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Abstract. Herglotz representation and Bieberbach type properties are discussed for the q-analog classes of Janowski

starlike and convex functions.

1. Introduction

The unit disk U = {z ∈ C : |z| < 1} is normally treated as a standard domain because simply

connected proper subsets of the complex plane are conformally equavlent to U in view of Riemann

mapping theorem. The functions whose ranges describe certain geometries like star, close-to-star,

covex, close-to-convex, spiral, some in certain directions, some uniformly, some with respect to

conjugate symmetric points and so on are known as geometric functions and these geometries can

be described in succinct mathematical terms along with establishing closed links between certain

prescribed properties of analytic functions and the geometries of their ranges. A subset D of the

complex plane is called q-geometric if qz ∈ D for fixed q ∈ R, whenever z ∈ D. This paper is

devoted to the study of q analog of Janowski starlike and convex functions and explore certain

results like inclusion properties, Herglotz representation and Bieberbach cojecture. Let P denote

the class of functions with positive real part. The class of functions f analytic on the open unit disk

U normalized by f (0) = f ′(0) − 1 = 0 will be denoted by A. We denote by S∗ and C the class of

starlike and convex functions inA respectively.

Let P(A, B), −1 ≤ A < B ≤ 1, consists of functions p(z) = 1 + p1z + . . . , is analytic in the unit

disk such that p(z) =
1 + Aω(z)
1 + Bω(z)

, z ∈ U,

where ω(z) ∈ Ω = {ω is analytic in U : ω(0) = 0, |ω(z)| < 1, z ∈ U}.
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Now S∗(A, B) consists of functions f ∈ A such that
z f ′(z)

f (z)
∈ P(A, B) and C(A, B) consists of

functions f ∈ A such that 1 +
z f ′′(z)

f ′(z)
∈ P(A, B). These classes introduced by Janowski [6].

Let f be a function, real or complex valued on a q-geometric set B, |q| , 1. The q-differnce

operator which was introduced by Jackson [5] is defined as

Dq f (z) =
f (z) − f (qz)

z(1− q)
, f or z ∈ B− {0}. (1.1)

In addition, the q-derivative at zero defined for |q| > 1, Dq f (0) = Dq−1 f (0).
In some literature, the q-derivative at 0 is defined to be f ′(0) if it exists.

The concept of q-integral is useful in this setting. Thomae and Jackson [5] introduced the

q-integral ∫ 1

0
f (t)dqt = (1− q)

∞∑
n=0

f (qn)qn

and Jackson gave the more general definition∫ b

a
f (t)dqt =

∫ b

0
f (t)dqt−

∫ a

0
f (t)dqt

where, Iq( f (x)) =
∫ x

0
f (t)dqt = x(1− q)

∞∑
n=0

f (xqn)qn.

Now we generlize S∗(A, B) and C(A, B) replacing the derivative and the domain by thier

corresponding q-analogs.

Definition 1.1. A functions f ∈ A is said to belong to the class S∗q(A, B), −1 ≤ A < B ≤ 1, if

∣∣∣∣ (1− B)
zDq f (z)

f (z)
− (1−A)

A− B
−

1
1− q

∣∣∣∣ ≤ 1
1− q

.

Equivalently we have, f ∈ S∗q(A, B) if and only if∣∣∣∣zDq f (z)
f (z)

−
((1− q) + (Aq− B))

1− q

∣∣∣∣ ≤ (A− B)
(1− q)(1− B)

.

Definition 1.2. A functions f ∈ A is said to belong to the class Cq(A, B), −1 ≤ A < B ≤ 1, if

z(Dq f )(z) ∈ S∗q(A, B).

As q → 1− the closed disk |ω −
1

1− q
| ≤

1
1− q

becomes the right half plane and the class

S∗q(A, B) reduces to S∗(A, B) and Cq(A, B) reduces to C(A, B). In particular, when A = 1, and

B = −1, the class S∗q(A, B) reduces to the class introduced by Ismail [4] and for A = 1− 2α, B = −1,

we arrive at the classes S∗q(α) and Cq(α) introduced by Agrawal and Sahoo [2] and Agrawal [1]

respectively.

Now we proceed to prove some basic interesting properties which are used in proving our main

results namely the Herglotz representation for functions belonging to the classes S∗q(A, B) and

Cq(A, B) in the form of a Poisson-Stietjes integral and the Bieberbach conjecture problem.
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2. Some Basic Lemmas

We need the following Lemmas to prove our core results. The proofs of the Lemma 2.1 to Lemma

2.4 is straight forward from the definition of the classes S∗q(A, B) and Cq(A, B).

