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Abstract. Let E be a reflexive Banach space. In this article we study the existence of integrable solutions in the space

of all lesbesgue integrable functions on E, L1([0,T ],E), of the nonlinear singular integral inclusion of fractional orders

beneath the assumption that the multi-valued function G has Lipschitz selection in E. The main tool applied in this

work is the Banach contraction fixed point theorem. Moreover, the paper explores a qualitative property associated

with these solutions for the given problem such as the continuous dependence of the solutions on the set of selections

S1
G(τ,x(τ))

. As an application, the existence of integrable solutions of the two nonlocal and weighted problems of the

fractional differential inclusion is investigated. We additionally provide an example given as a numerical application

to demonstrate the effectiveness and value of our results.

1. Introduction

Let I = [0,T ] and let E be a reflexive Banach space with the norm ‖.‖E. Indicate by L1(I,E) the

Banach space of all Lebesgue integrable functions x : I → E defined on the interval I and taking

values in Ewith the norm

‖x‖L1 =

∫
T

0
‖x(τ)‖Edτ.

Functional inclusions and functional differential inclusions have been broadly examined by several

creators and there are numerous curiously comes about concerning these issues(see [1]- [8]). The

nonlinear integral equations recently studied by many authors for example (see [9]- [11]), where

authors examine the solvability of non-linear 2D Volterra integral equations through Petryshyn

fixed point theorem in Banach space, two systems of nonlinear Volterra integral equation and

Volterra integro-differential equation through Banach’s contraction principle and a nonlinear in-

tegral equation with multiple variable time delays and a nonlinear integro-differential equation
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without delay by the fixed point method using progressive contractions. Also, consider some

properties of this solution. Also, a functional integral inclusion was discussed by B.C. Dhage and

D. O’Regan (see [12]- [13]), they proved the existence of extremal solutions using Caratheodory’s

conditions on the multi-valued function. However, in this article, we establish our results using

Lipschitz condition on the multi-valued function. Theorems which guarantee the existence of

the solutions for the inclusions problems are generally obtained under the assumptions that the

multi-valued function is either lower or upper semi-continuous (see [13]- [14]) and for the discon-

tinuity of the multi-valued function (see [15]). In addition the fractional differential equations was

investigated by a number of authors (see [16]- [19]) in which the authors in [16] establish sufficient

conditions for the existence of solutions of such problems and the authors in [17] and [19] inves-

tigated the boundedness of solutions and investigate qualitative properties of solutions of these

equations. The integrable solution for some functional equations and functional integral equa-

tions was discussed by Banas (see [20]- [21]) based on the technique associated with the notion of

a measure of weak noncompactness.

In ( [22]- [27]) the Lipschitz selections of the multi-valued functions was investigated.

Assume the nonlinear singular integral inclusion of fractional orders, α, β ∈ (0, 1),

x(τ) ∈
τα−1

Γ(α)
A + IβG(τ, x(m(τ))), τ ∈ I (1.1)

where G : I × E → χ(E) is a nonlinear multi-valued mapping and χ(E) is the power set of

nonempty subsets of E.

Here, in our article we study the existence of integrable solutions x ∈ L1(I,E) of the nonlinear

singular integral inclusion of fractional orders (1.1) in E. We proves the existence theorem of

that inclusion in the space L1(I,E) using Banach contraction fixed point theorem and with the

assumption that the multi-valued function G satisfy Lipschitz condition.

We study a qualitative property associated with these solutions for the given problem such as the

continuous dependence of the solutions on the set of selections S1
G(τ,x(τ)). We provide an example

given as numerical application to demonstrate the effectiveness and value of our results. Finally,

As an application, we study the existence of integrable solutions of the two nonlocal and weighted

problems of the fractional differential inclusion

RDαx(τ) ∈ G(τ, x(m(τ))), τ ∈ I (1.2)

with each one of the nonlocal condition

I1−αx(τ)|τ=0 = A, A ∈ E (1.3)

or the weighted condition

τ1−αx(τ)|τ=0 =
A

Γ(α)
, A ∈ E (1.4)

where RDα is Riemann-Liouville derivative.
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2. Preliminaries

Here, we display a few documentations and assistant comes about that will be required in this

work.

