S@+S@—S(D|,ﬁ|(D—SQ+SQ—S‘D|)]
+411[(|ch—@|,[)’|3@—0|)]

< 1 [(lo-sd. plo-sd)|+ 1 [(Is0-5a], 8|0~ 0]
+H(IS<D—@ /ﬁI&D—QU]

- % [(|SQ-@ , B |Sg—ca|)]+£11 [(|SCD—SQ B |S<D—SQ|)]
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,ﬁ|S®—@|)]

+ 411 [('Sca—p

1
~ 1 |48(S0,0) + ds(Sa, So) +ds(Sa,0)],

ie.,

ds(Sd,So) < (dg(S(D,@)—{-dg(S@,cD)).

1
3
Then

15(50,50) < v (dn(S@,0) +ds(S0,0))

Therefore all conditions of Theorem 3.3 are satisfied and 0 is a unique FP of S.
Theorem 3.4. Let (4,8B,dg) be a complete CMS with BA 8. Let S : A — A and
dg : A X A — B be mappings satisfy

dg(Sw,®) .dg(Sop, 0)
1+ dB(cD, Q)

dg(Sw,Sp) < gb(dg;(ca, 0) + ], forall @,p€ A,

1
where ¢ : 81 — B, and p (¥(@)) < = Then, S has a unique FP in A.
Proof. Let @y be an arbitrary element in A. Define a sequence {®,} by §"®¢ = S®,-1 =

@y, n > 1. From our contraction condition, we have

dg(@ny1,@n) = dg(Son, Sdp-1)

d S d 'd S n—=1,wWn—
< ¢|dg(@n, @n_1) + 5(Sdn, @) . dg(S@y_1,® 1)]

1+ dg;((Dn, CDn—l)

= Y|dg(@n, @y-1) +

d8(®n+1/ CDn) . dB(CDn/ CDn—l)
1+ dg(ch, CDn—l)

< l,b(dB(CDn—&—lz(Dn) + dgg(@n/ @n—l))

< ¢(d3(®n+1,®n)) + IP(dB(fDn,ch—l))-
Then
(L =) dg(@ni1, @n) = 1#(%(6% ch—l))-
By multiplying (Z — 1)~

ds(@non) = |(Ts-)" ¢ |(ds(@n @)
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Now, we verify that

P([(IB—I#)_l IP]((D)) <1, if p(Y@)< %

Therefore,

p(|Ts-9)]@) < p(Ts-9)@).p Wi0)

IA
—_—
gk
e
<
B
—
o)
-~
B

IA

Thus, for n > m, we get

dB((Dnz CDm)

< dg(@n, ®p-1) + dg(@p-1,®n-2) + .. + dg(@m+1, @m)

n—-2

(75~ 07 o] (astor,00) + [75-9)7 ] (asor,00))

IA

+ o+ [(Ig—gb)_l w]m(dg(ml,wo))

—_

n—

1
[(Igg — 170)_1 l,b] (dg(ch,(D())) — OB, for all dB(CDl,CD()) > 03, n,m — oo,

IA

T
3

Hence {@;,} is a CS in A. Based on the completeness of A, there exists ®* € A such that

lim @, = ®*. Therefore, one has

n—oo

0g < dg(@,S@") =< dg(@",Sw,) + dg(Son, So*)

Sy, @) . dg(So*, @)
1+ dg(@,, @)

< dB(CD*/CDn—H) + ¢(d3(@n,@*) +
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dg(@p11, @n) .dg(@*,ca*)]

— d *’ d 7 ’
8(@", @yy1) + ¢( 5(@n, @) + 1+ dg(@n, @)

< ds(@, o) + ¥(s(@n,0)

Taking lim , we get
n—0oo

dg(@*,So*) =< dg(o*,@") + w(dg(ca*,ca*))
< 0g + ¢(0g) = 0g.

