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Abstract. This contribution targets the solution of fractional differential equations (FDEs) via novel iterative approach

and in a new class of nonlinear mappings. Our approach is based on the class of (α, β,γ)-nonexpansive mappings

and three-step M-iterative scheme. Under various assumptions, we first carry out some weak and strong convergence

results in a setting of a Banach spaces. After this, we carry out an application of one our main result to find approximate

solution for a broad class of FDEs. Eventually, we we construct a new example of (α, β,γ)-nonexpansive mappings

and show that this new mapping is not continuous on its whole domain and hence it is not nonexpansive. Using

this example, we perform a numerical simulation of various iterative scheme including our M-iterative scheme. It has

been observed the numerical effectiveness of the M-iterative scheme is high as compared to the other iterative schemes.

Accordingly, our main outcome is new/extends some known results of the literature.

1. Introduction and Preliminaries

Let V be a norm linear space and E , ∅ be a subset of V. A mapping Q : E → E is called a

contraction mapping on E if ∀t, y ∈ E, we have

||Qt−Qy|| ≤ α||t− y||, for some fixed α ∈ [0, 1).

Numerical computation of nonlinear operator is attention grabbing field for many researcher.

In recent years, the theory of fixed point iterations has found numerous important applications

for solving various classes of differential equations, particularly boundary value problems (see,
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e.g., [1–3] and others). Initially, The Banach Contraction Principle (BCP) [8] with the help of

Picard [20] iterative scheme make significant contribution in the field of Fixed Point Theory but

Picard iteration in general is not effective in the case of nonexpansive mappings. This is shown in

example given below.

Example 1.1. Suppose E = [0, 1] and Qt = −(t − 1). Then Q is nonexpansive but not contraction. It
follows that Q admits a fixed point and the point s0 = 0.5 is the only fixed point of Q. Notice that, for each
t1 = t ∈ E− {0.5}, the Picard [20] iteration of Q generates the following sequence,

t, 1− t, t, 1− t, ...

This sequence does not converge to the fixed point s0 = 0.5 of Q.

With the passage of time, different researchers (cf. Browder [9], Gohde [11] and others) intro-

duced useful assumptions by considering a closed, convex and bounded subset of a uniformly

convex Banach (UCB) space so that a self nonexpansive mapping has at least one fixed point. In

the same year, Kirk [16] obtained the Browder–Gohde fixed point result in the setting of reflexive

Banach spaces. The first notable generalization of nonexpansive mappings is due to Suzuki [24].

Suzuki introduced a condition called condition (C) for mappings and proved that every nonex-

pansive mappings obviously satisifis the condition (C) but the vice versa is not hold. A mapping

with condition (C) is sometimes reffered to as a Suzuki mapping. A self map on a subset E of a

Banach space is said to be with condition (C) or Suzuki mapping if for each two element t, y ∈ E,

we have
1
2
||t−Qt|| ≤ ||t− y|| ⇒ ||Qt−Qy|| ≤ ||t− y||.

Another generalization of nonexpansive mappings was introduced by Aoyama and Kahsoka [7]

as follows. A self map on a subset E of a Banach space is said to be α-nonexpansive if for each two

element t, y ∈ E, we have

||Qt−Qy||2 ≤ α||t−Qy||2 + α||y−Qt||2 + (1− 2α)||t− y||2,

where α ∈ [0, 1].

Very recently, a new generalization of nonexpansive mappings was presented by Ullah and

Ahmad [27] as follows.

Definition 1.1. [27] A mapping Q on a subset E of a Banach space is called (α, β,γ)–nonexpansive if

‖Qt−Qy‖ ≤ α‖t− y||+ β‖t−Qt‖+ γ‖t−Qy‖ ∀t, y ∈ E,

and here the scalars α, β,γ ∈ R+ with the conditions γ ∈ [0, 1) and α+ γ ≤ 1.

As demonstrated in Example 1.1, Picard’s iteration generally diverges within the fixed point set

of nonexpansive mappings. This example motivate researcher for development of other iterative

methods to find fixed point of nonexpansive (also generalized nonexpansive) mappings, like,
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the iterative methods due to Mann [17] , Ishikawa [12], Noor [18], Agarwal [6], Abbas [4], and

Thakur [26]. Ullah and Arshad [28] suggested the iterative scheme M as follows:

t0 ∈ E,

zn = (1−ψn)tn +ψnQtn,

yn = Qzn,

tn+1 = Qyn.


