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Abstract. This paper’s goal is to discover new results for the harmonic univalent functions ® = v 4 7] defined in the
open unit disc p = {3 : [3| < 1}. Examining 8 & indicates the set of all analytic harmonic functions of form ® in the open
unit disc p. The convolution featuring the Mittag-Leffler function and fractional operator is applied to generate the
family of harmonic univalent Vq . Motivated by Kamali [9], we present a novel of kamali class with Vg /(6) brand-new
class of harmonic univalent functions ‘BZZ?V inspiring inequality. Analysing Mittag-Leffler function convolution with
modified tremblay operator inequality as a necessary and sufficient condition for univalent harmonic functions related
to specific generalised Mittag-Leffler functions to be in the function class Vg (0) is the aim of this research. Moreover,
we discover extreme points, a distortion theorem, convolution properties, and convex combinations for the functions
in Vgg (b)

1. INTRODUCTION

The intricate relationships between geometric functions, hypergeometric functions, and har-
monic functions have been extensively studied in mathematical analysis, as evidenced by various
seminal papers ( [1], [2], [3], [4], [5]). This research aims to delve deeper into these connections
by focusing on the Mittag-Leffler function and its convolution with the modified Tremblay opera-
tor. Specifically, we aim to explore the necessary and sufficient conditions for univalent harmonic
functions, associated with particular generalized Mittag-Leffler functions, to belong to the function
class Vag ().

Geometric functions, known for their role in mapping geometric shapes within the complex plane,
and hypergeometric functions, which generalize a broad spectrum of classical functions, both play

crucial roles in various applications of complex analysis and mathematical physics. Harmonic
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functions, which satisfy Laplace’s equation, are pivotal in modeling equilibrium states in physical
phenomena.

The Mittag-Leffler function, a generalization of the exponential function, is particularly significant
in the theory of fractional differential equations and processes with memory effects. The modified
Tremblay operator, a transformation tool within function spaces, is used to analyze inequalities
and function transformations.

This research will analyze the convolution of the Mittag-Leffler function with the modified Trem-
blay operator and examine its implications for univalent harmonic functions. By identifying the
necessary and sufficient conditions for these functions to be part of the class Vgz(0), we aim to
contribute to the understanding of how special functions interplay with harmonic functions under
specific conditions.

Harmonic functions are frequently recognized for being utilized in the study of minimum surfaces
and are essential in numerous challenges in appropriate mathematics. The harmonic functions
have been investigated by various researchers of differential geometrics, especially Choquest [6],
Kneser [10], Lewy [13], and Rado [15]. The fundamental theory of complex harmonic univalent
functions ® defined in the open unit disc p = {3 : [3| < 1} was created by Clunie and Sheil-Small in
1984 [7]. These are the purposes for which (0) = 6;(0)-1=0

Consider that R & is the family of all harmonic functions of the form ® = v 477, where
v(3) =3+ ) ced () = ) dei il = 1 M
=2 =1

are analytic in the open unit disk p. In the meanwhile, let Vg occur for the family of sense-
preserving and harmonic univalent functions ® = v 4 7. Remember that if 1 is zero, the family
Vas = V.

Further, we classify V(%6 of Vgs as

Vae =1{6 =v+7 € Va1 (0) =di =0}

The classes V?%@ and Vg were first studied in [5].
First,the extrapolation of E,(3) stated by Wiman [21] is the two-parametric M-L function of 3 € C

defined by the series,
ad &
3
EO( C = 4 N/ 7 Z 7 C 2
(3) ;)r(1+aé)a€Ca 0,3€C @)
Ea = —/ 4 /R ’R 7
5(3) Zr(ﬁ+aé)(6)éaﬁec (a) >0,R(B) > 0,3€C 3)

&=0
Numerical calculations of the Mittag-Leffler function (2) and some of its numerous generalisations
across the entire complex plane have only recently been made (see, for example, [9, 16, 18]).
Prabhakar [14] developed an extension of the Mittag-Leffler function E, 4(3) of (3) using the series
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representation in the way mentioned below:
’ . e 3
E =) ————————,a,8,y€C,R(a) >0,R(B) >0,R(y) >0,3€C 4
ap(3) = Zor(5+“5)< oy & Py (@) (B) (y)>0,3 (4)

Where () denotes the families pochhammer symbol, since
(1)5 = 5'/ (5 € NO)/

specified in the terms of the well-known Gamma function and for (k, m € C) by

() = F(A+k) __ JLk=0A€C/{0) )
T AA+1)(A+2)(A+m=-1),k=meN;AeC

We obvious have the following unique situations:

E5(3) = Eap(3);EL 1 (3) = Ea(3).