Thus, dg(@*, S@*) < 0g, which is a contradiction. Then, dg(®*, S®*) = 0g, i.e., @ = So*
isa FP of S.
Now, if (¢* # 0) # @" is another FP of the mapping S, then

0g < dg(@",¢") = dg(Sa",S¢")

dB(SCD*, CD*) . dg(SQ*, Q*)
1+dg(o, 0*)

< I/J[ds(@*r o) +

= y(ds(@"0)),
that is,
(T5-v)(ds(0",0)) < 05,

Since (I g — ) is invertible, then

(5= )" (T5-9)(ds(@",50")) = (T5-$)" (0g).
Then,
dg(@’,¢") =0 = @ =¢"
This implies that the FP is unique.
In Theorem 3.4, if = A I then we obtain the result below:
Corollary 3.1. Let (4A,8B,dg) be a complete CMS with BA 8. Let S : 4 — A and
dg : A X A — B be mappings satisfy

dB(SCD, CD) . dB (SQ, Q)
1 +dg(@,0)

dg(Sw,Sp) < Adg(®,0) + , forall @,p€ 4,

1
where 0 < A < 1is a constant and p (@) < 5 Then, S has a unique FP in A.
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Theorem 3.5. Let (A, 8B,dg) be a complete CMS over BA 8. Let S : A — A and
dg : A X A — B be mappings satisfy

dB(ScD, Q) . dg(SQ, (D)
1+dg(@,0)

dg(Swo,Sp) < Yldg(w,0) + ], forall @,p € A,

where ¢ : 8, — B,. Then, S has a unique FP in A.
Proof. Let @p be an arbitrary element in A. Define a sequence {®,} by S"®¢ = S®,-1 =

@y, n > 1. From our contraction condition, we get

dB((Dn+1/(Dn) = dB(SCDn/SCDn—l)

< Yldg(@n, @p-1) +

dgg (S(Dn, @n—l) . dg; (Sch_l, ch)
1+ dB((DTl/ CDl’l—l)

= Yldg(®n, @n-1) +

dB(CDn+1, CDn—l) . dB(CDYZ/ (Dn)
1+ dB(CDn/ CDn—l)

< z,b(dz;(can, ch—l))-

Then

I(@r1,00) = P(ds(on @1m1))

IA

v (as(@1,@0)),
Then, for n > m, we find

dB((Dn/CDm) =< dB((Dn/CDn—l) + dB(CDn—I/CDn—Z) + ...+ dB(CDerl/ (Dm)

< z,b”‘l(dg(cal,cao)) + w”‘z(dg(cal,cao)) + o+ gbm(dg(cal,cao))

n—1
< Z gbk(dgg(ch,cD())) — 03, for all dgg((Dl,cDo) > 03, n,m — oo,
k=m
Hence {®;,} is a CS in A. Based on the completeness of A, there exists ®* € A such that
lim @, = ®*. Therefore, one has

n—00

0g < dg(@,S@") =< dg(@,So,) + dg(So,, So*)

dg(Sw,, @) .dg(So*, @)
1+ dg(@,, @)

< dB((D*r (Dn+1) + ¢[d8(wn1@*) +
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dg(@p11, @) .dg(can,ca*))

IA

dg(@", g (O, @
B(@", @y y1) + ‘/’[ g(@n, @) + 1+ dg(@n, @)

IA

(0", @n11) + ¥{dn(@n, @) + dn(@411,0))

IA

I5(@",0ns1) + Y{da(@n, @) + Y{ds(@ni1, @) )

Taking lim , we get
n—-oo

dg(@*,So") =< dg(o',@") + yb(dg(ca*,ca*)) + yb(dg;(ca*,w*))
= 0g + ¢(0g) + ¢(0g) = 0Og.