(1.1)

The main advantages of the M-iterative scheme (1.1) over the other iterative schemes of the

literatur are that it needs only one parameter ψ and secondly, Ullah and Arshad [28] proved that

the M-iterativ scheme (1.1) in the broad class of mappings due to Suzuki [24] is faster than the many

other iterative schemes of the literature. Keeping in view of these advantages of the M-iterative

scheme, we use analyzed it with the class of α, β,γ–nonexpansive mappings and prove that our

main outcome is applicable in a borad class of differential equations. The results are then we

support by a new numerical example.

Definition 1.2. Let V denotes a Banach space and {tn} ⊆ V be bounded. If ∅ , E ⊆ V is convex and
closed. Then the asymptotic radius of {tn} corresponding to E is defined as

r(E, {tn}) = inf{lim sup
n→∞

||tn − s|| : s ∈ E}

Similarly, the asymptotic center of the sequence {tn} corresponding to E is explained by the formula

A(E, {tn}) = {s ∈ E : lim sup
n→∞

||tn − s|| = r(E, tn)}

Remark 1.1. IfV denotes a UCB space [10], then it is well-known thatA(E, {tn}) contains an only element.
Also note that when E is convex as well as weakly compact then A(E, {tn}) is convex(see e.g., [5, 25] and
others).

Definition 1.3. [19] A Banach space V is said to be equipped with the Opial’s condition iff {tn} ⊆ V

whenever converges in the weak sense to s0 ∈ E, then the following condition must be valids:

lim sup
n→∞

||tn − s0|| < lim sup
n→∞

||tn − e0|| ∀e0 ∈ V− {s0}.

Every Hilbert space is equipped with the Opial’s condition.

Definition 1.4. [22] A mapping Q defined on a subset E of a Banach space V is said to be equipped
with the condition (I) iff one has a function q : [0,∞) → [0,∞) such that q(0) = 0, q(r) > 0 for every
r ∈ [0,∞) − {0} and ||t−Qt|| ≥ q(d(t, FQ)) whenever t ∈ E. Here, d(t, FQ) is the distance of t to FQ.

Lemma 1.1. [27] Suppose Q is (α, β,γ)–nonexpansive mapping on a subset E of a Banach space with a
fixed point, namely, s0. Then ‖Qt−Qs0‖ ≤ ‖t− s0‖ holds for all t ∈ E and s0 ∈ FQ.

Lemma 1.2. [27] Let Q be an (α, β,γ)–nonexpansive mapping defined on a subset E of a Banach spaceV.
The set FQ is closed. Additionally, if E is convex andV is strictly convex, then FQ is also convex
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Lemma 1.3. [27] Suppose Q is (α, β,γ)–nonexpansive mappings on a subset E of a Banach space. Then
for all t, y ∈ E, we have

‖t−Qy‖ ≤ (1+β)
(1−γ) ‖t−Qt‖+ α

(1−γ)‖t− y‖

Lemma 1.4. [27] IfQ is (α, β,γ)–nonexpansive mapping, {tn} is weakly convergent to s and limn→∞ ||Qtn−

tn|| = 0, then s ∈ FQ provided thatV is equipped with the Opial’s condition.

2. Main Results

Now we are in the position to connect the M iterative scheme (1.1) with (α, β,γ)–nonxpansive

mapping. The first result of this section is the following basic lemma.

Lemma 2.1. Let V be a UCB space and ∅ , E ⊆ V be closed and convex. If Q : E → E is (α, β,γ)–
nonxpansive mapping satisfying FQ , ∅ and {tn} a sequence of M iterates (1.1). Then for each s0 ∈ FQ, it
follows that, limn→∞ ||tn − s0|| exists.

Proof. If s0 ∈ FQ is any element, then applying Lemma 1.1 on the (1.1), we have

||zn − s0| = ||(1−ψn)tn +ψnQtn − s0||

= ||tn − tnψn +ψnQtn − s0||

≤ (1−ψn)||tn − s0||+ψn||tn − s0||

≤ ||tn − s0||. (2.1)

Using (2.1) and Lemma1.1, we have

||yn − s0|| = ||Qzr − s0||

≤ ||zn − s0||. (2.2)

From (2.2) and (2.1)

||tn+1 − s0|| = ||Qyn − s0||

≤ ||yn − s0||

≤ ||zn − s0||. (2.3)

It can be observed from (2.1), (2.2) and (2.3) that ||tn+1 − s0|| ≤ ||tn − s0|| i.e., {||tn − s0||} is essentially

bounded and also non-increasing. This means that limn→∞ ||tn − s0|| exists for each element s0 of

FQ. �

For existence of fixed points, this theorem elaborate necessary and sufficient assumptions.