Definition 2.1. [2] A multi-valued map G from I×E to the family of all nonempty closed subsets of E is
called Lipschitzian if there exists b > 0 such that for all τ ∈ I and all x1, x2 ∈ E, we have

H(G(τ, x1(τ)), G(τ, x2(τ))) ≤ b‖x1(τ) − x2(τ)‖E

whereH(C, D) is the Hausdorff metric among the two subsets C,D ∈ I×E.

Denote S1
G(τ,x(τ)) = Lip(I,E) be the set of all Lipschitz selections of G.

Now, we state the Banach contraction fixed point theorem (see [28]).

Theorem 2.1. Let (X, d) be a complete metric space and f : X → X be a map such that d( f (x), f (y)) ≤
Cd(x, y) for some 0 ≤ C < 1 and all x, y ∈ X. Then f has a unique fixed point in X.

3. Existence of solution

In this section, we introduce the main result by proving the existence of integrable solution

x ∈ L1(I,E) of the inclusion (1.1) in Ewith the assumption that the multi-valued function G satisfy

Lipschitz condition.

Definition 3.1. By integrable solution of the inclusion (1.1) in E, we mean a single-valued function
x ∈ L1(I,E), which fulfills (1.1).

Consider now the inclusion (1.1) with the assumptions:

(H1) The set G(τ, x) is compact and convex for all (τ, x) ∈ I ×E.

(H2) The multi-valued map G is Lipschitzian with a Lipschitz constant b > 0 such that

H(G(τ, x1(τ)), G(τ, x2(τ))) ≤ b‖x1(τ) − x2(τ)‖E

for all τ ∈ I and x1, x2 ∈ E, where H(C, D) is the Hausdorff metric among the two subsets C,D

∈ I×E.

(H3) The set of selections S1
G(τ,x(τ)) of Lipschitz type of the multi-valued function G is nonempty.

(H4) The function m : I → I, m(τ) ≤ τ is continuous function.

(H5) A ∈ E.

(H6) A constant M > 0 exist such that m
′

(τ) > M, ∀ τ ∈ I.

Remark 3.1. According to the assumptions (H1)-(H3), there exists a Lipschitz selection g ∈ S1
G(τ,x(τ)) such

that
‖g(τ, x(m(τ)))‖E ≤ ‖ar(τ)‖E + b‖x(m(τ))‖E.

And this selection satisfy the nonlinear singular integral equation of fractional orders

x(τ) =
τα−1

Γ(α)
A + Iβg(τ, x(m(τ))), τ ∈ I. (3.1)
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Hence the solution of the nonlinear singular integral equation of fractional orders (3.1), if it exists, is a
solution of the nonlinear singular integral inclusion of fractional orders (1.1).

Now, we seek about the existence of integrable solution of the nonlinear singular integral

equation of fractional orders (3.1).

Theorem 3.1. Consider the assumptions (H1)-(H6) be satisfied. Then∃ an integrable solution x ∈ L1(I,E)

of (3.1).

Proof. Define the operator B by

Bx(τ) =
τα−1

Γ(α)
A + Iβg(τ, x(m(τ))), τ ∈ I

consider the set Ωr defined as

Ωr = {x ∈ L1(I,E), ‖x‖L1 ≤ r}; r =
‖A‖EK1+K2‖ar‖L1

1− b
M K2

.

Hence, it is shown that Ωr is nonempty, bounded, compact and convex set.

Let x ∈ Ωr be arbitrary, then

‖ Bx(τ)‖E

= ‖
τα−1

Γ(α)
A + Iβg(τ, x(m(τ)))‖E

≤
τα−1

Γ(α)
‖A‖E + Iβ‖g(τ, x(m(τ)))‖E

≤
τα−1

Γ(α)
‖A‖E + Iβ{‖ar(s)‖E + b‖x(m(τ))‖E}

≤
τα−1

Γ(α)
‖A‖E + Iβ‖ar(s)‖E + bIβ‖x(m(τ))‖E

≤
τα−1

Γ(α)
‖A‖E +

∫ τ

0

(τ− s)β−1

Γ(β)
‖ar(s)‖Eds + b

∫ τ

0

(τ− s)β−1

Γ(β)
‖x(m(s))‖Eds

taking m(s) = u and ds = du
m′ (s) , then

‖ Bx(τ)‖E

≤
τα−1

Γ(α)
‖A‖E +

∫ τ

0

(τ− s)β−1

Γ(β)
‖ar(s)‖Eds + b

∫ m(τ)

m(0)

(τ− s)β−1

Γ(β)
‖x(u)‖E

du
m′(s)