Thus, dg(@*, S®*) < 0g, that is a contradiction. Then, dg(®*, S®*) = 0g, i.e., @* = S@* is
a FP of S.
Now, if (¢* # 0) # @ is another FP of the mapping S, then

0g =< dgg(cD*,@*) = dg(ScD*,SQ*)

IA

Yldg(a@”, ¢") +

dg(Sa*, ¢*) . dg(So", @)
1+dg(a*, 0*)

IA

71b dB(CD*I Q*) +

dg(@*,0") .dg(0", @")
1+dg(o, 0%)

= ZIP(dB(CD*/ Q*)),

that is,

(T5-29)(ds5(e",0)) < 0.
Since Y(@) =0g if ® =0 and Ig(®) # 2(@). Then,

dg(@*,0") =0g — @ =¢"

This implies that the FP is unique.
In Theorem 3.5, if = A 1 then we have the result below:
Corollary 3.2. Let (4A,8B,dg) be a complete CMS over BA 8. Let S : A — A and
dg : A XA — B, be mappings satisfy

dB(S(D, Q) . dgg(SQ, CD)

dg(So,Sp) < Adg(o, ) +
5(50,80) < A|ds(@,0) + S

, forall @,p € A4,

where 0 < A < 1is a constant. Then, § has a unique FP in A.



Int. ]. Anal. Appl. (2024), 22:120 19

4. SoLvE URYSOHN INTEGRAL EQUATIONS

Here, we apply Theorem 3.2 to discuss the existence and uniqueness of solution to

the following Urysohn IEs:
1
of) = h(t)+ f Ky(ts,o(s)) ds, 1)
0

1
o) = h(H)+ fo Ka(ts, 0(s)) ds, (42)

where K1,K; : [0,1] X [0,1] xR — R and #:[0,1] — R.
Let B and P are defined as Example 3.1. Let A = C([0, 1], R) where C|0, 1] denotes the
set of all real continuous funtions (RCFs), # is a cone and dg : A X A — B is defined as

follows:

dg(@,0) = ([lo-d|.. Blo-el.)
= ('sup |o(t) - o(t)], B sup |@(t) - o(t)]) € P,
te[0,1] te[0,1]
where @, 0 € A. Then, (A, B,d) is a complete CMS over BA.
Now, we define ¢ : B, — B, as

Y(r) = pr,
where y € [0,1) and B, = R?.
Theorem 4.1. Define the mapping S : A — A by

1
So(t) = h(t)+f0 Ki(t,s,@(s)) ds,

1
Salt) = ho)+ [ Kaltsols)) ds
0
for all t € [0, 1]. If the following inequality

[Ki(t,5,@(5)) = Ka(t,5, 0())| < @ (t) = o(t)

holds, the IEs (4.1) and (4.2) have a unique solution.
Proof. It is clear that finding the solution of the equations (4.1) and (4.2) is equivalent to

4

finding the FP of the mapping S.

Now, consider

s(S50) = (Is0-Sd.. pllso-sl..

= ( sup |ScD(t) —So(t)|, B sup |Sca(t) —SQ(t)|)
te[0,1] te[0,1]
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1 1
(sup fKl(t,s,ca(s))ds—fKz(t,s,p(s))ds,
te[0,1] [0 0
1 1
B sup fKl(t,s,cD(s))ds—fKz(t,s,g(s))ds)
te[0,1] 10 0

1
( sup f |K1 — Ka|ds, B sup Ky — Kzlds)
te[0,1] tef0,1] YO

(supf |ca |ds ﬁsupf |cD t)lds)
te[0,1 t€[0,1]
1
y(sup |(D |f ds, B sup |cD ()if ds)
te[0,1 t€[0,1] 0

y ( lo(t) - o)., Bl - @<t>||w)

pdg(@,0) = ¢(dg(@,0)),

where p € [0,1). Therefore all requirements of Theorem 3.1 hold, then the problems (4.1)

and (4.2) have a unique solution.

Now, we can apply the results shown in Theorem 3.3 to obtain the same results of Theorem

4.1.

Theorem 4.2. Assume that all conditions of Theorem 4.1 are true. Define 1 : lRi — IRz+

as P(r) = Ar.where A = % € [0,1). Then the proposed equations have a unique solution.

