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Abstract. In this paper, we introduce a geometric version of the F iteration process. We establish some strong and

weak convergence results for our proposed iteration process in the setting of generalized contractive mappings. We

also prove stability of our proposed iteration process. Additionally, we support our analysis with polynomiographs

generated by our proposed iteration process, compared with those from established iteration processes in the literature,

showcasing the superiority and innovation of our approach.

1. Introduction

Fixed point theory continues to hold significant importance in the present era across various dis-

ciplines of science. It provides a framework for studying the existence, uniqueness and properties

of solutions to equations or systems of equations. Existential and computation of fixed point of a

mapping are two different dimensions. In numerical analysis, fixed point iteration is premier and

convenient root finding algorithm. Modern research approach is primary focusing on cost effective

as well as speedy computation. In this regards, fixed point theory is proved to be a simple and

pre-eminent area of research. Fixed point theory reformulate problem as F(x) = 0 and allowing

productive approach towards its solution. Fixed point theory plays a vital role in formulation

of problems occurring in system of linear equations, differential equation, optimization theory or

integral equations.

A mappingF on a nonempty subset B of a Banach space E is called a contraction if for all p, z ∈ B,

the following relation holds

||Fp−Fz|| ≤ ς||p− z||, ς ∈ [0, 1). (1.1)
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k ∈ B is called fixed point of F if Fk = k. Contraction mapping has been generalized in different

directions, one of which is that of Zamfirescu [1]. An operator F : B→ B defined on φ , B ⊂ E is

called Zamfirescu operator if for each p, z ∈ B, at least one of the following conditions satisfied:

(i) ‖Fp−Fz‖ ≤ ς‖p− z‖,

(ii) ‖Fp−Fz‖ ≤ ξ{‖p−Fz‖+ ‖z−Fp‖},

(iii) ‖Fp−Fz‖ ≤ ψ{‖p−Fp‖+ ‖z−Fz‖},

(1.2)

where ς ∈ [0, 1) and ξ, ψ ∈ [0, 1
2 ). Berinde [2] gave the idea of a novel class of operators which is

given as;

‖Fp−Fz‖ ≤ 2δ‖p−Fp‖+ δ‖p− z‖, ∀ p, z ∈ B, (1.3)

where δ = max{ς, ξ
1−ξ , ψ

1−ψ }, ς ∈ [0, 1) and ξ,ψ ∈ [0, 1.5) and B ⊆ E is an arbitrary Banach space.

Berinde has demonstrated that the class (1.3) is bigger than the class of Zamfirescu operator (1.2).

A more general contractive condition than (1.3) is given by Oslike [3]:

‖Fp−Fy‖ ≤ L‖p−Fp‖+ δ‖p− z‖ ,∀ p, z ∈ B , L ≥ 0, δ ∈ [0, 1). (1.4)

Imoru and Olantiwo [4] extends the results of [3] by using the following contractive condition

‖Fp−Fy‖ ≤ ρ{‖p−Fp‖}+ δ‖p− z‖, ∀ p, z ∈ B, (1.5)

where the function ρ : [0,∞)→ [0,∞) is continuous and monotone with ρ(0) = 0 and δ ∈ [0, 1).

Banach Contraction Principle [5] plays an important role in establishing the fixed point of the

mappings described in (1.5). In fixed point theory, number of two steps, three steps and four steps

iteration processes have been introduced in the literature to approximate fixed point of a mapping

(see [6–9]). Let αn be the sequence in (0, 1) for all n ∈N. Picard iteration process [10] is known as

very basic iterative algorithm for computation of fixed point, which is defined as;

xn+1 = Fxn. (1.6)

Mann [11] introduced Mann iteration which is defined as;

u0 = u ∈ B,

un+1 = (1− αn)un + αnFun.
(1.7)

Kanwar et al. coined the idea of simple fixed point iteration method [12] based on approximation

through a straight line. Using that idea, Sharma et al. introduced SH iteration given in [13] that

surpassed the existing of three step iterative schemes, defined as:

x0 = x ∈ B,

zn =
wxn +Fxn

w+ 1
, w ∈ R and w > 0,

yn = Fzn,

xn+1 = Fyn.

(1.8)
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Ali et al. in 2020 introduced F iterative scheme [14] given in for generalized contraction as follows:

v0 = v ∈ B,

wn = F((1− αn)vn + αnFvn),

yn = Fwn,

vn+1 = Fyn.

(1.9)

In this research work, we extend the idea of Kanwar et al. [12] to propose a new variant of

the F iteration process (1.9). We prove some convergence results of fixed point theory for this

new variant. We compare our prove results with the existing modified iteration process (1.8). We

elaborate our findings using polynomiography and generate some polynomiographs for this new

variant to showcase its superiority.

2. Preliminaries

In this section we will discuss some important results necessary for our analysis.

Lemma 2.1. [1] Let B be a nonempty subset of a Banach space E and F : B→ B be a mapping satisfying
(1.2), then F has a unique fixed point in E.