≤
τα−1

Γ(α)
‖A‖E +

∫ τ

0

(τ− s)β−1

Γ(β)
‖ar(s)‖Eds +

b
M

∫ τ

0

(τ− s)β−1

Γ(β)
‖x(u)‖Edu

Therefore

‖ Bx‖L1

≤

∫
T

0
‖A‖E

τα−1

Γ(α)
dτ+

∫
T

0

∫ τ

0

(τ− s)β−1

Γ(β)
‖ar(s)‖Edsdτ+

b
M

∫
T

0

∫ τ

0

(τ− s)β−1

Γ(β)
‖x(u)‖Edudτ

≤

∫
T

0
‖A‖E

tα−1

Γ(α)
dτ+

∫
T

0
‖ar(s)‖E(

∫
T

s

(τ− s)β−1

Γ(β)
dτ)ds +

b
M

∫
T

0
‖x(u)‖E(

∫
T

s

(τ− s)β−1

Γ(β)
dτ)du
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≤ ‖A‖E
T
α

Γ(α+ 1)
+

∫
T

0
‖ar(s)‖E(

T
β

Γ(β+ 1)
)ds +

b
M

∫
T

0
‖x(u)‖E(

T
β

Γ(β+ 1)
)du

≤ ‖A‖E
T
α

Γ(α+ 1)
+

T
β

Γ(β+ 1)
‖ar‖L1 +

b
M

T
β

Γ(β+ 1)
‖x‖L1

≤ ‖A‖EK1 + K2‖ar‖L1 +
b
M

K2r = r,

where r =
‖A‖EK1+K2‖ar‖L1

1− b
M K2

, K1 = T
α

Γ(α+1) , K2 = T
β

Γ(β+1) .

Then

‖Bx‖L1 ≤ r

Hence, Bx ∈ Ωr, which proves that BΩr ⊂ Ωr and B : Ωr → Ωr.

Now, we will show that B is continuous on Ωr.

Choose a sequence {xn} from Ωr converges to x ∀τ ∈ I in Ωr, i.e. xn → x, ∀τ ∈ I.

Now

‖g(τ, xn(m(τ)))‖E ≤ ‖ar(τ)‖E + b‖xn(m(τ))‖E,

and xn → x, then g(τ, xn(m(τ)))→ g(τ, x(m(τ))).

Since

Bxn(τ) =
τα−1

Γ(α)
A + Iβg(τ, xn(m(τ))), τ ∈ I.

Then

‖ Bxn(τ) −Bx(τ)‖E

= ‖(
τα−1

Γ(α)
A + Iβg(τ, xn(m(τ)))) − (

τα−1

Γ(α)
A + Iβg(τ, x(m(τ))))‖E

= ‖Iβg(τ, xn(m(τ))) − Iβg(τ, x(m(τ)))‖E

= Iβ‖g(τ, xn(m(τ))) − g(τ, x(m(τ)))‖E

=

∫ τ

0

(τ− s)β−1

Γ(β)
‖g(s, xn(m(s))) − g(s, x(m(s)))‖Eds.

taking m(s) = u and ds = du
m′ (s) , then

‖ Bxn(τ) −Bx(τ)‖E

=

∫ m(τ)

m(0)

(τ− s)β−1

Γ(β)
‖g(s, xn(u)) − g(s, x(u))‖E

du
m′(s)

≤
1
M

∫ τ

0

(τ− s)β−1

Γ(β)
‖g(s, xn(u)) − g(s, x(u))‖Edu.

Then

‖ Bxn −Bx‖L1

≤
1
M

∫
T

0

∫ τ

0

(τ− s)β−1

Γ(β)
‖g(s, xn(u)) − g(s, x(u))‖Edudτ
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≤
1
M

∫
T

0
‖g(s, xn(u)) − g(s, x(u))‖E(

∫
T

s

(τ− s)β−1

Γ(β)
dτ)du

≤
1
M

T
β

Γ(β+ 1)

∫
T

0
‖g(s, xn(u)) − g(s, x(u))‖Edu

≤
1
M

T
β

Γ(β+ 1)
‖g(τ, xn) − g(τ, x)‖L1

≤
K2

M
‖g(τ, xn) − g(τ, x)‖L1

≤
K2

M
ε
K2
M

= ε.

Hence, Bxn → Bx, ∀xn → x, which proves the continuity of B on Ωr.

