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ABSTRACT. This study examines the dynamics of two forms of (2+1)-dimensional fractional order Burgers equation, a 

paramount structure within the realm of nonlinear fractional calculus. The main objective is to acquire solutions for 

this equation through the application of the singular manifold (SM) method. The study successfully derives diverse 

solutions corresponding to varied fractional orders. Additionally, multiple-kink solutions are systematically derived 

and illustrated with graphical representations to highlight their intrinsic physical properties. Overall, the results 

demonstrate the effectiveness and reliability of the SM method in yielding precise solutions for the two forms of (2+1)-

dimensional fractional order Burgers equation. 

 

1. Introduction 

Nonlinear partial differential equations (NPDEs) are fundamental to many physical 

theories and applications. These equations provide a mathematical foundation for understanding 

the complex behaviors observed in nature across various scientific disciplines. The nonlinearity 

inherent in these PDEs introduces a level of sophistication that mirrors the intricate nature of 
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physical phenomena. This makes them a valuable tool for studies in fields such as engineering, 

mechanics, and chemistry; as indicated by Dodd et al. [1]. Attaining an in-depth understanding 

of these nonlinear phenomena can be accomplished through the finding of exact solutions to 

NPDEs. As a result, various methodologies have been developed for the precise resolution of 

NPDEs using analytical and numerical methods, such as symmetry reduction [2], Bäcklund and 

Darboux transformations ([3], [4]) and the singular manifold (SM) method [5]. 

The fractional order Burgers' equation [6] is a fascinating topic in the realm of NPDEs. This 

equation is a generalization of the traditional Burgers' equation, which is a crucial construct 

within the field of nonlinear fractional calculus used in various areas such as fluid dynamics, 

nonlinear acoustics, and traffic flow. The inclusion of fractional derivatives in the Burgers' 

equation introduces memory and hereditary properties to the model, allowing it to more 

accurately depict anomalous diffusion and non-local effects, which are observed in complex 

systems. Fractional calculus is an extension of classical calculus that allows for differentiation and 

integration to an arbitrary order, not necessarily an integer ([7], [8]). Several definitions for 

fractional derivatives exist, including the conformable fractional derivative (CFD) technique. 

Khalil et al. [9] introduced the concept of CFD, marking a notable progress in the domain of 

fractional calculus. This derivative is characterized by its unique attributes that render it 

particularly beneficial for a wide range of applications in diverse disciplines such as mathematics, 

engineering, and physics. Employing CFD in the study of soliton theory offers significant 

advantages for analyzing soliton wave dynamics and facilitates a profound comprehension of the 

associated physical processes. In light of these benefits, the present study utilizes the singular 

manifold (SM) method to derive solutions relevant to the two forms of (2+1)-dimensional 

fractional order Burgers equation. 

The SM method [5] has proven to be an invaluable tool in the realm of nonlinear PDEs, 

allowing for the simplification of complex systems into more tractable substructures and 

revealing previously undiscovered classes of solutions. The investigation of the applicability of 

the SM method to the fractional-order Burger equation requires further investigation. This study 

introduces novelty by applying the SM method to the fractional-order Burger equation, a 

technique infrequently used for this specific equation. The aims to expand the array of exact 

solutions for the fractional order Burger's equation and to enhance comprehension regarding the 

complex dynamics inherent in fractional-order nonlinear systems. Several studies have utilized 
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the SM method to examine diverse NPDEs, with a focus on obtaining traveling wave solutions. 

See ([10], [11], [12], [13], [14]) for examples. 

This study examines the dynamics of the two forms of (2+1)-dimensional fractional order 

Burgers equation. The main objective of this study is to acquire solutions for this equation 

through the application of the SM method. To illustrate the influence of the fractional operator 

on the outcomes, the solutions obtained are displayed for various fractional orders. In addition, 

multiple-kink solutions are derived and elucidated with graphical depictions to shed light on 

their intrinsic physical characteristics. The structure of the manuscript is organized in the 

following manner: In Section 2, we delineate the attributes of CFD. Comprehensive exact wave 

solutions for the two forms of (2+1)-dimensional fractional order Burgers' equations are 

elaborated in Sections 3 and 4. In continuation, Sections 5 and 6 are dedicated to explicating the 

kink-solutions for the aforementioned equations. The article concludes with a final discourse in 

Section 7. 

2. Fractional order Burger's equation 

We engage in an analytical exploration of the order Burger's equation, as discussed in ([15], 

[16]). We articulate the definition of the conformable derivative of order α, wherein the range for 

α is confined to 𝛼 ∈ (0,1], with respect to an independent variable denoted as 𝑡. We first discuss 

the core principles of CFD, as given by Khalil et al. [9]. We establish the definition of the 

conformable derivative of order 𝛼, with the condition that 0 <  𝛼 ≤  1, in relation to an 

independent variable 𝑠. 