Theorem 2.1. Let V represents a UCB space and ∅ , E ⊆ V be closed and convex. If Q : E → E is
(α, β,γ)–nonxpansive mapping satisfying FQ , ∅ and {tn} is a sequence of M iterates (1.1). Then, FQ , ∅
⇐⇒ {tn} is bounded and satisfies limn→∞ ||tn −Qtn|| = 0.
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Proof. To prove this, we first assume that FQ , ∅. Threfore, for any s0 ∈ FQ, Lemma 2.1 suggests

that {tn} is bounded and limr→∞ ||tn − s0|| exists. Consider

lim
r→∞
||tn − s0|| = e (2.4)

we need to prove limn→∞ ||tn −Qtn|| = 0 Now from (2.1)

||zn − s0|| ≤ ||tn − s0||

⇒ lim sup
n→∞

||zn − s0|| ≤ lim sup
n→∞

||tn − s0|| = e (2.5)

Since s0 ∈ FQ , we can apply Lemma 1.1 to get

||Qtn − s0|| ≤ ||tn − s0||

⇒ lim sup
n→∞

||Qtn − s0|| ≤ ⇒ lim sup
n→∞

||tn − s0|| (2.6)

Now from (2.3), we have

||tn+1 − s0|| ≤ ||zn − s0||

Using this together with (2.4), we obtain

e ≤ lim inf
n→∞

||zn − s0||. (2.7)

From (2.5) and (2.7), we obtain

lim
n→∞
||zn − s0|| = e (2.8)

Since ||zn − s0|| = ||(1−ψn)(tn − s0) +ψn(Qtn − s0)||, so using this together with (2.8), we get

e = lim
n→∞
||(1−ψn)(tn − s0) +ψn(Qtn − s0)||. (2.9)

Considering (2.4), (2.6) and (2.9) along with the Lemma 1.1, one gets

lim
n→∞
||tn −Qtn|| = 0.

Conversely, we shall assume that {tn} is essentially bounded with the property limn→∞ ||tn −Qtn|| =

0 and prove that FQ , ∅. To do this, we consider any s0 ∈ A(E, {tn}). By Lemma 1.3, we have

r(Qs0, {tn}) = lim sup
n→∞

||tn −Qs0||

≤
(1 + β)

(1− γ)
||tn −Qtn||+

α

(1− γ)
||tn − s0||

= lim sup
n→∞

||tn − s0||

= r(s0, {tn}).

Thus Qs0 ∈ A(E, {tn}. But the set A(E, {tn}) contains an only point,therefore Qs0 = s0. It implies

s0 ∈ FQ i.e FQ , ∅. �

Now we will prove weak convergence theorem.
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Theorem 2.2. Let V represents a UCB space and ∅ , E ⊆ V be closed and convex. If Q : E → E
is (α, β,γ)–nonxpansive mapping satisfying FQ , ∅ and {tn} a sequence of M iterates (1.1). Then {tn}

converges weakly to a point of FQ provided thatV is proclaimning Opial’s condition.

Proof. As given V is a UCB space and according to the Theorem 2.1, {tn} is bounded. It follows

that there is a point, namely, t0 ∈ E such that a subsequence, namely, {tnm} of {tn}weakly converges

to it. From Theorem 2.1, it is clear that limm→∞ ||tnm −Qtnm || = 0. Using Lemma 1.2, t0 ∈ FQ. We

want to prove that the point t0 is an only weak limit of {tn}, contrary we suppose that t0 cannot

become a weak limit for {tn} i.e there exists another subsequence, namely, {tns} of {tn} with a weak

limit, namely, t′0 , t0. From Theorem 2.1, it is annotated that lims→∞ ||tns − Qtns || = 0. Applying

Lemma 1.2 t′0 ∈ FQ. Using Opial’s condition ofV along with the Theorem 2.1, we get

lim
n→∞
||tn − t0|| = lim

t→∞
||tnm − t0|| < lim

m→∞
||tnm − t′0||

= lim
r→∞
||tn − t′0|| = lim

s→∞
||tns − t′0||

< lim
s→∞
||tns − t0|| = lim

n→∞
||tn − t0||.