Definition 2.1. [15] Let fi be a sequence generated by some iteration process fi+1 = f (F, fi) converging to
a fixed point q of mapping F. Let {gi}

∞

i=0 be arbitrary sequence and define εi = ‖gi+1 − f (F, gi)‖ . Then we
say that iteration process is F-stable if

lim
i→∞

εi = 0⇔ lim
i→∞
gi = q,

where i ∈ N.

Lemma 2.2. [16] If σ ∈ [0, 1) is a real number and {fi}∞i=0 is a positive number sequence such that
lim
i→∞
fi = 0, then for any sequence of positive numbers {gi}

∞

i=0 satisfying gi+1 ≤ σgi + fi, i = 0, 1, 2, 3 . . .,

we have lim
i→∞
gi = 0.

Lemma 2.3. [17] Let {gi}
∞

i=0 and {fi}∞i=0 be two non-negative real sequences such that gi+1 ≤ (1− µi)gi +

fi, µi ∈ (0, 1), ∀ i ∈N,
∑
∞

i=o µi = ∞ and lim
i→∞

fi
gi
→ 0 as i→∞, then lim

i→∞
gi = 0.

Definition 2.2. [18] Let {gi}
∞

i=0 be a real convergent sequence with limit g and {fi}∞i=0 be another real
convergent sequence with limit f. If lim

i→∞
|
gi−g
fi−f
| = 0, then {gi}

∞

i=0 is said to converge faster than {fi}∞i=0.

Definition 2.3. [2] A sequence {gi}
∞

i=0 in Banach space converges strongly to g iff ‖gi − g‖ → 0 as i→∞.

Definition 2.4. [18] Let {si}∞i=0 and {ti}∞i=0 be two non-negative number sequences converging to zero. If
two iteration processes {gi}

∞

i=0 and {fi}∞i=0 converge to same point p, then the errors estimates can be calculated
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as

‖gi − p‖ ≤ si,

‖fi − p‖ ≤ ti.

If {si}∞i=0 converges faster than {ti}∞i=0, then {gi}
∞

i=0 converges faster than {fi}∞i=0.

3. Convergence Results

First, we give the definition of our newly proposed iteration process, namely, the BK iteration

process. It generates the sequence {vn} for some initial point v0 given as:

v0 ∈ B,

wn = svn+Fvn
s+1 , s ∈ R and s > 0

ln = Fwn,

qn = Fln,

vn+1 = Fqn.

(3.1)

Now, prove strong convergence theorem for our new proposed iteration process.

Theorem 3.1. Let F : B → B be a mapping defined on a convex and closed subset B of a Banach space E,
satisfying (1.5) with a fixed point k. Let {vn}

∞

n=0 be a sequence generated by the iteration process (3.1). Then
lim
n→∞

vn = k.

Proof. We note that

‖wn − k‖ =
∥∥∥∥∥svn +Fvn

s + 1
− k

∥∥∥∥∥ =
∥∥∥∥∥∥svn +Fvn − k(s + 1)

1 + s

∥∥∥∥∥∥
=

∥∥∥∥∥ s
s + 1

(vn − k) +
1

s + 1
(Fvn − k)

∥∥∥∥∥
≤

s
s + 1

‖vn − k‖+
1

1 + s
‖Fvn − k‖

=
s

1 + s
‖vn − k‖+

1
s + 1

‖Fvn −Fk‖ ∵ k = Fk

=
s

s + 1
‖vn − k‖+

1
1 + s

‖Fk−Fvn‖

≤
s

1 + s
‖vn − k‖+

1
1 + s

(ρ{‖k−Fk‖}+ ζ‖k− vn‖)

=
s

s + 1
‖vn − k‖+

1
s + 1

(ζ‖vn − k‖)

=
s + ζ
s + 1

‖vn − k‖.

(3.2)



Int. J. Anal. Appl. (2024), 22:136 5

Now,

||ln − k|| = ||Fwn − k||

= ||Fwn −Fk|| = ||Fk−Fwn||

≤ ρ{‖k−Fk‖}+ ζ‖k−wn‖

= ζ‖wn − k‖.

(3.3)

Also,

||qn − k|| = ||Fln − k||

= ||Fln −Fk|| = ||Fk−Fln||

≤ ρ{‖k−Fk‖}+ ζ‖k−wn‖

= ζ‖ln − k‖.

(3.4)

And,

||vn+1 − k|| = ||Fqn − k||

= ||Fqn −Fk|| = ||Fk−Fqn||

≤ ρ{‖k−Fk‖}+ ζ‖k− qn‖

= ζ‖qn − k‖.