Finally, we will prove that B is contraction. Let x, y ∈ Ωr be arbitrary, then

‖ Bx(τ) −By(τ)‖E

= ‖(
τα−1

Γ(α)
A + Iβg(τ, x(m(τ)))) − (

τα−1

Γ(α)
A + Iβg(τ, y(m(τ))))‖E

= ‖Iβg(τ, x(m(τ))) − Iβg(τ, y(m(τ))))‖E

= Iβ‖g(τ, x(m(τ))) − g(τ, y(m(τ))))‖E

= bIβ‖x(m(τ)) − y(m(τ))‖E

= b
∫ τ

0

(τ− s)β−1

Γ(β)
‖x(m(s)) − y(m(s))‖Eds

taking m(s) = u and ds = du
m′ (s) , then

‖ Bx(τ) −By(τ)‖E

= b
∫ m(τ)

m(0)

(τ− s)β−1

Γ(β)
‖x(u) − y(u)‖E

du
m′(s)

≤
b
M

∫ τ

0

(τ− s)β−1

Γ(β)
‖x(u) − y(u)‖Edu.

Then

‖ Bx−By‖L1

≤
b
M

∫
T

0

∫ τ

0

(τ− s)β−1

Γ(β)
‖x(u) − y(u)‖Edudτ

≤
b
M

∫
T

0
‖x(u) − y(u)‖E(

∫
T

s

(τ− s)β−1

Γ(β)
dτ)du

≤
b
M

T
β

Γ(β+ 1)
‖x− y‖L1

≤
bK2

M
‖x− y‖L1 .
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If bK2
M < 1, Then B is contraction mapping.

Therefore, according to Banach contraction mapping Theorem, then the operator B has a unique

fixed point x ∈ Ωr, then ∃ integrable solution x ∈ L1(I,E) of the equation (3.1).

Hence, ∃ integrable solutions x ∈ L1(I,E) of the inclusion (1.1).

4. Continuous dependence on the set of selections S1
G(τ,x(τ))

Here we study the continuous dependence of the solution on the set of selections S1
G(τ,x(τ)) for

the inclusion (1.1).

Definition 4.1. The solution x ∈ L1(I,E) of the inclusion (1.1) depends continuously on the set S1
G(τ,x(τ)),

if ∀ ε > 0, and any two functions g, h ∈ S1
G(τ,x(τ)), there exists δ > 0 such that ‖g − h‖E < δ implies

‖xg − xh‖L1 < ε, where xg, xh are the two solutions of (1.1) and

x(τ) ∈
τα−1

Γ(α)
A + Iβh(τ, x(m(τ))), τ ∈ I

respectively.

Theorem 4.1. Assume the assumptions (H1)-(H6) hold. Then the solution x ∈ L1(I,E) of (1.1) depends
continuously on S1

G(τ,x(τ)).

Proof. Let g, h ∈ S1
G(τ,x(τ)) where

‖g(τ, xg(m(τ))) − h(τ, xg(m(τ)))‖E < δ, δ > 0, τ ∈ I

Then

‖ xg(τ) − xh(τ)‖E

= ‖(
τα−1

Γ(α)
A + Iβg(τ, xg(m(τ)))) − (

τα−1

Γ(α)
A + Iβh(τ, xg(m(τ))))‖E

= ‖Iβg(τ, xg(m(τ))) − Iβh(τ, xh(m(τ)))‖E

= Iβ‖g(τ, xg(m(τ))) − h(τ, xh(m(τ)))‖E

= Iβ‖g(τ, xg(m(τ))) − h(τ, xg(m(τ))) + h(τ, xg(m(τ))) − h(τ, xh(m(τ)))‖E

≤ Iβ{‖g(τ, xg(m(τ))) − h(τ, xg(m(τ)))‖E + ‖h(τ, xg(m(τ))) − h(τ, xh(m(τ)))‖E}

≤ Iβ{‖g(τ, xg(m(τ))) − h(τ, xg(m(τ)))‖E + b‖xg(m(τ)) − xh(m(τ))‖E}

≤ Iβ‖g(τ, xg(m(τ))) − h(τ, xg(m(τ)))‖E + bIβ‖xg(m(τ)) − xh(m(τ))‖E

≤ Iβδ+ bIβ‖xg(m(τ)) − xh(m(τ))‖E

≤

∫ τ

0

(τ− s)β−1

Γ(β)
δds + b

∫ τ

0

(τ− s)β−1

Γ(β)
‖xg(m(s)) − xh(m(s))‖Eds

taking m(s) = u and ds = du
m′ (s) , then

‖ xg(τ) − xh(τ)‖E
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≤

∫ τ

0

(τ− s)β−1

Γ(β)
δds + b

∫ m(τ)

m(0)

(τ− s)β−1

Γ(β)
‖xg(u) − xh(u)‖E

du
m′(s)

≤

∫ τ

0

(τ− s)β−1

Γ(β)
δds +

b
M

∫ τ

0

(τ− s)β−1

Γ(β)
‖xg(u) − xh(u)‖Edu.