In fact, the generalised Mittag-leffler function Ezlﬁ(a) itself is actually a very specific example of a
quite well studied function ,¥,, as shown below (see also Eq. (1.9.1) [12], p. 45) , as previously
noted by Srivastava and Saxena [18], (p. 201, Eq. (1.6)). In this instance and subsequent discussions,
p¥ 4 signifies the Wright (or, more fittingly, the Fox-Wright) expansion of the hypergeometric ,F,
function, as described by (see, for instance, to [17], p. 21).

[(al,‘lll) (C(p,glp)
P‘P’i

— T Wym)...I A "
- Z r(al + Wym)..I(a + Apm) 3 ©)

" L T(by + Bym)..T (b, + Bym) m!
(b1,%B1) ... (b, B,)] m=0 T
R(Y;) >0,(i =1,2..p);R(B;) >0, (i = 1,2...9), in which we have assumed,in general that a;, 2; €
C(i=1,2,..,p) and b;,B; € C(i = 1,2,...,q) and that the equality in the convergence condition
hold true only for suitably bounded values of [3|. Salim [20] revealed the function in the form EZ’zin
the following form, improving the M-L function to four additional parameters.

[ee]

35
Zl"ﬁnwjé

&=0
Where 3,a,8,7,6 € C,R(a) >0,R(B) > 0,R(y) >0,R(5) > 0.

Recently, Salim and Faraj [5] introduced a new generalization of Mittag-Leffler type function as

0 . (y)es
F50 = L a0 7

Where 3,a,8,7,0 € C, min(R(a),R(ﬁ),R(y),R((S)) > 0.

We introduced a new generalization of the Mittag Leffler type of harmonic function.

(o] é
& 3 —
E'°(3) = N + v ¢
“'5(3) ZF[S—HX& 5 [3+a£ 3
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Definition 1.1:
If ® € Vg, then the Tremblay fractional operator T?V of a function ©® is defined, for all 3 € U, by

r(v)
()’

It is clear that for v = € = 1, we obtain

T 6(3) = D ®(3), (0<v<1,0<e<1,0<v—-e<le>v),

Ty 6(3) = 6(3).

In [8], Esa et al. defined modified of Tremblay operator of analytic functions in complex domain

as follows:
Definition 1.2:
If ® € Vge. Then the modified Tremblay operator denoted by T;" : Vag — Ve and defined as:
v Frlv+1)
TS = =T 6(3) = ———==3' 'D;"37'6
3 € 3 (3) T(€+1)3 3 3 (3)

TE+VI(v+1) o v TE+VI(v+1) |
d
3+Z I(&+el €+1)c53 +Z [(E+e)l(e+1) £
(0<v<1,0<e<1,0<v—e<1e>v)where T is denoted the Tremblay fractional derivative
operator defined by previous definition. For more information about Tremblay operator see [19].

The modified Tremblay operator is defined as follows

v o T(E+VI(V 1) o T(E+v)I(v+1)
b %)_3+;zr<5+e>r<e+1>c‘53€+zr<5+e>r<e+1> !

Recently, Salim and Faraj [5] introduced a new generalization of Mittag-Leffler function associated

(8)
=1

with fractional differential operator, we discovered (7) and (8) an M-L function convolution using

a modified trembley operator.