(3.5)

By using equation (3.4)

||vn+1 − k|| ≤ ζ2
‖ln − k‖. (3.6)

From equation (3.3)

||vn+1 − k|| ≤ ζ3
‖wn − k‖. (3.7)

Then by again using equation (3.2)

||vn+1 − k|| ≤ ζ3
(s + ζ

1 + s

)
‖vn − k‖. (3.8)

By repeating the above process again and again, we get

||vn − k|| ≤ ζ3
(s + ζ

s + 1

)
‖vn−1 − k‖

||vn−1 − k|| ≤ ζ3
(s + ζ

s + 1

)
‖vn−2 − k‖

...

||v1 − k|| ≤ ζ3
(s + ζ

1 + s

)
‖v0 − k‖.

(3.9)

Finally we obtained

||vn+1 − k|| ≤ ‖v0 − k‖ζ3(n+1)
n∏

i=0

(s + ζ
1 + s

)i
.
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By applying limit

lim
n→∞
||vn+1 − k|| ≤ ‖v0 − k‖ lim

n→∞
ζ3(n+1)

n∏
i=0

(s + ζ
1 + s

)i
. (3.10)

As ζ ∈ [0, 1)

⇒s + ζ < 1 + s

0 < 1⇒
s + ζ
s + 1

< 1.
(3.11)

Therefore (s + ζ
1 + s

)n+1
→ 0 as n→∞.

From equation (3.10), it implies that

lim
n→∞
||vn+1 − k|| ≤ 0

⇒ lim
n→∞
||vn+1 − k|| = 0.

(3.12)

Hence {vn} converges strongly to k.

Uniqueness: Let k , k∗ be two fixed point of F, i.e., Fk = k and Fk∗ = k∗, then

‖k− k∗‖ = ‖Fk−Fk∗‖

≤ ρ{‖k−Fk‖}+ ζ‖k− k∗‖

= ζ‖k− k∗‖.

Therefore

‖k− k∗‖ < ‖k− k∗‖ ∵ ζ < 1, (3.13)

which is not possible, therefore k = k∗. �

Theorem 3.2. Let B, E, F, and {vn}
∞

n=0 be defined as in Theorem (3.1). Then {vn}
∞

n=0, defined by (3.1), is
F-stable.

Proof. Consider an arbitrary sequence {gn}∞n=0 in B. Let the sequence generated by (3.1) be vn+1 =

f (F, vn), which converges to some fixed point k. Define εn = ‖kn+1 − f (F, gn)‖. For the F-stability

proof, we will show that lim
n→∞

εn = 0⇔ lim
n→∞
gn = k.

Now suppose that lim
n→∞

εn = 0, then

‖gn+1 − k‖ = ‖gn+1 − f (F, gn) + f (F, gn) − k‖

≤ ‖gn+1 + f (F, gn)‖ − ‖ f (F, gn) − k‖

= εn + ‖ f (F, gn) − k‖

= εn +

∥∥∥∥∥F (
F

(
F

(sgn +Fgn
1 + s

)))
− k

∥∥∥∥∥
= εn +

∥∥∥∥∥k−F
(
F

(
F

(sgn +Fgn
1 + s

)))∥∥∥∥∥
= εn +

∥∥∥∥∥Fk−F
(
F

(
F

(sgn +Fgn
1 + s

)))∥∥∥∥∥.
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Using contractive condition (1.5), we have

‖gn+1 − k‖ ≤ εn + ζ

∥∥∥∥∥k−F
(
F

(sgn +Fgn
1 + s

))∥∥∥∥∥
= εn + ζ

∥∥∥∥∥Fk−F
(
F

(sgn +Fgn
1 + s

))∥∥∥∥∥.

Again by using (1.5), we get

‖gn+1 − k‖ ≤ εn + ζ2
∥∥∥∥∥k−F

(sgn +Fgn
1 + s

)∥∥∥∥∥
= εn + ζ2

∥∥∥∥∥Fk−F
(sgn +Fgn

1 + s

)∥∥∥∥∥.

From (1.5), we obtain

‖gn+1 − k‖ ≤ εn + ζ3
∥∥∥∥∥k−

sgn +Fgn
1 + s

∥∥∥∥∥
= εn + ζ3

∥∥∥∥∥∥k(1 + s) − (sgn +Fgn)
1 + s

∥∥∥∥∥∥
≤ εn + ζ3

( s
1 + s

‖gn − k‖+
1

1 + s
‖Fgn − k‖

)
= εn + ζ3

( s
1 + s

‖gn − k‖+
1

1 + s
‖Fgn −Fk‖

)
∵ k = Fk

= εn + ζ3
( s
s + 1

‖gn − k‖+
1

s + 1
‖Fk−Fgn‖

)
≤ εn + ζ3

( s
1 + s

‖gn − k‖+
1

1 + s
{ρ{‖k−Fk‖}+ ζ‖k− gn‖}

)
= εn + ζ3

( s
1 + s

‖gn − k‖+
1

s + 1
{ζ‖gn − k‖}

)
.

Hence

lim
n→∞
‖gn+1 − k‖ ≤ lim

n→∞

(
εn + ζ3

(s + ζ
1 + s

‖gn − k‖
))

lim
n→∞
‖gn+1 − k‖ ≤ lim

n→∞
εn + lim

n→∞
ζ3

(s + ζ
1 + s

‖gn − k‖
)

.