Then

‖ xg − xh‖L1

≤

∫
T

0

∫ τ

0

(τ− s)β−1

Γ(β)
δdsdτ+

b
M

∫
T

0

∫ τ

0

(τ− s)β−1

Γ(β)
‖xg(u) − xh(u)‖Edudτ

≤

∫
T

0
δ(

∫
T

s

(τ− s)β−1

Γ(β)
dτ)ds +

b
M

∫
T

0
‖xg(u) − xh(u)‖E(

∫
T

s

(τ− s)β−1

Γ(β)
dτ)du

≤
T
β

Γ(β+ 1)
δT +

b
M

T
β

Γ(β+ 1)
‖xg − xh‖L1

≤ K2δT +
bK2

M
‖xg − xh‖L1 .

Therefore

‖xg − xh‖L1 ≤
K2δT

1− bK2
M

= ε.

Hence

‖xg − xh‖L1 ≤ ε.

Which complete our investigation.

5. An Example

Now we give an example given as numerical application to illustrate our main result contained

in Theorem 3.1.

Let Ω = {x ∈ E, ‖x‖E ≤ 1} and J = [0, 1]. Assume the multi-valued function G : J× Ω → χ(E)

defined by

G(τ, x(m(τ))) = (a(τ) + bx(m(τ)))Ω, τ ∈ J .

Then G is Lipschitz. Obviously we have

‖G(τ, x(m(τ)))‖E = sup{‖g‖ : g ∈ G(τ, x(m(τ)))}

= ‖(a(τ) + bx(m(τ)))Q‖E

= ‖a(τ) + bx(m(τ))‖E

≤ ‖a(τ)‖E + b‖x(m(τ))‖E.

Now let g(τ, x(m(τ))) = a(τ) + bx(m(τ)) ∈ G(τ, x(m(τ))).

Hence, we can apply our results to the singular fractional order integral equation

x(τ) =
0.1
√
π
τ−

1
2 + I

1
2 (τ+ 0.1x(m(τ))), τ ∈ J . (5.1)
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Here g(τ, x(m(τ)) = (τ+ 0.1x(m(τ))), m(τ) ≤ τ, α = β = 1
2 and A = 0.1.

Now

‖x(τ)‖E = ‖
0.1
√
π
τ−

1
2 + I

1
2 (τ+ 0.1x(m(τ)))‖

≤
0.1
√
π
|τ−

1
2 |+ I

1
2 (|τ|+ 0.1‖x(m(τ))‖E)

≤
0.1
√
π
|τ−

1
2 |+ I

1
2 (|τ|+ 0.1‖x(m(τ))‖E)

≤
0.1
√
π
|τ−

1
2 |+ I

1
2 |τ|+ 0.1I

1
2 ‖x(m(τ))‖E

≤
0.1
√
π
|τ−

1
2 |+

∫ τ

0

(τ− s)−
1
2

Γ( 1
2 )
|s|ds + 0.1

∫ τ

0

(τ− s)−
1
2

Γ( 1
2 )
‖x(m(s))‖Eds

taking m(s) = u and ds = du
m′ (s) , then

‖ x(τ)‖E

≤
0.1
√
π
τ−

1
2 +

∫ τ

0

(τ− s)−
1
2

Γ( 1
2 )

sds + 0.1
∫ m(τ)

m(0)

(τ− s)−
1
2

Γ( 1
2 )
‖x(u)‖E

du
m′(s)

≤
0.1
√
π
τ−

1
2 +

∫ τ

0

(τ− s)−
1
2

Γ( 1
2 )

sds +
0.1
M

∫ τ

0

(τ− s)−
1
2

Γ( 1
2 )
‖x(u)‖Edu.