Lemma 2.1. If f ∈ S∗q(A, B), then there exists a unique function g ∈ S∗q such that

(1− B)
zDq f (z)

f (z)
− (1−A)

A− B
=

z(Dqg)(z)
g(z)

(2.1)

holds. Similarly, for a given function g ∈ Sq there exists a unique function f ∈ S∗q(A, B) satisfying ( 2.1).

Lemma 2.2. If f ∈ Cq(A, B), −1 ≤ A < B ≤ 1, then there exists a unique function g ∈ S∗q(A, B), −1 ≤

A < B ≤ 1, such that

g(z) = z(Dq f )(z) (2.2)

holds. Similarly, for a given function g ∈ S∗q(A, B) there exists a unique function f ∈ Cq(A, B) satisfying
( 2.2).

Lemma 2.3. Let f ∈ A then f ∈ S∗q(A, B) if and only if∣∣∣∣ f (qz)
f (z)

−
(1−A)

1− B
q
∣∣∣∣ ≤ A− B

1− B
, z ∈ U.

Lemma 2.4. Let f ∈ A then f ∈ Cq(A, B) if and only if∣∣∣∣q (Dq f )(qz)
(Dq f )(z)

−
(1−A)

1− B
q
∣∣∣∣ ≤ A− B

1− B
, z ∈ U.

Lemma 2.5. The class S∗q(A, B) satisfies the inclusion relation⋂
q<p<1

S∗p(A, B) ⊂ S∗q(A, B) and
⋂

0<q<1

S∗p(A, B) = S∗(A, B).

Proof. The inclusions⋂
q<p<1

S∗p(A, B) ⊂ S∗p(A, B) and
⋂

0<q<1

S∗p(A, B) ⊂ S∗(A, B) clearly hold.

We need only to show that S∗(A, B) ⊂
⋂

0<q<1

S∗p(A, B).

Consider f ∈ S∗(A, B), there exists a unique g ∈ S∗ satisfying

(1− B)
z f ′(z)

f (z)
− (1−A)

A− B
=

zg′(z)
g(z)

.

Since S∗ =
⋂

0<q<1

S∗p, it follows that g ∈ S∗p for all q ∈ (0, 1). Thus by Lemma 2.1 there exists a unique

h ∈ S∗q(A, B) satisfying the identity ( 2.1) with h(z) = f (z). �

Analogously we have
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Lemma 2.6. Let f ∈ A then f ∈ Cq(A, B) if and only if∣∣∣∣q (Dq f )(qz)
(Dq f )(z)

−
(1−A)

1− B
q
∣∣∣∣ ≤ A− B

1− B
, z ∈ U.

Lemma 2.7. The class Cq(A, B) satisfies the inclusion relation⋂
q<p<1

Cp(A, B) ⊂ Cq(A, B) and
⋂

0<q<1

Cp(A, B) = C(A, B).

We proceed to introduce two sets which are being used to prove our main results. Bq = {g : g ∈
A, g(0) = q and g : U →U} and B0

q = {g : g ∈ Bq and 0 < g(U)}.

Lemma 2.8. If h ∈ Bq then the infinite product
∞∏

n=0

{ (A− B)h(zqn) + (1−A)q
(1− B)q

}
converges uniformly on

compact subsets ofU

Proof. Set g(z) =
(A− B)h(z) + (1−A)q

(1− B)
.

Since h ∈ Bq, it follows that g ∈ Bq. �

Lemma 2.9. If h ∈ B0
q then the infinite product

∞∏
n=0

{ (A− B)h(zqn) + (1−A)q
(1− B)q

}
converges uniformly on

compact subsets ofU to a nonzero function inU with no zeros. Furthermore, the function

f (z) =
z

∞∏
n=0

{ (A− B)h(zqn) + (1−A)q
(1− B)q

} (2.3)

belongs to S∗q(A, B) and h(z) =
(1− B)

f (qz)
f (z)

− (1−A)q

(A− B
.

Proof. The convergence of the infinite product is proved in Lemma 2.8. Since h ∈ B0
q we have

h(z) , 0 inU and the infinite product does not vanish inU. Thus the function f ∈ A and we have

the relation
f (qz)
f (z)

=
(A− B)h(z) + (1−A)q

1− B
.

Equivalently h(z) =
(1− B)

f (qz)
f (z)

− (1−A)q

A− B
.

Since h ∈ B0
q, we get f ∈ S∗q(A, B). �

On similar lines we have

Lemma 2.10. If h ∈ B0
q then the infinite product

∞∏
n=0

{ (A− B)h(zqn) + (1−A)q
(1− B)q

}
converges uniformly on

compact subsets ofU to a nonzero function inU with no zeros. Furthermore, the function

z(Dq f )(z) =
z

∞∏
n=0

{ (A− B)h(zqn) + (1−A)q
(1− B)q

}
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belongs to Cq(A, B) and h(z) =
(1− B)q

(Dq f )(qz)
(Dq f )(z)

− (1−A)q

(A− B
.