As,

∵
s + ζ
1 + s

‖gn − k‖ < 1 and lim
n→∞

εn = 0. (3.14)

Therefore,

lim
n→∞
‖gn+1 − k‖ ≤ 0

⇒ lim
n→∞
‖gn+1 − k‖ = 0

lim
n→∞
gn = k.
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Conversely, suppose that lim
n→∞
gn = k, then

εn = ‖gn+1 − f (F, gn)‖

= ‖gn+1 − k + k− f (F, gn)‖

≤ ‖gn+1 − k‖+ ‖k− f (F, gn)‖

= ‖gn+1 − k‖+ ‖Fk− f (F, gn)‖.

(3.15)

Applying limit on both sides, we get

lim
n→∞

εn ≤ lim
n→∞
‖gn+1 − k‖+ lim

n→∞
ζ3 s + ζ

1 + s
‖gn − k‖

∵ lim
n→∞
gn = k

lim
n→∞

εn = 0,

which proves that the iterative process defined by (3.1) is F-stable. �

Theorem 3.3. Let ∅ , B ⊆ E be convex and closed and F : B→ B be a self-mapping satisfying (1.5) with
a fixed point k. Let αn ∈ (0, 1) with α0 ≤ αn < 1, ∀n ∈ N and 0 < s ∈ R such that α0(1 + s) < 1. Let
{vn}

∞

n=0 be a sequence generated by the iteration process (3.1), and {xn}
∞

n=0 be a sequence generated by the
iteration process (1.9), then {vn}

∞

n=0 converges faster than {xn}
∞

n=0 to k.

Proof. For {vn}
∞

n=0, using theorem (3.1), we get

||vn+1 − k|| ≤ ζ3(n+1)
(s + ζ
1 + s

)n+1
‖v0 − k‖. (3.16)

After performing similar calculation by using Theorem (3.1) as we did for {vn}
∞

n=0, we obtain the

following relation for the sequence {xn}
∞

n=0 generated by the iteration process (1.9):

||xn+1 − k|| ≤ ‖x0 − k‖ζ3(n+1)
n∏

i=0

(1− (1− ζ)αi). (3.17)

As α0 ≤ αi < 1, so we can have

1− (1− ζ)α0 ≥ 1− (1− ζ)αi

(1− (1− ζ)α0)
n+1
≥

n∏
i=0

(1− (1− ζ)αi)
(3.18)

Using (3.18) in equation (3.17), we have

||xn+1 − k|| ≤ ζ3(n+1)(1− (1− ζ)α0)
n+1
‖x0 − k‖.

Let suppose

an = ζ3(n+1)
(s + ζ

1 + s

)n+1
‖v0 − k‖

bn = ζ3(n+1)(1− (1− ζ)α0)
n+1
‖x0 − k‖.
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Also

Υ =
an

bn

=
ζ3(n+1)

(
s+ζ
1+s

)n+1
‖v0 − k‖

ζ3(n+1)(1− (1− ζ)α0)n+1‖x0 − k‖

∵ vo = x0

=
( s+ζ

1+s )
n+1

(1− (1− ζ)α0)n+1

=

 s+ζ
1+s

1− (1− ζ)α0


n+1

.

As α0(1− ζ) < 1, so we have

1− α0(1− ζ) >
s + ζ
1 + s

⇒

s+ζ
1+s

1− α0(1 + s)
< 1.

Therefore lim
n→∞

Υ = 0.

From (2.2) and (2.4), we can conclude that {vn}
∞

n=0 converges faster than {xn}
∞

n=0. �

Theorem 3.4. Let ∅ , B ⊆ E be convex and closed, and let F : B → B be a self-mapping satisfying (1.5)

with a fixed point k. Let {vn}
∞

n=0 be a new proposed iterative sequence (3.1) and {un}
∞

n=0 be a Mann iterative
sequence (1.7), where αn ∈ [0, 1] and

∑
∞

n=0 αn = ∞. Then the following statements are equivalent
(i) The new iterative sequence converges to the fixed point k.
(ii) The Mann iteration sequence converges to the fixed point k.

Proof. First, suppose that our newly proposed iteration process (3.1) converges to the fixed point k
i.e., lim

n→∞
‖vn − k‖ = 0.