Proof.

dg(Sx, Sp)

Jso- s, gllsa- sl

sup |Sa(t) - So(t)|, B sup |Sa(t) —Sp(t)|)
t€[0,1] te[0,1]

1 1
sup f Ki(t,s,@(s)) ds—f Ky (t,s, 0(s)) ds|,
te0,1] 1JO 0

p sup
te[0,1]

(supf K7 — K| ds, ﬁsupf |K1—K2|ds)
tel0,1 te[0,1]

1 1
‘[0 Ki(t,s,@(s ))ds—f Ka(t,s, 0(s)) ds

|
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1 1
< ul| sup f |(D(t) - Q(t)|d$, B sup f |cD(t) - Q(t)|ds)
t€[0,1] te[0,1] YO

1
= u sup o(t |f ds, B sup |®(t)—p(t)|fds)
t€[0,1] te[0,1] 0

. ||w—@||m,ﬁ||o—@nm)

[o-dl,  o-dl.
=5t

ool , o~
(e )

[||Sca—@||m,ﬁ||8o—@||m]

+(||@—3@||mrﬁ||®—30||oo]]

N=

dg(Sw, 0) + dg(So, @)

NI=

= A dB(SCD,Q)+dB(SQ;CD)

= v d8(3®/0)+ds(30/®)]-

Hence, all stipulations of Theorem 3.3 are verified. Then the considered problems have a
unique solution.

5. SoLvING A CAPUTO FRACTIONAL DERIVATIVE

In this part, we will implicate some theoretical results to study the existence and
uniqueness of the solution to a CFD of order g, it takes the form

D¥@(t)) = f(t,@(t)) (0<t<1l,1<a<?2), (5.1)

via the integral boundry conditions

@(0) =0, o(1) = fnca(s) ds (0<n<1), with @ € C([0,1],R),
0
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where C([0, 1], R) is the set of all RCFs from [0, 1] into R, “D* represents the CFD of order
a and f:[0,1] x R — R is a CF (see [57]).

Now, we present our main theorem in this section.

Theorem 5.1. Problem (5.1) has a solution provided that the following hypotheses are
true:

(A) there exists ¢ € ¥ such that

f(t,0) - f(t0)] < @ 9

forall,pe R, A >0and t € [0,1};
(B) for all ¢ € [0, 1], there exists a mapping S : C([0,1],R) — C([0, 1], R) such that

(
[ _fa)
so) = || Ttz

e fha(n) ,
+2tj; [jo‘ T(a) (=) adr]ds,

(O forallt € [0,1] and @, ¢ € C([0,1], R), let the metricdg : C([0,1], R) X C([0,1],R) — R%
is defined as

)

ds(@,0) = (Ilw—gliwllw—pllm)

| <t>—@<t>|)e¢>;

_ ( sup [o(t) - o(t)|,
te[0,1] te[0,1]

(D) for all t € [0,1], if {@,} is a sequence in C([0,1], R) and @ € C([0,1], R), then @, — @
in C([0,1], R).

Then, the problem (5.1) has at least one solution.

Proof. Let A = C([0,1],R) where A is the Banach space equipped with the supremum

(t)| V @ € A. Then, @ € A is a solution of (5.1) if and only if
@ € A is a solution of the following IE:

[ _fts06)
o0 = | e

[ fha@)
—|—2tf(; [fo F()(s—r)ladr]ds' te|0,1].