Thus, we get limn→∞ ||tn − t0|| < limn→∞ ||tn − t0||, which is a contradiction. Hence we must accept

that t0 is a weak limit of {tn} and so we have reached to the required target. �

Now proving strong convergence of M iterative scheme.

Theorem 2.3. Suppose E is convex and compact subset of a UCB space V and Q : E → E is (α, β,γ)–
nonxpansive mapping satisfying FQ , ∅ and {tn} a sequence of M iterates (1.1). Then sequence {tn} converges
strongly to some fixed point of FQ.

Proof. Since E is convex and compact, therefore sequence {tn} ⊆ E has a convergent subsequence.

We donate this sequence by {tnm} with a strong limit s0 ∈ E i.e., limnm→∞ ||tnm − s0|| = 0. Suppose

t = tnm and y = s0, then applying Lemma 1.3, we have

‖tnm −Qs0‖ ≤
(1 + β)

(1− γ)
‖tnm −Qtnm‖+

α

(1− γ)
‖tnm − s0‖ (2.10)

By Theorem 2.1, limnm→∞ ||tnm − Qtnm || = 0 and also limnm→∞ ||tnm − s0|| = 0. Accordingly (2.10)

provides limnm→∞ tnm = Qs0. Since the limit of tnm is unique, we have Qs0 = s0, that is, s0 ∈ FQ. By

Lemma 2.1 limn→∞ ‖tn − s0‖ exist. Consequently we have proved that s0 ∈ FQ and tn → s0. �

Now removing compactness condition on E and proving strong convergence theorem as follows.

Theorem 2.4. Suppose that E is closed and convex subset of UCB space V. If Q : E → E is (α, β,γ)–
nonxpansive mapping satisfying FQ , ∅ and {tn} a sequence of M iterates (1.1). Then {tn} converges strongly
to a point FQ whenever lim infr→∞ d(tn, FQ) = 0

Proof. For any s0 ∈ E, from Lemma 2.1 limn→∞ ||tn − s0|| exist. It follows that lim infn→∞ d(tn, FQ)
also exist. Accordingly lim infn→∞ d(tn, FQ) = 0. Hence two subsequences of tn namely {tnm} and
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{sm} exist in FQ with property ‖tnm − sm‖ ≤
1

2m . We need to prove that {sm} is Cauchy in FQ. To do

this, using Lemma 2.1 to write that {tn} is nonincreasing. Thus, we have

‖sm+1 − sm‖ ≤ ‖sm+1 − tnm+1‖+ ‖tnm+1 − sm‖ ≤
1

2m+1
+

1
2m .

It follows that limm→∞ ‖sm+1 − sm‖ = 0. Hence it is proved that {sm} is Cauchy in FQ. According

to the Lemma 1.2 that FQ is closed, hence {sm} converges to some q0 ∈ FQ. By Lemma 2.1,

limn→∞ ||tn − q0|| exists and hence q0 is the strong limit of {tn}. �

Theorem 2.5. [23] Consider E as convex and closed set in any given UCBS V. Set Q : E → E is an
(α, β,γ)-nonexpansive nonlinear operator satisfying the condition FQ , ∅. If the sequence {tn} is essentially
obtained from M fixed point scheme (1.1). Then {tn} converges is the strong sense to an element of FQ when
Q admits a condition (I).

Proof. We establish this result by applying Theorem 2.4. For this, from the Theorem 2.1, we have

lim infn→∞ ||Qtn − tn|| = 0. By applying condition (I) of Q, we have lim infn→∞ ds(tn, FQ) = 0. It

follows from Theorem 2.4 that {tn} has a strong limit in FQ. This completes the proof. �

3. Application

Recently, some authors have solved FDEs using fixed point techniques (see, e.g., [13,15]) within

the framework of nonexpansive nonlinear mapping. But we know that all nonexpansive mappings

continuous functions, therefore, our alternative in this paper, we will solve a FDE in the class of

(α, β,γ)–nonexpansive mappings that are not always continuous on their whole domain. Also,

we suggest the M iterative scheme (1.1) that is more effective than the many iterative schemes for

approximating the solution.

The following FDE is well-known and appears in many areas of applied sciences.

Dζw(x) + L(x, w(x)) = 0,

w(0) = w(1) = 0,

 (3.1)

where, x ∈ [0, 1], (1 < ζ < 2) and ζ is order of caputo fractional derivative Dζ and L : [0, 1]×R→ R.