𝐷𝛼𝑀(𝑠) = 𝑙𝑖𝑚
𝜀→0

𝑀(𝑠+𝜀𝑠1−𝛼)−𝑀(𝑠)

𝜀
, ∀𝑠 > 0, 𝛼 ∈ (0,1],

𝑀(𝛼)(0) = 𝑙𝑖𝑚
𝑠→0+

𝑀(𝛼)(𝑠).                                               
                                                                              (1) 

Upon setting 𝛼 equal to 1 in the preceding equations, we observe that the fractional differential 

operator reverts to its classical integer-order counterpart. Consequently, the CFD fulfills the 

subsequent properties: 

• 𝐷𝛼𝑠𝑛 = 𝑛𝑠𝑛−𝛼 , 𝑛 ∈ 𝑅, 𝐷𝛼𝑎 = 0, 

• 𝐷𝛼(𝑎𝑀 + 𝑏𝑁) = 𝑎𝐷𝛼𝑀 + 𝑏𝐷𝛼𝑁, ∀𝑎, 𝑏 ∈ 𝑅, 

• 𝐷𝛼(𝑀𝑁) = 𝑀𝐷𝛼𝑁 + 𝑁𝐷𝛼𝑀, 

• 𝐷𝛼 (
𝑀

𝑁
) =

𝑀𝐷𝛼𝑁−𝑁𝐷𝛼𝑀

𝑁2 , 

• 𝐷𝛼𝑀(𝑁) =
𝑑𝑀

𝑑𝑁
𝐷𝛼𝑁, 𝐷𝛼𝑀(𝑠) = 𝑠1−𝛼 𝑑𝑀

𝑑𝑠
. 
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In this context, 𝑀 and 𝑁 represent two functions that are 𝛼-differentiable with respect to 𝑎 

dependent variable denoted by 𝑠, and 𝑎 denotes an arbitrary constant. According to [6], the (2+1)-

dimensional Burgers equation is given by  

𝑀𝑡 = 𝑀𝑥𝑥 + 2𝑁𝑀𝑥 , 𝑀𝑥 = 𝑁𝑦,                                                                                                                 (2) 

and the Burgers equation in a (2+1)-dimensional space, incorporating fractional derivatives with 

respect to both space and time, is formally expressed as  

𝐷𝑡
𝛼𝑀 = 𝐷𝑥

𝛼𝛼𝑀 + 2𝑁𝐷𝑥
𝛼𝑀, 𝐷𝑥

𝛼𝑀 = 𝐷𝑦
𝛼𝑁.                                                                                             (3) 

The (2+1)-dimensional higher-order Burgers equation [6] is 

𝑀𝑡 = 4𝑀𝑥𝑥𝑥 + 12𝑁𝑀𝑥𝑥 + 12𝑁𝑥𝑀𝑥 + 12𝑁2𝑀𝑥, 𝑀𝑥 = 𝑁𝑦.                                                                  (4) 

In equation (4), the CFDs concerning time (𝑡) and space (𝑥) are represented as 𝐷𝑡
𝛼 and 𝐷𝑥

𝛼, 

correspondingly. The discussion is extended to higher-order processes, such as 𝐷𝑥
𝛼𝛼𝑢 = 𝐷𝑥

𝛼(𝐷𝑥
𝛼𝑢), 

which characterize second-order fractional CFDs. In addition, the (2+1)-dimensional higher-

order Burgers equation with fractional space and time derivative is 

𝐷𝑡
𝛼𝑀 = 4𝐷𝑥

𝛼𝛼𝛼𝑀 + 12𝑁𝐷𝑥
𝛼𝛼𝑀 + 12𝐷𝑥

𝛼𝑁𝐷𝑥
𝛼𝑀 + 12𝑁2𝐷𝑥

𝛼𝑀, 𝐷𝑥
𝛼𝑀 = 𝐷𝑦

𝛼𝑁.                                      (5) 

Equations (3) and (5) can be written in another form by taking the transformation 

𝑀 = 𝐷𝑦
𝛼𝑁.                                      (6) 

Substituting Equation (6) in Equation (3), we have 

𝐷𝑡
𝛼(𝐷𝑦

𝛼𝑁) = 𝐷𝑥
𝛼𝛼(𝐷𝑦

𝛼𝑁) + 2𝐷𝑦
𝛼𝑁𝐷𝑥

𝛼(𝐷𝑦
𝛼𝑁).                                               (7) 

Similarly, substituting Equation (6) into Equation (5), we get  

 𝐷𝑡
𝛼(𝐷𝑦

𝛼𝑁) = 4𝐷𝑥
𝛼𝛼𝛼(𝐷𝑦

𝛼𝑁) + 12𝐷𝑥
𝛼𝑁𝐷𝑥

𝛼𝛼(𝐷𝑦
𝛼𝑁) + 12𝐷𝑥

𝛼𝛼𝑁 𝐷𝑥
𝛼(𝐷𝑦

𝛼𝑁) + 12(𝐷𝑥
𝛼𝑁)2𝐷𝑥

𝛼(𝐷𝑦
𝛼𝑁).     (8) 

In this study, we will utilize the CFD transformation alongside the SM method to rigorously 

address equations (3) and (5), aiming to derive exact solutions and multiple-kink solutions for 

each of these equations. 