Now we define two classes Bq(A, B) and B0
q(A, B) as follows.

Bq(A, B) = {g : g ∈ A, g(0) =
(1− B)q

(A− B) + q(1−A)
and g : U →U}

and

B0
q(A, B) = {g : g ∈ Bq(A, B), 0 < g(U)}.

Lemma 2.11. A function g ∈ B0
q(A, B) if and only if it has the representation

g(z) = exp
{(

log
q(1− B)

(A− B) + q(1−A)

)
p(z)

}
(2.4)

where p(z) belongs to the class P = {p : p(0) = 1, and<{p(z)} > 0, f or z ∈ U}.

Proof. For g ∈ B0
q(A, B), define L(z) = log g(z). We can easily show that

p(z) =
L(z)

log
( (1− B)q
(A− B) + q(1−A)

) ∈ P and satisfies ( 2.4).

Conversely, if g is given by ( 2.4) then it is obvious that g ∈ B0
q(A, B). �

Lemma 2.12. The mapping ρ : S∗q(A, B)→ B0
q defined by

ρ( f (z)) =
(1− B)

f (qz)
f (z)

− (1−A)q

A− B

is a bijection.

Proof. For h ∈ B0
q, define a mapping σ : B0

q →A by

σ(h(z)) = f (z) =
z

∞∏
n=0

{ (A− B)h(zqn) + (1−A)q
(1− B)q

} .

From Lemma 2.9 that σ(h) ∈ S∗q(A, B) and (ρoσ)(h) = h. Also

(σoρ) f (z) =
z

∞∏
n=0

{ f (zqn+1)

q f (zqn)

} =
z
z

f (z)

= f (z).

The map ρ is invertible because ρoσ and σoρ are identity maps and σ is the inverse of ρ. Hence

ρ( f ) is a bijection. �

On simiar lines a bijection from Cq(A, B) to B0
q is defined as in the following Lemma
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Lemma 2.13. The mapping τ : Cq(A, B)→ B0
q defined by

τ( f (z)) =
(1− B)q

(Dq f )(qz)
(Dq f )(z)

− (1−A)q

A− B
.

is a bijection.

3. Main Results

Now we prove our core results using the preliminary Lemmas proved in section 2.

Theorem 3.1. Let f ∈ A then f ∈ S∗q(A, B) if and only if there exists a probability measure µ supported
on the unit circle such that

z f ′(z)
f (z)

= 1 +
∫
|ψ|=1

ψzF′q(A, B)(ψz)dµ(ψ),

where

Fq(A, B)(z) =
∞∑

n=1

(−2) log
(

(1−B)q
(A−B)+q(1−A)

)
1− qn zn. (3.1)

Proof. For 0 < q < 1 and −1 ≤ B < A ≤ 1, let Fq(A, B)(z) be defined by ( 3.1). It is obvious that f
has the representation ( 2.3) with h ∈ B0

q. Taking the logarithmic derivative of f we have,

z f ′(z)
f (z)

= 1−
∞∑

n=0

(A− B)zqnh′(zqn)

(A− B)h(zqn) + (1−A)q
. (3.2)

Let g(z) =
(A− B)h(z) + (1−A)q
(A− B) + (1−A)q

Clearly, g ∈ B∗q(A, B) and using Lemma 2.9, g has the representation ( 2.3). Taking the logarithmic

derivative, we have
zg′(z)
g(z)

=
(

log
(1− B)q

(A− B) + q(1−A)

)
zp′(z) (3.3)

where p(z) ∈ P. Using the Herglotz representation of p(z) there exists a probability measure µ

supported on the unit circle |ψ| = 1 such that

zp′(z) =
∫
|θ|=1

2ψz(1−ψz)−2dµ(ψ). (3.4)

Using ( 3.3) and ( 3.4) in ( 3.2), we have

z f ′(z)
f (z)

= 1− 2
(

log
(1− B)q

(A− B) + q(1−A)

) ∞∑
n=0

∫
|ψ|=1

ψzqn(1−ψzqn)−2dµ(ψ)

= 1− 2
(

log
(1− B)q

(A− B) + q(1−A)

) ∫
|ψ|=1

{ ∞∑
n=0

∞∑
m=1

mψmzmqmn
}
dµ(ψ)

= 1− 2
(

log
(1− B)q

(A− B) + q(1−A)

) ∫
|ψ|=1

{ ∞∑
m=1

mψmzm 1
1− qm

}
dµ(ψ)
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= 1 +
∫
|ψ|=1

ψzF′q(A, B)(ψz)dµ(ψ).