‘ < y VIv+1) ) = T(E+v)T(v+1)
Ea(3)+ Y6 (3 —3+(; e ))( Tt ; ) %+(Z{T5—|—ef 1)) 9
() -
(FGraam: e
where,we assume
Ela(3) + T3V 6(3) = B45"365) (10)
(r(é+v)r(v+1))( ()e ):AW
FE+el(e+ )\T(E+ag)(o)e) b

Kamali formulated a collection of functions in Vg existence that satisfies the following inequality,

m(532((5(3))”’ (26 +1)3(6(3))” <cﬁ<s>>']

(3
5RO+ (60) >F
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where 0 < < 1,0 < 6 < 1. Inspired by Kamali [11], we present a novel kamali class with Vg (0)
brand-new class of harmonic univalent function, ‘B) 0 e’ 3(5( ) inspiring the following inequality,
632(5BZ:Z§’V3((63))”’ + (26 + 1)3(%76”3(6( ) + (‘B‘ijﬁ’va(ﬁ(a))'
/6/ ’ Y73 b ’
532 () gy 36())” +3(P) 57 36())

>p (11)

The connectivity of geometric functions and hypergeometric functions with harmonic functions is
seen through some of these papers [1-5]. Analysing Mittag-Leffler function convolution with mod-
ified Trembley operator inequality as a necessary and sufficient condition for univalent harmonic
functions related to specific generalized Mittag-Leffler functions are to be in the function class
Ve (0) is the aim of this research. Moreover, we discover extreme points, a distortion theorem,

and convolution properties, and convex combinations for the functions in Vg (0).

2. COEFFICIENT PROPERTIES

We begin by establishing a necessary and sufficient coefficient condition for functions (3) that
belong to the class Ve (0). This class of functions is characterized by specific properties that are
influenced by the parameter 6. To determine whether a function ®(3) is a member of Vi (9), we
analyze its coefficients through the lens of the Mittag-Leffler function and the modified Tremblay

operator.

Theorem 2.1. Let (1) as the value of ® = v + 7. If G(z) € VKS(0),

(ZAZ%E( CO)(E-1)) 4+ 26+ D) (E-1) +1—(5(E~1) —|—1)]iEC§+

ia
=1

[ZAME( CO)(E-1)) + (2641 (E-1)+1-(6(E-1 +1)

<1 (12)

Proof: We implement equation(9)

UMRELIO) *“(Zr ? ))( (ﬁ—i 5 )C53 +(Z=: ? ;)( (ﬁf?;( 5 i

where,

)(F(ﬁ Jr(yaz);)(a)g) = A

L (Aaﬁg 8(£6-2) (§-1))+(264+1) (1) +1cc£(3) ) ? (0(6- z)(a—1>>+<zé+1><a—1>+1dga<?f‘l)

J‘ry+ / ~ \/ \_/
1018 |es
A

—_

E(AW( 5((£-1)+1)ee 5()) 3+ T (A ,5<6(5—1>+1>adg®£)

1

A
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i( aﬁé )&~ 1))+(26+1)(5—1)+1)c£5(3)£—1+1
=2
é=1
iAZZ’é 5(E=1) +1)cs&(3)° - —iA%/g(é(g_”Jﬂ)ng@é -1
=2 —
We take 3l =r,0<r<1
y (A;,,;,E(é(é_z)(é_l))+(26+1)(£ 1 +1Céé)+1+(i( V)/ 5 1))

&=2 &=1

[ee]

+(26+1)(£—1)+1d55)—Z(AZ’;£( (E-1)+1 cgg) 1-

Mg

A (05 =1) + 1)&dg) ) < 1

&=2 g:l
Which implies the result,
i aﬁg( N(E=1)) + (26 +1)(& +1) iAaﬁg( 5(E-1 —|—1)Z£c5
=2 =2
(ZA ( NE-1)) + (26+1)(5—1)+1)—51AZ{’;£(6(5—1)+1)J;&Z§§1

In order to preserve brevity in this piece of work, we will assume,

ke (0) =[ 2 GE-2E-1) + @+ DE-1)+1)- A% (s - 1) +1)

Unless particularly specified. The coefficient estimates for functions in Vaz () are provided in the following

result.

Theorem 2.2. Let (3) € Vac(0)

1
Cg = m,é = 2,3,... (13)
d , 14
£= ékg( ] &= (14)

For the functions ©(3) given the outcome is accurate.