Then

‖x‖L1 ≤
0.1
√
π

∫ 1

0
τ−

1
2 dτ+

∫ 1

0

∫ τ

0

(τ− s)−
1
2

Γ( 1
2 )

sdsdτ+
0.1
M

∫ 1

0

∫ τ

0

(τ− s)−
1
2

Γ( 1
2 )
‖x(u)‖Edudτ

≤
0.1
√
π

∫ 1

0
τ−

1
2 dτ+

∫ 1

0
s{
∫ 1

s

(τ− s)−
1
2

Γ( 1
2 )

dτ}ds +
0.1
M

∫ 1

0
‖x(u)‖E{

∫ 1

s

(τ− s)−
1
2

Γ( 1
2 )

dτ}du

≤
0.1
√
π

∫ 1

0
τ−

1
2 dτ+

1
1
2
√
π

∫ 1

0
sds +

0.1
M

∫ 1

0
‖x(u)‖E

1
1
2
√
π

du

≤
0.2
√
π
+

2
√
π
+

2
√
π

r.

The assumptions (H1)-(H6) of Theorem 3.1 are satisfies with ar(τ) = τ, b = 0.1 and M = 0.1.

Therefore, by applying to Theorem 3.1, then the nonlinear singular fractional order integral equa-

tion (5.1) has a solution x ∈ J .

6. Application

Consider the fractional differential inclusion (1.2) with each one of the nonlocal condition (1.3)

or the weighted condition (1.4).

Remark 6.1. According to assumptions (H1)-(H3), there exists a Lipschitz selection g ∈ S1
G(τ,x(τ)) such

that

‖g(τ, x1(τ)) − g(τ, x2(τ))‖E ≤ b‖x1(τ) − x2(τ)‖E
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for every x1, x2 ∈ E and τ ∈ I.
This selection satisfy the fractional differential equation

RDαx(τ) = g(τ, x(m(τ))), τ ∈ I. (6.1)

Then any solution of the problems (6.1) and (1.3) or (6.1) and (1.4), if it exists, is a solution of the the
problems (1.2) and (1.3) or (1.2) and (1.4).

Theorem 6.1. Assume the assumptions (H1)-(H6) be satisfied. If the integrable solution x ∈ L1(I,E) of
the problems (6.1) and (1.3) or (6.1) and (1.4) exist, then it can be given by

x(τ) =
τα−1

Γ(α)
A + Iαg(τ, x(m(τ))) (6.2)

Proof. Consider
RDαx(τ) = g(τ, x(m(τ))), τ ∈ I.

According to Riemann-Liouville fractional order derivative, we get

d
dτ

I1−αx(τ) = g(τ, x(m(τ)))

Integrating both-sides, we get

I1−αx(τ) −C = Ig(τ, x(m(τ))) (6.3)

At τ = 0, using the initial condition (1.3) we get C = A.

Hence from equation (6.3), we get

I1−αx(τ) = A + Ig(τ, x(m(τ))).

Operating by Iα for both-sides and differentiation, we obtain

x(τ) =
τα−1

Γ(α)
A + Iαg(τ, x(m(τ)))

This proves that the solution of (6.1) and (1.3) is given by equation (6.2).

Conversely, Operating equation (6.2) by I1−α, we have

I1−αx(τ) = I1−α τ
α−1

Γ(α)
A + I1−αIαg(τ, x(m(τ)))

=

∫ τ

0

(τ− s)−α

Γ(1− α)
sα−1

Γ(α)
Ads + Ig(τ, x(m(τ)))

=
A

Γ(α)Γ(1− α)

∫ τ

0
(τ− s)−αsα−1ds + Ig(τ, x(m(τ)))

= A + Ig(τ, x(m(τ))).

Then

I1−αx(τ) = A + Ig(τ, x(m(τ))). (6.4)
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Differentiate equation (6.4) with respect to τ we get equation (6.1).

At τ = 0 in equation (6.4) we get condition (1.3).

Now operating equation (6.3) by Iα and differentiation, we conclude that

x(τ) =
τα−1

Γ(α)
C + Iαg(τ, x(m(τ))) (6.5)

Multiplying this equation by τ1−α, we obtain

τ1−αx(τ) =
C

Γ(α)
+ τ1−αIαg(τ, x(m(τ)))

At τ = 0 and using the initial condition (1.4) we deduce that C = A.

Then from equation (6.5), we get

x(τ) =
τα−1

Γ(α)
A + Iαg(τ, x(m(τ)))

Then the solution of (6.1) and (1.4) is given by (6.2).