Now we considerV = C[0, 1], where C[0, 1] is the Banach space of continuous maps on [0, 1] to

R equiped with the maximum norm. The corresponding Green’s function with (3.1) is defined by

G(u, v) =


1

Γ(ζ) (u(1− v)(ζ−1)
− (u− v)(ζ−1) when 0 ≤ v ≤ u ≤ 1

u(1−v)(ζ−1)

Γ(ζ) when 0 ≤ u ≤ v ≤ 1.

The main result is provided in the following way.

Theorem 3.1. IfV = C[0, 1], then set an operator Q : E→ E by the formula

Q(w(x)) =
∫ 1

0
G(x, y)L(y, w(y))dy, for each w(x) ∈ V.
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If

|L(y, w(y)) − L(y, z(y))| ≤ α‖w(y) − z(y)||+ β‖w(y) −Qw(y)‖+ γ‖w(y) −Qz(y)‖,

then, the M iterates (1.1) assoicated with the Q (as defined above) essentially converges to some solution of
(3.1), namely, w0 ∈ V.

Proof. w ∈ V will solve (3.1)⇔ it solves

w(x) =
∫ 1

0
G(x, y)L(y, w(y))dy.

Let w, z ∈ V and 0 ≤ x ≤ 1, it follows that

||Q(w(x)) −Q(z(x))|| ≤

∣∣∣∣∣∣
∫ 1

0
G(x, y)L(y, w(y)))dy−

∫ 1

0
G(x, y)L(y, z(y))dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0
G(x, y)[L(y, w(y)) − L(y, z(y))]dy

∣∣∣∣∣∣
≤

∫ 1

0
G(x, y)

∣∣∣L(y, w(y)) − L(y, z(y))
∣∣∣ dy

≤

∫ 1

0
G(x, y)(α‖w(y) − z(y)||+ β‖w(y) −Qw(y)‖+ γ‖w(y) −Qz(y)‖)dy

≤ (α‖w(y) − z(y)||+ β‖w(y) −Qw(y)‖+ γ‖w(y) −Qz(y)‖)(∫ 1

0
G(x, y)dy

)
≤ α‖w(y) − z(y)||+ β‖w(y) −Qw(y)‖+ γ‖w(y) −Qz(y)‖

Finally, we have

||Q(w(x)) −Q(z(x))|| ≤ α‖w(y) − z(y)||+ β‖w(y) −Qw(y)‖+ γ‖w(y) −Qz(y)‖.

As Q is (α, β,γ)–nonxpansive mapping and according to our main results, M iterates sequence

converges to a fixed point of Q and hence to the solution of the given equation. �

4. Numerical Example

M iteration scheme indubitably exhibit faster convergence rate as compare to other iterative

scheme using in connection with (α, β,γ)–nonxpansive mapping. Observation are given below

with the help of numerical example.

Example 4.1. Let E = [0, 3] ⊂ V and Norm on E be defined as ||.|| = |.|, α = 2
3 , β = 1

3 , γ = 1
3 . Defined

function Q : E→ E as

Qt =

 t+3
3 if t ∈ [0, 2]

1 if t ∈ (2, 3].

is
(

2
3 , 1

3 , 1
3

)
–nonexpansive but not non-expnasive mapping.
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Proof. Observe that Q is not continuous on 2, it follows that the mapping Q is not nonexpansive.

Now we prove that the given mapping is
(

2
3 , 1

3 , 1
3

)
–nonexpansive and thus we proceed as follows.