[0e]

—s+2€k 5+ z%gé (1)

Proof: If G (3) € Vac(0), then we have, for each &

g (8)ce < ke (O)de < Y Ehe(8)ee < Y Eke(8)de <1
=1

£=2
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Furthermore, we have

=1
cx <
,SZ‘:Z cke(0)
> 1
%< ) Tw

Since

- 1 - 1
6c(3) = ¢ ¢
£(3) 3+;5k5(6)3 +;£k5(6)3

accomplishes the specifications of Theorem 2.1, ©:(3) € Vae(0) and for this function, equality is achieved.

3. DISTORTION BOUNDS

Theorem 3.1. Let 6(3) € Vae(0),therefore

1 _ 1 1 _
—mr—kg(é)rs|®(3)|Sr+ké(6)r+mr (16)

The outcome is accurate for

1 1 _
63) =3+ 3+ ——3 (17)
ke(0)"  ke(0)
: _ Y 1 i, v 1 =%
Proof: If $(3) =3+ 5§2 T 3¢+ g§1 T we take
(o) 1 (o) 1 _E (o) _ (e
16G)I <3+ 3£+ < r+ry ce+r )y de
;22 ke (0) ; ke (0) ;22 ,;
Then,
- 1 - 1
S ——=, de <
;_2 £(0) 52_1 ke (9)
This contributed to us to,
1 1
6G3) <r+ T+ r
ke(6) ke (0)
Likewise,
16(3)| > - !, 15

Exectly like the following also is applicable:

Theorem 3.2. Let (3) € Vac(0), therefore

1 1 1 1
<SG+ ——+ —— (18)

ke(d)  ke(0)
The outcome is accurate for the function given by (16).
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4. CONVOLUTION AND CONVEX COMBINATION

In this section, we establish the invariance properties of the function class (3) within the class
Vaz(0). Specifically, we prove that the class ®(3) retains its membership in Vgz(0) under the
operations of convolution and convex combination.

Convolution and convex combination are fundamental operations in the analysis of functions, and
proving that 6(3) is closed under these operations is crucial for understanding the stability and
structural properties of this function class.

Invariance under convolution indicates that the combined effect of two functions within the class
also belongs to the same class, preserving key properties. Similarly, invariance under convex
combination ensures that any weighted average of functions in the class remains within the class,
reflecting the robustness of Vaz(6) under linear combinations.

By proving these invariance properties, we demonstrate the robustness and stability of the class
®(3) under these common function operations, providing deeper insight into the structure and
applications of functions within Vg (9).

If harmonic functions ® of the form

=3+ leeht+ ) el (19)
E=2 &=1

G(3) =3+ ) ICels + ) IDeJ5* (20)
E=2 &=1

The definition of the convolution of G(3) and ®(3) is
(6+G)(3) = 6(3)+G(3) = ) leellCels® + ) dellDe5* (21)
=2 =}

Theorem 4.1. [f0 <6< C<1,and G € Vgs(C), (G*G) € Vae(0) € Vas(Q)

When the convolution
(6 +G) € Vas(0) € Vas(0) (22)

Proof: Then the convolution (® * G) is given by (21). We wish to show that the coefficients (® * G) of
satisfy the required condition given in Theorem 5 For Vag(C) we note that |Cs| < 1 and |D¢| < 1.Now, for

the convolution function (® * G) ,we obtain

o0

Y leclCel+

=2

§ Aaﬁé((é(é =2)(E-1)) + (20 +1)((£-1) + 1)) - gl AZ',Z,é(‘S(é -1+ 1)
1

faet

Y 1clDe|

(Z A6 -2)E-10)+ o+ D(E-1 + D)= £ A (s (5—1>+1)) .
1
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<

(z Al 0E=2E-1) + ot (E-1 +1) - £ AT (oe-1)+1)
1

i lesl+
=2

Z Aaﬁg(( (E-2)(E-1))+ 20+ 1)((E-1) + 1))_;/\%5(5(5_ 1) + 1)
1

; el

Therefore,
L A% (0E-2)E-1) + @+ 1)(E-1) +1))- T A (o6 -1)+1)