Now,

‖vn+1 − un+1‖ = ‖Fqn − (1− αn)un − αnFun‖

= ‖(1− αn + αn)Fqn − (1− αn)un − αnFun‖

= ‖(1− αn)Fqn + αnFqn − (1− αn)un − αnFun‖

≤ (1− αn)‖Fqn − un‖+ (αn)‖Fqn −Fun‖

≤ (1− αn)‖Fqn − un + qn − qn‖+ αn{ρ‖Fqn − qn‖+ ζ‖qn − un‖}

≤ (1− αn)‖Fqn − qn‖+ (1− αn)‖qn − un‖+ αn{ρ‖Fqn − qn‖+ ζ‖qn − un‖}

= (1− αn)‖qn − un‖+ αnζ‖qn − un‖αnρ‖Fqn − qn‖+ (1− αn)‖Fqn − qn‖

= (1− αn(1− ζ))‖qn − un‖+ αnρ‖Fqn − qn‖+ (1− αn)‖Fqn − qn‖.
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Also,

‖qn − un‖ = ‖Fln − un‖

≤ ‖Fln − ln‖+ ‖ln − un‖.
(3.19)

Similarly,

‖ln − un‖ = ‖Fwn − un‖

≤ ‖Fwn −wn‖+ ‖wn − un‖. (3.20)

‖wn − un‖ =

∥∥∥∥∥svn +Fvn

1 + s
− un

∥∥∥∥∥
=

∥∥∥∥∥∥svn +Fvn − (1 + s)un

s + 1

∥∥∥∥∥∥
=

∥∥∥∥∥ s
s + 1

(vn − un) +
1

s + 1
(Fvn − un)

∥∥∥∥∥
≤

s
s + 1

‖vn − un‖+
1

s + 1
‖Fvn − un‖

≤
s

s + 1
‖vn − un‖+

1
s + 1

‖Fvn − vn‖+
1

s + 1
‖vn − un‖

≤
1

s + 1
‖vn − un‖+

1
s + 1

‖Fvn − vn‖.

(3.21)

Using equation (3.21) in equation (3.20), we have

‖ln − un‖ ≤ ‖Fwn − ln‖+
1

1 + s
‖vn − un‖+

1
1 + s

‖Fvn − vn‖.

Substituting equation (3) in equation (3.19), we can get

‖qn − un‖ ≤ ‖Fln − ln‖+ ‖Fwn − ln‖+
1

1 + s
‖vn − un‖+

1
1 + s

‖Fvn − vn‖. (3.22)

Using (3.22) in (3.19), we have

‖vn+1 − un+1‖ ≤ αnρ‖Fqn − qn‖+ (1− αn)‖Fqn − qn‖

+ (1− αn(1− ζ))‖Fln − ln‖+ (1− αn(1− ζ))‖Fwn − ln‖+

(1− αn(1− ζ))
1

s + 1
‖vn − un‖+

1
s + 1

(1− αn(1− ζ))‖Fvn − vn‖.

(3.23)

Let

µ = (1− αn(1− ζ)) ∈ (0, 1),

an = ‖vn − un‖,

bn = αnρ‖Fqn − qn‖+ (1− αn)‖Fqn − qn‖+ (1− αn(1− ζ))‖Fln − ln‖

+ (1− αn(1− ζ))‖Fwn − ln‖+
1

1 + s
(1− αn(1− ζ))‖Fvn − vn‖.
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Now

‖Fvn − vn‖ = ‖Fvn − vn − k + k‖

≤ ‖Fvn − k‖+ ‖k− vn‖

= ‖Fk−Fvn‖+ ‖k− vn‖

≤ ρ{{‖k−Fk‖}}+ ζ‖k− vn‖}+ ‖k− vn‖

= (1 + ζ)‖vn − k‖ → 0 as n→∞.

Also,

‖Fln − ln‖ ≤ ‖Fln − k‖+ ‖k− ln‖

≤ ‖Fln − k‖+ ‖k− ln‖

≤ ‖Fk−Fln‖+ ‖k− ln‖

≤ {ρ{‖k−Fk‖}+ ζ‖k− ln‖}+ ‖k− ln‖

= (1 + ζ)‖ln − k‖

= (1 + ζ)‖Fwn −Fk‖

≤ (1 + ζ)ρ{‖k−Fk‖}+ ζ‖wn − k‖

= (1 + ζ)ζ‖wn − k‖.

‖Fqn − qn‖ = ‖Fqn − k‖+ ‖k− qn‖

≤ ‖Fqk‖+ ‖k− ln‖

≤ ‖Fk−Fqn‖+ ‖k− qn‖

≤ {ρ{‖k−Fk‖}+ ζ‖k− qn‖}+ ‖k− qn‖

= (1 + ζ)‖qn − k‖

= (1 + ζ)‖Fln −Fk‖

≤ (1 + ζ){ρ{‖k−Fk‖}+ ζ‖k− ln‖}

= (1 + ζ)ζ‖ln − k‖

= (1 + ζ)‖Fwn −Fk‖

≤ (1 + ζ)ρ{‖k−Fk‖}+ ζ‖wn − k‖

= (1 + ζ)ζ‖wn − k‖.