�

Analogous result for Cq(A, B) is as follows:

Theorem 3.2. Let f ∈ A then f ∈ Cq(A, B) if and only if there exists a probability measure µ supported
on the unit circle such that

z(Dq f )′(z)
(Dq f )(z)

=

∫
|ψ|=1

ψzF′q(A, B)(ψz)dµ(ψ),

where, Fq(A, B)(z) is defined in ( 3.1).

Now we prove the Bieberbach cojecture problem for q-Janowski starlike and convex functions.

The extremal function obtained here is the generalization of the is generalization of the Köebe

function.

Theorem 3.3. Let

Gq(A, B)(z) = z exp[Fq(A, B)(z)] = z +
∞∑

n=2

anzn. (3.5)

Then Gq(A, B) ∈ S∗q(A, B). If z +
∞∑

n=2

anzn
∈ S∗q(A, B), then |an| ≤ cn. Equality holds if and only if f is a

rotation of Gq(A, B).

Proof. For 0 < q < 1, −1 ≤ B < A ≤ 1, let Gq(A, B) be defined by ( 3.5).

Let f ∈ S∗q(A, B) choose p ∈ P as in Lemma 2.11 and satisfy

ρ( f )(z) = h(z) =
(1− B) f (qz)

f (z) − (1−A)q

A− B
∈ B0

q.

Since h ∈ B0
q, g(z) =

(
(1− (1−A)

1−B )h(z) + 1−A
1−B q

)
1− (1−A)

(1−B) (1− q)
∈ B0

q(A, B)

=
(A− B)h(z) + (1−A)q
(1− B) − (1−A)(1− q)

.

By Lemma 2.11, g(z) has the representation ( 2.4) and on solving we get

f (qz)
f (z)

=
(
1−

(1−A)

(1− B)
(1− q)

)
exp

{(
log

q(1− B)

1− (1−A)
(1−B) (1− q)

)
p(z)

}
.

Define the function φ(z) = log{
f (z)

z
} and set

φ(z) = log
f (z)

z
=
∞∑

n=1

φnzn. (3.6)

On solving , we get log q(1−B)
(1−B)−(1−A)(1−q) + φ(qz) = φ(z) +

(
log q(1−B)

(1−B)−(1−A)(1−q)

)
p(z),
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which implies that

φn = pn

(
log q(1−B)

(1−B)−(1−A)(1−q)

)
(qn − 1)

.

Since |pn| ≤ 2, we have

|φn| ≤ (−2)

(
log q(1−B)

(1−B)−(1−A)(1−q)

)
(1− qn)

.

From this inequality, together with the expression of Gq(A, B) and ( 3.6), we get required results. �

Theorem 3.4. Let

Eq(A, B)(z) = Iq{z exp[Fq(A, B)(z)]} = z +
∞∑

n=2

( 1− q
1− qn

)
cnzn. (3.7)

where cn is the n th coefficient of the function z exp[Fq(A, B)(z)]. Then Eq(A, B) ∈ Cq(A, B), −1 ≤ B <

A ≤ 1. Also if f (z) = z +
∞∑

n=2

anzn
∈ Cq(A, B), then |an| ≤

( 1− q
1− qn

)
cn. Equality holds if and only if f is a

rotation of Eq(A, B)(z).

Proof. Let f (z) = z +
∞∑

n=2

anzn
∈ Cq(A, B). By definition of Cq(A, B),

z(Dq f )(z) = z +
∞∑

n=0

( 1− q
1− qn

)
anzn

∈ S∗q(A, B).

Then by Theorem 3.3, we have ∣∣∣∣1− qn

1− q
an

∣∣∣∣ ≤ cn.

Next, we show that equality holds for the function Eq(A, B) ∈ Cq(A, B). As a special case

to Theorem 3.2, when the measure has a unit mass, it is clear that Eq(A, B)(z) ∈ Cq(A, B). Let

Eq(A, B)(z) = z +
∞∑

n=0

bnzn. From this representation of Eq and the definition of Dq f , we get

z(DqEq)(z) = z +
∞∑

n=2

bn
(1− qn)

(1− q)
zn. (3.8)

Since Eq(A, B)(z) = Iq{z exp[Eq(A, B)(z)]}, z(DqEq)(z) = z {exp[Fq(A, B)]} and since cn is the n-th

coefficient of the function z {exp[Fq(A, B)]}, we have

z(DqEq)(z) = z +
∞∑

n=2

cnzn. (3.9)

By comparing ( 3.8) and ( 3.9) we get bn = cn
(1− q)
(1− qn)

.

i, e, Eq(A, B)(z) = z +
∞∑

n=2

bn
(1− qn)

(1− q)
zn.

�
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