&=2 =1 -
( 1 )Z leel+
=2

Z Aaﬁg(( (5—2)(5—1))+(26+1>((é—1)+1)) Z Aaﬁé( (5_1>+1)
1

iildd)ﬁ‘l
=1

Then0<060<C<1,andGe VRS(C)/ (@*G) S Vg{g(é) Cc Vg 5(C)
Theorem 4.2. Consider a convex linear combination, class Vg (C) is closed.
Proof: Ifk = 1,2, ..., suppose that ®; € Vaz(C)

=3+ Y leels® + ) ldeli’ (23)
&=2 &=1

0]

Y e+

=2

Z|d§k|] <1

T A0 =2)E - 1)+ o+ (e =1 +1))= T A7 (oe 1) +1)

<

1

o)

E=2 1

[EALZ (-2 + @+ (-0 +1)- X AT

1

If Y. tx = 1,0 <ty < 1,the convex combination of ®y it might be written as

=1
Y BOk(3) =3+ ) trlesals® + ) tildeidi® (24)
&=1 £=2 &=1
By the theorem(5) we take,

v,y _
1Aa/ﬁ£(6(5 1)+ 1)

ngZiyﬁ,a(<5<5 —2)(E-1))+ (26 +1)((E-1) + 1))_
1

s

&

(f aﬁg(( (€~ 2)(5—1))+(25+1)((E—1)+1))—5§1AZ’,‘VB£(5(5_1)+1)
1

Z tk|d£,k|) <1
=1
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Z Cglk"f‘

&=

Z Aaﬁé((é(é—Z)(é—l))+(26+1)((5—1)+1)) § Aaﬁé( (5_1)+1)) N
1

e

k=1

[o¢]

) Aaﬁg(( (&- 2)(5—1))+(25+1)((£—1)+1)) Z Aaﬁé( (5_1)+1)

£=2 =
1 ] Z dg/k) <1
=1

We substitute Y t, =1
k=1

iAaﬁg(< (&- 2)<5—1)>+(26+1>((5—1)+1)) ; Aaﬁé( (5‘1)“) =
- 1 - Zlcéf,k|+
£=2
» AZ’fﬁ'lg((é(é—Z)(é—l))+(25+1)((5—1)+1)) Z Aaﬁé( (5_1)+1) N
(“ 1 Y |dg,k|] <1
&=1

Therefore Y, tr, ©x(3) € Vac(0) € Vas(0).
k=1

Corollary 4.1. Convex linear combinations result in the class Vqg(0) is closed.
Proof: Let Vq(0) be the class that contains the functions ®y(3)(k = 1,2, ...) described by (23). After that
is finished, the function )(3) defined by

h(3) = w6 (3) + (1-w)043,0<w < 1 (25)
be in the class Vg (0)

The following theorem explained the neighbourhood result for the class Vaz(0).

5. NEIGHBOURHOOD FOR THE CLASS Vg (0)

Following our discussion on the invariance properties of the function class (3) within Vqg(9),
we next focus on the inclusion of all neighborhoods related to the inclusion relation. This step
employs Ruscheweyh’s approach to analyze and explain the (1, )-neighborhood of a function
®(3) € Vas(0).

Ruscheweyh’s approach provides a systematic method to define and understand the neighbor-
hoods of functions within certain classes, facilitating the study of their stability and inclusion
properties. By examining the (1, )-neighborhood, we can determine how small perturbations
in the coefficients affect the membership of functions within Vaz(6). This analysis is crucial
for understanding the robustness of functions in this class under various transformations and

perturbations.
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Theorem 5.1. Let
1

E A (@e-2 -0 + @o+ (-1 + D)= E A7 (o(e-1)+1)
i=

p= + o (@26)

! <1
(Z Aaﬁg(( (5—2>(£—1>)+(26+1)((£—1)+1)) Z AW( (5—1)+1)D

that is Vas(0) € Nnﬁ( e)
Proof:If ® € Vg (0),then

Aaﬁg(( (E-2)(E-1))+ 26+ 1)((£-1) +1) ZAQM( £-1) +1))5C5+

§d5<1

iAZ’;,E((é(é—2)(£—l))+(26+1 (E-1 +1) ZA ( (E-1 +1)