We also have

‖wn − k‖ =
∥∥∥∥∥svn +Fvn

s + 1
− k

∥∥∥∥∥
≤

s
s + 1

‖vn − k‖+
1

s + 1
‖Fvn − k‖
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=
s

s + 1
‖vn − k‖+

1
s + 1

‖Fvn −Fk‖

=
s

s + 1
‖vn − k‖+

1
s + 1

‖Fk−Fvn‖

≤
s

s + 1
‖vn − k‖+

1
s + 1

{ρ{‖k−Fk‖}+ ζ‖k− vn‖}

=
ζ+ s
s + 1

‖vn − k‖ → 0 as n→∞.

(3.24)

Using (3.24), we can observe that ‖Fqn − qn‖ ⇒ 0 and ‖Fln − ln‖ ⇒ 0 as n→∞. Similarly

lim
n→∞

αn ρ{‖Fqn − qn‖} = αn ρ{ limn→∞
‖Fqn − qn‖} = 0.

Hence, we obtain bn → 0. Now, by using Lemma (2.3), we get

‖vn − un‖ → 0 as n→∞. (3.25)

Therefore, we get

‖un − k‖ ≤ ‖un − vn‖+ ‖vn − k‖ → 0 as n→∞,

which shows convergence of Mann iteration (1.7) to a fixed point k of F.

Now we will prove that convergence of the Mann iteration (1.7) to a fixed point k of F implies

the convergence of the newly proposed iteration process (3.1) to the fixed point k of F.

Let the Mann iteration (1.7) converges to a fixed point k i.e., lim
n→∞

un = k as n→∞.

‖un+1 − vn+1‖ = ‖(1− αn)un + αnFun −Fqn‖

= ‖(1− αn)un − αnFun − (1− αn + αn)Fqn‖

≤ (1− αn)‖un −Fqn‖+ αn‖Fun −Fqn‖

≤ (1− αn)‖un −Fun‖+ (1− αn)‖Fun −Fqn‖+ αn‖Fun −Fqn‖

= (1− αn)‖un −Fun‖+ ‖Fun −Fqn‖

≤ (1− αn)‖un −Fun‖+ ζ‖un − qn‖+ ρ{‖un −Fun‖}.

(3.26)

And,

‖un − qn‖ = ‖un −Fln‖

= ‖un −Fun‖+ |Fun −Fln‖

≤ ‖un −Fun‖+ ρ{‖un −Fun‖}+ ζ‖un − ln‖.

(3.27)

Also,

‖un − ln‖ = ‖un −Fwn‖

= ‖un −Fun‖+ |Fun −Fwn‖

≤ ‖un −Fun‖+ ρ{‖un −Fun‖}+ ζ‖un −wn‖.

(3.28)



Int. J. Anal. Appl. (2024), 22:136 13

‖un −wn‖ =

∥∥∥∥∥un −
svn +Fvn

s + 1

∥∥∥∥∥
=

∥∥∥∥∥ s
s + 1

(un − vn) +
1

s + 1
(un −Fvn)

∥∥∥∥∥
≤

s
s + 1

‖un − vn‖+
1

s + 1
‖un −Fun‖+ ‖Fun −Fvn‖

≤
s

s + 1
‖un − vn‖+

1
s + 1

‖un −Fun‖+ ρ{‖un −Fun‖}+ ζ‖un − vn‖

≤
ζ+ s
s + 1

‖un − vn‖+
1

s + 1
‖un −Fun‖+

1
s + 1

ρ{‖un −Fun‖}.

(3.29)

Using equation (3.29) in equation (3.28), we have

‖un − ln‖ ≤ ‖un −Fun‖+ ρ{‖un −Fun‖}+

ζ{
s + ζ
s + 1

‖un − vn‖+
1

s + 1
‖un −Fun‖+

1
s + 1

ρ{‖un −Fun‖}}

= ζ(
s + ζ
s + 1

)‖un − vn‖+ (1 +
ζ

s + 1
)‖un −Fun‖+

(1 +
ζ

s + 1
)ρ{‖un −Fun‖}.

(3.30)

Replacing equation (3.30) in equation (3.27), we get

‖un − qn‖ ≤ ‖un −Fun‖+ ρ{‖un −Fun‖}+

ζ2(
s + ζ
s + 1

)‖un − vn‖+ ζ(1 +
ζ

s + 1
)‖un −Fun‖+

ζ(1 +
ζ

s + 1
)ρ{‖un −Fun‖}.

(3.31)

By using equation (3.31) in equation(3.26), we have

‖un+1 − vn+1‖ ≤ (1− αn)‖un −Fun‖+ ζ‖un −Fun‖+ ζρ{‖un −Fun‖}+

ζ3(
s + ζ
s + 1

)‖un − vn‖+ ζ2(1 +
ζ

s + 1
)‖un −Fun‖+

ζ2(1 +
ζ

s + 1
)ρ{‖un −Fun‖}+ ρ{‖un −Fun‖}

= ζ3(
s + ζ
s + 1

)‖un − vn‖+ {(1− αn) + ζ+ ζ2(1 +
ζ

s + 1
)}‖un −Fun‖+

{1 + ζ+ ζ2(1 +
ζ

s + 1
)}ρ{‖un −Fun‖}

≤ (
s + ζ
s + 1

)‖un − vn‖+ {(1− αn) + ζ+ ζ2(1 +
ζ

s + 1
)}‖un −Fun‖+

{1 + ζ+ ζ2(1 +
ζ

s + 1
)}ρ{‖un −Fun‖}.