Conversely, Operating equation (6.2) by I1−α we have equation (6.4).

Differentiate equation (6.4) with respect to τ we get equation (6.1).

Multiplying equation (6.2) by τ1−α, we obtain

τ1−αx(τ) =
A

Γ(α)
+ τ1−αIαg(τ, x(m(τ))).

At τ = 0 we get condition (1.4).

When α = β, in equation (3.1), we have equation (6.2).

7. Conclusions

In this paper we use a Lipschitz selection for a multi-valued function in the reflexive Banach

space E to establish the solvability of a nonlinear singular functional integral inclusion (1.1).

Our investigation is lying in the space of all integrable functions on a reflexive Banach space E,

(L1([0,T ],E)).

In the main result we introduced sufficient conditions and studied the existence of integrable

solutions x ∈ L1([0,T ],E) of the nonlinear singular integral inclusion of fractional orders (1.1).

We discussed the continuous dependence of the solutions on the set of selections S1
G(τ,x(τ)) of

that nonlinear singular integral inclusion of fractional order (1.1) and an numerical example is

illustrated.

Finally, the existence of solutions x ∈ L1([0,T ],E) of the Riemann-Liouville fractional differential

inclusion (1.2) with the nonlocal condition (1.3) and the weighted condition (1.4) is studied and

investigated as an application.

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the

publication of this paper.



12 Int. J. Anal. Appl. (2024), 22:129

References

[1] T. Cardinali, F. Papalini, SOme Results on Stability and on Characterization of K-Convexity of Set-Valued Functions,

Ann. Polon. Math. 58 (1993), 185–192. https://doi.org/10.4064/ap-58-2-185-192.

[2] A.M.A. El-Sayed, A.G. Ibrahim, Multivalued Fractional Differential Equations, Appl. Math. Comput. 68 (1995),

15–25. https://doi.org/10.1016/0096-3003(94)00080-n.

[3] K. Nikodem, On Quadratic Set-Valued Functions, Publ. Math. Debrecen, 30 (1984), 297–301.

[4] K. Nikodem, On Jensen’s Functional Equation for Set-Valued Functions, Rad. Mat. 3 (1987), 23–33.

[5] K. Nikodem, Set-Valued Solutions of the Pexider Functional Equations, Funkcialaj Ekvacioj, 31 (1988), 227–231.

[6] D. Popa, Functional Inclusions on Square-Symmetric Grupoids and Hyers-Ulam Stability, Math. Ineq. Appl. 7

(2004), 419–428. https://doi.org/10.7153/mia-07-42.

[7] D. Popa, A Property of a Functional Inclusion Connected with Hyers-Ulam Stability, J. Math. Ineq. 3 (2009), 591–598.

https://doi.org/10.7153/jmi-03-57.

[8] I. Shlykova, A. Bulgakov, A. Ponosov, Functional Differential Inclusions Generated by Functional Differential

Equations With Discontinuities, Nonlinear Anal.: Theory Meth. Appl. 74 (2011), 3518–3530. https://doi.org/10.

1016/j.na.2011.02.037.

[9] H.V.S. Chauhan, B. Singh, C. Tunc, O. Tunc, On the Existence of Solutions of Non-Linear 2D Volterra Integral

Equations in a Banach Space, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116 (2022), 101. https://doi.org/

10.1007/s13398-022-01246-0.

[10] O. Tunc, C. Tunc, G. Petrusel, J. Yao, On the Ulam Stabilities of Nonlinear Integral Equations and Integro-differential

Equations, Math. Meth. Appl. Sci. 47 (2024), 4014–4028. https://doi.org/10.1002/mma.9800.

[11] O. Tunc, C. Tunc, J.-C. Yao, Global Existence and Uniqueness of Solutions of Integral Equations with Multiple

Variable Delays and Integro Differential Equations: Progressive Contractions, Mathematics 12 (2024), 171. https:

//doi.org/10.3390/math12020171.

[12] B. Dhage, A Functional Integral Inclusion Involving Caratheodories, Elec. J. Qual. Theory Diff. Equ. 2003 (2003),

14. https://doi.org/10.14232/ejqtde.2003.1.14.

[13] D. O’Regan, Integral Inclusions of Upper Semi-Continuous or Lower Semi-Continuous Type, Proc. Amer. Math.

Soc. 124 (1996), 2391–2399. https://www.jstor.org/stable/2161624.