&=2

(e}

Z§C5+
nga <1

i/\aﬁé(( 5(E—2)(E-1)) + (26 +1)((E-1 +1) ZA”’( (E-1 +1)
=2

ZAME( NE=1)) + (26 + 1)((E~1 +1) ZA ( £-1) +1)

and which implies

ié% —}—iédg
&

é=1

=2
S(( 1 )
YA v (( (&- 2)(5—1))+(25+1)((5—1)+1))_§ A%é(é(g_l)ﬂ)

£=2 1

+ =p

1
Az (6E=2)E-1)+ o+ D((E- 1) +1) - ZA””(<5—1>+1)J

NSk

2
6. EXTREME POINTS

After that, applying the expression clco Vgs(0), we derive the extreme points of the closed
convex hulls of Vge(0).

Theorem 6.1. Consider ® to be established using (21). Then ® € Vg (0) if and only if

) = Y [Heve (3) + L7 (3)], 27)

£=1
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Where
01) = 3ve(s) = : £, (£=23,),
E Al{0E-2E-10)+ o+ 1(@-1+0)- I A7 (-1 +1)
1:(3) =3+ = ! = F(E=12.),
L A% (E-2E-1)+ @+ 1)(E-D+1)- T A7 (o(e-1) +1)
g=2 M =1 M

Hy =1, ) He+ ). Ie 2 0,Hs > 0,Ig > 0. The extreme points of Vag(0) are especially vg and 7.
=2

E=
Proof:We have the following form © functions with form (27):

ZH«EUE 3) + I1:(3)],

£=1
S 1

(He +15)3 + — 3°

L I A (0= =1) + @+ 1) -1 +1) = £ AT [o(e-1) +1)
1 ¢

+ 3

I A (0€-2(E-1) + @+ 1)((€-1) +1) = £ AT [o(e-1) +1)

We get

(Z%AH&M&W+WHM&DW)Z%A@4H%

1
— ! H:+
I A (0E-2)E-1) + o+ (-1 +1)= T A7 (e -1)+1)
I A0 =21+ @+ 1((e-1) +1) = £ AT [o(e-1)+1)
= 1 |
1 I

éAvV (( (5_2)(5—1))+(25+1)((5—1)+1))—§1AZ§’€(5(5—1)+1)

:ng—FiIg <1
= =1

then ® € coloVg(0). Consider, however that ® € coloVgs(0) Setting,

Azigé((é(é —2)(E-1))+ (26 +1)((E—1) + 1)) - AZ’ZS((S(E “D+ 1)

He = : = leel,0 < He <1, =1,2,3, ...

A (6(E=2(E=1) + @+ 1D(E-1) + 1)) = A2 (o6 -1) +1)
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and Hy =1, ), Hg + )., Iz > 0 observe that, according to Hy > 0. As a result, we acquire
g=2 &=1

[Heve(3) + Igﬁé(ﬁ) as needed.
1

6(3) =

s

7. APPLICATIONS:

They are used in conformal mapping, which is essential in complex analysis, fluid dynamics,
and other areas of applied mathematics. They appear in numerous problems in mathematical
physics, such as in the study of differential equations, and are also crucial in probability theory
and statistics. They are used to model physical phenomena where equilibrium states are studied,
such as temperature distribution in a steady-state. It is used in modeling processes with memory
effects and in fractional calculus. It is employed in various inequality analyses and in the study of

function spaces and their properties.

8. CONCLUSION:

In this paper we explained about the harmonic univalent functions ® = v + 7] defined in the
open unit disc p. The convolution featuring the Mittag-Leffler function and fractional operator
is applied to generate the family of harmonic univalent Vgs. Analysing Mittag-Leffler function
convolution with modified tremblay operator inequality as a necessary and sufficient condition
for univalent harmonic functions related to specific generalized Mittag-Leffler functions to be in

the function class Vg (0) is the aim of this research.
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