Case(I): If t, y ∈ [0, 2], then

α‖t− y||+ β‖t−Qt‖+ γ‖t−Qy‖ =
2
3
‖t− y||+

1
3
‖t−

t + 3
3
‖+

1
4
‖t−

y + 3
3
‖

=
2
3
|t− y|+

1
3
|t−

t + 3
3
|+

1
4
|t−

y + 3
3
|

=
2
3
|t− y|+

1
9
|2t + 3|+

1
12
|3t− y− 3|

≥ ‖Qt−Qy‖

Case(II): If t, y ∈ (2, 3], then

α‖t− y||+ β‖t−Qt‖+ γ‖t−Qy‖ =
2
3
‖t− y||+

1
3
‖t− 1‖+

1
4
‖t− 1‖

=
2
3
|t− y|+

1
3
|t− 1|+

1
4
|t− 1|

≥ |Qt−Qy|

Case(III): If t ∈ [0, 2] and y ∈ (2, 3], then

α‖t− y||+ β‖t−Qt‖+ γ‖t−Qy‖ =
2
3
‖t− y||+

1
3
‖t−

t + 3
3
‖+

1
4
‖t− 1‖

=
2
3
|t− y|+

1
3
|t−

t + 3
3
|+

1
4
|t− 1|

=
2
3
|t− y|+

1
9
|2t− 3|+

1
4
|t− 1|

≥ |Qt−Qy|

Case(IV): If y ∈ [0, 2] and t ∈ (2, 3] then

α‖t− y||+ β‖t−Qt‖+ γ‖t−Qy‖ =
2
3
‖t− y||+

1
3
‖t− 1‖+

1
4
‖t−

y + 3
3
‖

=
2
3
|t− y|+

1
3
|t− 1|+

1
4
|t−

y + 3
3
|

=
2
3
|t− y|+

1
3
|t− 1|+

1
12
|3t− y− 3|

≥ |Qt−Qy|

�

Now we connect Mann [17], Ishikawa [12], Noor [18], Agarwal [6], Abbas [4] and M [28] with

this example. The observations are listed in the Table 1 and Figure 1.
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Figure 1. Analysis of behaviors using graphs of various fixed point iterations.

Table 1. Numerical results produced by M, Abbas, Agarwal, Noor, Ishikawa and

Mann iterates.

n M Abbas Agarwal Noor Ishikawa Mann

1 0.000000000 0.000000000 0.000000000 0.000000000 0.00000000 0.000000000

2 1.357777778 1.292633333 1.048400000 0.272433333 0.268400000 0.220000000

3 1.486515226 1.471332710 1.364038293 0.495386719 0.488774293 0.407733333

4 1.498721444 1.496036906 1.459066462 0.677846815 0.669716279 0.567932444

5 1.499878774 1.499452124 1.487676276 0.827168104 0.818281713 0.704635685

6 1.499988506 1.499924259 1.496289738 0.949369328 0.940263838 0.821289118

7 1.499998910 1.499989529 1.498882964 1.049376094 1.040419296 0.920833381

8 1.499999897 1.499998552 1.499663698 1.131219410 1.122653603 1.005777819

9 1.499999990 1.499999800 1.499898751 1.198198160 1.190173452 1.078263739

10 1.499999990 1.499999972 1.499969517 1.253012081 1.245611749 1.140118300

11 1.500000000 1.499999996 1.499990823 1.297870576 1.291130287 1.192901026

12 1.500000000 1.499999999 1.499997237 1.334581771 1.328504041 1.237942209

13 1.500000000 1.499999168 1.364625397 1.359190384 1.276377352

14 1.500000000 1.499999750 1.389212433 1.384385918 1.309175340

15 1.499999925 1.409333917 1.405073131 1.337162957

16 1.499999977 1.425800893 1.422058712 1.361045723

17 1.499999993 1.43927710 1.436005007 1.381425684

18 1.499999998 1.450305728 1.447455844 1.398816584

19 1.499999999 1.459331312 1.456857745 1.413656818

20 1.500000000 1.466717649 1.464577333 1.426320485

21 1.500000000 1.472762464 1.470915629 1.437126814



Int. J. Anal. Appl. (2024), 22:124 11

5. Conclusions

The article produced the following new results.

(i) The three-step M-iteration procedure is connected with (α, β,γ)-nonexpansive nonlinear

mappings and several convergence (weak and strong) results are obtained.

(ii) We provided a novel example which has the property of (α, β,γ)-nonexpansive map-

pings and proved that unlike nonexpansive mappings, a mapping in the class of (α, β,γ)-

nonexpansive mappings may not thoughout continuous on its whole domain.

(iii) We connect several iterative schemes with this example including our three-step M-iterative

scheme, and proved numerical that the effectiveness of M-iterative scheme is essentially

high accurate than the other iterative schemes.

(iv) An application to solve a FDE is provided based on our main outcome.

(v) Thus, our findings consolidate the primary outcome of Ullah and Arshad [28] within the

context of Suzuki mappings, extending it to encompass (α, β,γ)-nonexpansive mappings.

Similarly, our results represent enhancements and refinements of the findings by Agarwal

[6], Abbas [4], and Thakur [26], transitioning from nonexpansive and Suzuki mappings to

the realm of (α, β,γ)-nonexpansive mappings, while also addressing the issue of accelerated

convergence.
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publication of this paper.
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