[14] J.P. Aubin, A. Cellina, Differential Inclusions, Springer, 1984.

[15] B.C. Dhage, A Functional Integral Inclusion Involving Discontinuities, Fixed Point Theory, 5 (2004), 53–64.

[16] M. Benchohra, S. Hamani, S.K. Ntouyas, Boundary Value Problems for Differential Equations With Fractional

Order and Nonlocal Conditions, Nonlinear Anal.: Theory Meth. Appl. 71 (2009), 2391–2396. https://doi.org/10.

1016/j.na.2009.01.073.

[17] M. Bohner, O. Tunc, C. Tunc, Qualitative Analysis of Caputo Fractional Integro-Differential Equations With Con-

stant Delays, Comput. Appl. Math. 40 (2021), 214. https://doi.org/10.1007/s40314-021-01595-3.

[18] S. Hristova, C. Tunc, Stability of Nonlinear Volterra Integro-Differential Equations With Caputo Fractional Deriv-

ative and Bounded Delays, Elec. J. Diff. Equ. 2019 (2019), 30.

[19] O. Tunc, C. Tunc, Solution Estimates to Caputo Proportional Fractional Derivative Delay Integro-Differential Equa-

tions, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117 (2022), 12. https://doi.org/10.1007/s13398-022-01345-y.

[20] J. Banas, Applications of Measures of Weak Noncompactness and Some Classes of Operators in the Theory

of Functional Equations in the Lebesgue Space, Nonlinear Anal.: Theory Meth. Appl. 30 (1997), 3283–3293.

https://doi.org/10.1016/s0362-546x(96)00157-5.

[21] Z. Knap, J. Banas, Integrable Solutions of a Functional-Integral Equation, Rev. Mat. Complut. 2 (1989), 31–40.

https://doi.org/10.5209/rev_rema.1989.v2.n1.18145.

[22] A. Bressan, Selections of Lipschitz Multifunctions Generating a Continuous Flow, Diff. Integr. Equ. 4 (1991), 483–

490. https://doi.org/10.57262/die/1372700423.

https://doi.org/10.4064/ap-58-2-185-192
https://doi.org/10.1016/0096-3003(94)00080-n
https://doi.org/10.7153/mia-07-42
https://doi.org/10.7153/jmi-03-57
https://doi.org/10.1016/j.na.2011.02.037
https://doi.org/10.1016/j.na.2011.02.037
https://doi.org/10.1007/s13398-022-01246-0
https://doi.org/10.1007/s13398-022-01246-0
https://doi.org/10.1002/mma.9800
https://doi.org/10.3390/math12020171
https://doi.org/10.3390/math12020171
https://doi.org/10.14232/ejqtde.2003.1.14
https://www.jstor.org/stable/2161624
https://doi.org/10.1016/j.na.2009.01.073
https://doi.org/10.1016/j.na.2009.01.073
https://doi.org/10.1007/s40314-021-01595-3
https://doi.org/10.1007/s13398-022-01345-y
https://doi.org/10.1016/s0362-546x(96)00157-5
https://doi.org/10.5209/rev_rema.1989.v2.n1.18145
https://doi.org/10.57262/die/1372700423


Int. J. Anal. Appl. (2024), 22:129 13

[23] S. Cobzas, R. Miculescu, A. Nicolae, Lipschitz Functions, Springer, 2019.

[24] K. Deimling, Nonlinear Functional Analysis, Springer, 1985.

[25] A.M.A. EL-Sayed, Y. Khouni, Measurable-Lipschitz Selections and Set-Valued Integral Equations of Fractional, J.

Fract. Calc. Appl. 2 (2012), 1–8.

[26] I. Kupka, Continuous Selections for Lipschitz Multifunctions, Acta Math. Univ. Comen. New Ser. 74 (2005), 133-141.

http://eudml.org/doc/127016.

[27] P. Shvartsman, Lipschitz Selections of Set-Valued Mappings and Helly’s Theorem, J. Geom. Anal. 12 (2002), 289–324.

https://doi.org/10.1007/bf02922044.

[28] J. Dugundji, A. Granas, Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw, 1982.

http://eudml.org/doc/127016
https://doi.org/10.1007/bf02922044

	1. Introduction
	2. Preliminaries
	3. Existence of solution
	4. Continuous dependence on the set of selections SG(,x())1
	5. An Example
	6. Application
	7. Conclusions
	 Conflicts of Interest:

	References