Define the function i) : 8, — B as

vip) < p

norm [|@llec = sUpPy(o )
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where B, = ]R2+. Now, let @, 0 € A and t € [0,1]. By assumption (A), we have

[Sa(t) - So(t)]
' fsa(s) B L f(s0(s)) )
fo [(a) (t—s)l-@ s fo T(a) (t—s)l-@ d
i W G) Y el
+2tf0 [j; T(a) (S_r)l_adr]ds - 2tf(; [L T(a) (S_r)l_adr]ds
|f (s, (s |
f |t sll - ds

ot (1] o (f(na(n) = f(r,0())
*mfo fo

(s—r)l-a

IA

dr|ds

(s, a(5)) )]
= f It — sll"‘ &
Zt ff £ @) id ds
ls — r|1“
a— a+1
< mfolt—SI VD o) - o) Aas) - (o)) s

2t 1 S . r( 4 )

m‘f(; [fo s =" 3 ¢(|‘D(7)_@(7')|1A|(D(7’)—Q(i”)|)dr]ds
MNa+1 t -~

( 3T (a )> ¥(|a(s) )|1A|®(S)—@(s)|)folt—s| 1 ds

2tT(a+1) 1 s N

3T(a) 1Mw(f)‘@(T)|f7\|®(r)—Q(r)|)f0 [ et dr]ds

IN'a+1 t
3(0(1:’;01)) ¢(|CD(S)—Q(S)|,A|(D(s)—p(s)|) i It —s[*1 ds

IN

IA

2tT'(a+1 1 1
+ ;;ra)) ¢(|w(r)—@(r)l,)\|ca(r)—@(r)|)fos<a+1>—1 (1-5)D-1gs

IA

Y(Jo(s) - o(s)], Ao(s) - o(s)]) L

n % Bla+1,1) y(|o(r) - o(r)], Al@(r) - o(r)| )
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< Y| |sup @(t) — sup o(t)|,A|sup @(t) — sup o(t) £
te[0,1] te(0,1] te[0,1] te[0,1] 3
2tT(a+1)T(1)
+ Y| [sup @(t) — sup o(t)|, A|sup @(t) — sup o(f)
3T(a+2) t[0,1] te[0,1] te[0,1] t[0,1]
ta
< y{ sup Jott) - (0] A sup fott) - (0] 5
tG[O,l} iE[O,l}
+ sty o s o - o], 4 sup foto) - a0
3(a+1) "\ieoq te[0,1]
t 2t
< HD(”CD(t) _Q(t)“oo) (3 + m)f

where B denotes the beta function.

Taking supremum on both sides, we get

t* 2t
sup [Sa(t) - So(t)| < ub(llca(t)—@(t)lloo,Allco(t)—@(t)lloo) X sup (g T3 +1)),

which implies that

I1S0() = Sa(lle < ${lI0(t) = 0Bk, All2(®) = (D)l ).
Consequently,
dg (S, Sp)
- (Iso-sdl... allso- s,

IA

[#(1000) - e Ahot) - 1), A {1000 - 0 M) - )1 )|

= (WA Yl - alb)lks, Alla(t) = oDl

IA

y(1a(6) - o(t)lke, All0 (1) = o)l
= ¢(ds(@0)).

Then, all assertions of Theorem 3.1 are satisfied.
Remark 5.1. By a similar way of Theorem 5.1, if ) : 8, — B is defined by ¥(p) < p
where B, = ]Ri. We can show that all conditions of Theorem 3.3 are verified.
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CONCLUSIONS

In this article, we introduced our findings under novel i{)—contraction mapping within
the framework of a complete CMS over BA. We investigated several definitions, corollaries
and theorems under 1)-contraction mapping in such spaces. These definitions, corollaries
and theorems are regarded as an extension and generalisation of the findings in the
literature. On the other hand, we presented several cases of i)-contraction mapping in
main results and applications to the findings of our fundamental theorems using Ursohn
integral equations (UIEs) and nonlinear FDEs. We concentrated on the nonlinear FDEs
and UIEs as applications that mark a substantial contribution to the fields of FC and IEs.
There are numerous guidelines and methods for the future work as well as investigatations
and discoveries in this particular discipline such as studying and analyzing variations of -
contraction mappings, such as weak 1p-contractions or mixed 1-contractions to learn more
about their properties and applications. Also, we can establish significant developments
on the existence and uniqueness of solutions to certain integral and FDEs by utilizing the

power of Y-contraction mappings.
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