(3.32)
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Let

µ =
s + ζ
s + 1

∈ (0, 1),

an = ‖un − vn‖,

bn = {(1− αn) + ζ+ ζ2(1 +
ζ

s + 1
)}‖un −Fun‖

+ {1 + ζ+ ζ2(1 +
ζ

s + 1
)}ρ{‖un −Fun‖}.

Now,

‖un −Fun‖ ≤ ‖un − k‖+ ‖k−Fun‖

= ‖un − k‖+ ‖Fk−Fun‖

= ‖un − k‖+ ρ{‖k−Fk‖}+ ζ‖k− un‖

= (1 + ζ)‖un − k‖ → 0 as n→∞.

Similarly,

lim
n→∞

αnρ{‖un −Fun‖} = αnρ{ limn→∞
‖un −Fun‖} = 0. (3.33)

which implies bn → 0. By using Lemma (2.3), we get

‖un − vn‖ → 0 as n→∞.

Therefore, we get

‖vn − k‖ ≤ ‖vn − vn‖+ ‖vn − k‖ → 0 as n→∞.

Which shows that the newly proposed iteration process (3.1) converges to a fixed point k of F. �

4. Numerical Example

Example 4.1. Define a self mapping F on B = [2, 4] as follows

Fv =


v+6

4 , if v ∈ [2, 4)

1, if v = 4.
(4.1)

Clearly, F satisfies contractive condition (1.5) with the fixed point 2. We now create a table and graph in
comparing the BK, F and SH iteration processes to our newly proposed BK iteration process (3.1), which
converges more rapidly to the fixed point 2 of F presented in the preceding example. We have selected
αn = 0.70, along with the stopping criteria ||vn − vn+1|| < 10−14. The results obtained are shown in Fig. 1
and Tab. 1.
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Table 1. Some iterates for Example 4.1 generated by BK (3.1) (s = 0.01), F (1.9),

SH (1.8) (s = 0.01) iteration processes for initial point v0 = 3.

n BK Iteration F Iteration SH Iteration

0 3.0 3.0 3.0

1 2.00402227722772 2.00742187500000 2.01608910891089

2 2.00001617871410 2.00005508422852 2.00025885942555

3 2.00000006507527 2.00000040882826 2.00000416481749

4 2.00000000026175 2.00000000303427 2.00000006700820

5 2.00000000000105 2.00000000002252 2.00000000107810

6 2 2.00000000000017 2.00000000001735

7 2 2 2.00000000000028

8 2 2 2

The acquired findings show that, in comparison to the first iteration of the other iteration

processes, the value calculated using the BK (2.00402227722772) is closer to the fixed point, or 2,

following the first iteration than the F (2.00742187500000) and the SH (2.01608910891089). We see

that in the following iterations, each iteration method approaches the fixed point at a different rate.

The newly proposed, BK iteration, which discovered the fixed point in 6 iterations, is the quickest

approach. It took 7 iterations for the F and 8 iterations for the SH iteration process to locate the

fixed point. This comparison can also be seen in the graphical representation of all three iterations

converging to the fixed point 2 of mapping F in Fig. (1).

●

● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ●

0 2 4 6 8

2.000

2.005

2.010

2.015

Number of iteration

V
al
ue
s
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se
qu
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s

BK Iteration

F Iteration

SH Iteration

Figure 1. Graphical comparison of BK (3.1), F (1.9) and SH (1.8) iteration processes.
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5. Comparison via Polynomiography

Mathematician and computer scientist Bahman Kalantari elaborated polynomiography, which

is a digital art form and a visual analytic method for root-finding [19,20]. This technique visualizes

complex polynomials utilizing mathematical principles and iterative approximation procedures.

The methods of polynomiography are widely used for comparing and analyzing various types

of iteration processes [21, 22]. Polynomiography generates graphical images by analyzing the

convergence of the iteration process used to approximate polynomial roots. The Newton’s iteration

method is a well known root-finding method and it is also known as the Newton-Raphson method.

For some polynomial q(xn), it is define as

xn+1 = xn −
q(xn)

q′(xn)
for (n = 0, 1, 2, 3...).

Here, q′(xn) stands for the first derivative of q(xn). Now, Newton’s iterative process can be

expressed in the form of a fixed point iterative process as follows:

xn+1 = F(xn).

If the above iterative converges to any fixed point, namely, x of F, then one has

x = F(x) = x−
q(x)
q′(x)

. (5.1)

If q(x)
q′(x) = 0 then q(x) = 0. Equation (5.1) implies that x = F(x) which means x is a root is of

ζ(x). The set of all x0 that converges to the same root forms a basin of attraction. Now, instead

of the Picard iteration, we can use other iteration processes, e.g., the introduced BK iteration or

other iteration processes defined in Section 1 for different values of αn. We choose grid lengths

B = [−5.0, 5.0]2 and K = 30, where K indicates the number of iterations. Using Newton’s operator

into BK, SH and F-iteration processes, we obtain a complex sequence, namely, {xn} that starts at

every grid point x0. Suppose that x0 is a starting guess, then if the sequence of iterations {xn}

essentially converges to any root with accuracy of 0.001, then we assign a color to x0, and if {xn}

does not converge to any root, then we assign a red color to {xn}. The set of all x0 that converges

to the same root, forms a basin of attraction. We use the color map presented in Fig. 2.

0 6 12 18 24 30

Figure 2. Color map used in the examples.

Now, we apply the algorithm given as a pseudocode in Algorithm 1 to produce a polynomio-

graph. We color the points in the algorithm using a technique known as “iteration coloring” [23].

In this kind of coloring, the color assigned to each starting point is determined by the number
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of iterations completed. As a result, this kind of polynomiograph displays the iteration process’s

speed of convergence, which is determined by the number of iterations completed. Additionally,

we can compute an average number of iterations (ANI) [24] using the polynomiograph produced

by Algorithm 1.

Algorithm 1: Generation of a polynomiograpgh.
Input: q ∈ C[Z], deg q ≥ 2 – polynomial; ג – iteration process; B ⊂ C – area; K – the

maximum number of iterations; ε – accuracy; colors – color map.

Output: Polynomiograph for the complex-valued polynomial q within the area B.

1 for x0 ∈ B do
2 n = 0

3 while |q(xn)| > ε and n < K do
4 xn+1 = ,xn)ג q)

5 n = n + 1

6 Map n to a color from the color map colors and color x0

(a) BK iteration (b) SH iteration (c) F iteration

Figure 3. Polynomiographs generated by various iteration processes with the pa-

rameters α = 0.05.

For our numerical experiment, we consider a polynomial q(x) = x4
− 1 and proposed three

settings of a parameter αn i.e., αn = 0.05, αn = 0.5 and αn = 0.8. The obtained graphs for the

BK, SH and F-iteration processes using these parameter settings are shown in the Figs. 3–5. The

measured values of average number of iterations (ANI) are shown in the Tab. 2. We can notice

from the Tab. 2 that obtained ANI values are very close to each other, so all graphics look like

similar. We can only make a difference on the basis of color tone.

We can notice that a blue color for αn = 0.05 (Fig. 3). Visual examination reveals that the

proposed BK iteration achieves the fastest speed of convergence (2.93469), followed by the F

iteration (3.60703) and the SH (3.70724).
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(a) BK iteration (b) SH iteration (c) F iteration

Figure 4. Polynomiographs generated by various iteration processes with the pa-

rameters α = 0.5.

We can notice from the polynomiographs for αn = 0.5 shown in Fig. 4 a slight dark color as

compared to the graphs for αn = 0.05. For this setting of the parameter, the BK iteration is again

the quickest of the iterations, with a value (2.77184) followed by the F iteration and SH iteration.

(a) BK iteration (b) SH iteration (c) F iteration

Figure 5. Polynomiographs generated by various iteration processes with the pa-

rameters α = 0.8.

We use a high value of αn for our third parameter setting. This high parameter value produces

a dark blue color. This demonstrates that all iterations require fewer iterations to reach the roots

of the polynomial. These facts are indicated by the recorded values provided in the Tab. 2. We

notice that for the third parameter setting, we obtained the lowest ANI value for our proposed BK

iteration (2.68107) and the highest value for the SH iteration (3.28732). It is evident that for high

parameter values, the BK iteration yields the lowest ANI value, which is 2.68107. High parameter

values likewise yield the lowest values for the subsequent iterations.
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Table 2. ANI values calculated from polynomiographs presented in Figures 3, 4

and 5.

Iteration αn = 0.05 αn = 0.5 αn = 0.8

BK 2.93469 2.77184 2.68107

SH 3.70724 3.34814 3.28732

F 3.60703 2.98872 2.73034

6. Conclusions

We have successfully analyzed our newly proposed variant of the F iteration process, namely

the BK iteration process. We proved weak and strong convergence results for the newly proposed

iteration process. The effectiveness of the proposed iteration processes is demonstrated through

a numerical example. We also provided some polynomiographs generated by this new iteration

process to support our results. From our proved results, it is obvious that our newly proposed

iteration process shows better convergence than the other two iteration process under the discus-

sion. Furthermore, the BK iteration process exhibits robustness and efficiency in reaching the fixed

point with fewer iterations, highlighting its potential for practical applications where computa-

tional efficiency is critical. The comparative analysis with other well-known iterative methods

underscores its superior performance in terms of convergence speed and stability

Data Availability: All data supporting the findings of this study are available within the paper.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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