3. General solutions of Equation (3) 

Utilizing the SM method, the expansion of the Painlevé series ([5], [12]) for Equation (3) is 

truncated at the term representing a constant level 

𝑀 = 𝜑−1𝑀0 + 𝑀1, 𝑁 = 𝜑−1𝑁0 + 𝑁1,                                                                                                    (9) 

where 𝜑 represents the singular manifold, and the pair {𝑀1, 𝑁1} corresponds to a particular seed 

solution of Equation (3). Upon inserting Equation (9) into Equation (3) and matching the 

coefficients corresponding to identical powers of 𝜑, we obtain 

𝑀0 = 𝐷𝑦
𝛼𝜑, 𝑁0 = 𝐷𝑥

𝛼𝜑.                                                                                                                          (10) 
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In this context, 𝜑 satisfies the following differential equation: 

𝐷𝑡
𝛼𝜑 = 𝐷𝑥

𝛼𝛼𝜑 + 2𝑀1𝐷𝑥
𝛼𝜑,                                                                                                                   (11) 

which is referred to as the singular manifold equation. Let us consider the following substitutions: 

𝑀1 = 𝜑 and 𝐷𝑦
𝛼𝑁1 = 𝐷𝑥

𝛼𝜑. Consequently, we define 𝑀 as: 

𝑀 =
1

𝜑
𝐷𝑥

𝛼𝜑 + 𝜑,                                                                                                                                     (12) 

subject to 𝜑 fulfilling the fractional differential equation: 

𝐷𝑡
𝛼𝜑 = 𝐷𝑥

𝛼𝛼𝜑 + 2𝜑𝐷𝑥
𝛼𝜑, 𝐷𝑦

𝛼𝜑 = 𝐷𝑥
𝛼𝜑.                                                                                               (13) 

Equations (12) and (13) then represent an alternative representation of an auto-Bäcklund 

transformation of fractional order associated with Equation (3). Given the initial conditions 𝑀1 =

0 and 𝑁1 = 0, the ensuing transformation is analogously termed as the Cole-Hopf-type fractional 

transformation [15,16] or the hetero-Bäcklund fractional transformation, explicitly represented 

by: 

𝑀 =
1

𝜑
𝐷𝑥

𝛼𝜑,                                                                                                                                                     (14) 

where 𝜑 is subjected to satisfy the fractional partial differential equation: 

𝐷𝑡
𝛼𝜑 = 𝐷𝑥

𝛼𝛼𝜑.                                                (15) 

Now, consider the special exact solution of (2+1)-time space fractional Burger's equation within 

Equation (3) to be expressed as 

𝑀1 = 0, 𝑁1 = 𝑁1 (
𝑥𝛼

𝛼
,

𝑡𝛼

𝛼
),                                                                                                                       (16) 

wherein 𝑁1 (
𝑥𝛼

𝛼
,

𝑡𝛼

𝛼
) represents a function subject to variation based on the variables indicated. 

Upon rigorous examination, one can confirm that Equation (11) admits a nonlinear separation 

solution 

𝜑 = 𝐹 (
𝑥𝛼

𝛼
,

𝑡𝛼

𝛼
) 𝐺 (

𝑦𝛼

𝛼
) + 𝐻 (

𝑦𝛼

𝛼
),                                                                               (17)                      

in which 𝐹 (
𝑥𝛼

𝛼
,

𝑡𝛼

𝛼
), 𝐺 (

𝑦𝛼

𝛼
) and 𝐻 (

𝑦𝛼

𝛼
) are arbitrary functions corresponding to their respective 

variables. This holds true provided that  

𝑁1 =
𝐷𝑡

𝛼𝐹−𝐷𝑥
𝛼𝛼𝐹

2𝐷𝑥
𝛼𝐹

.                                (18) 

Consequently, by direct computation from Equations (9), (10), (16), and (17), we derive a 

generalized functional separation solution for the (2+1)-dimensional Burger's equation 

characterized by fractional derivatives in both space and time as delineated in Equation (3). This 

solution can be expressed as: 
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𝑀 =
𝐹𝐷𝑦

𝛼𝐺+𝐷𝑦
𝛼𝐻

𝐹𝐺+𝐻
,                                           (19) 

where 𝐹 = 𝐹 (
𝑥𝛼

𝛼
,

𝑡𝛼

𝛼
) , 𝐺 = 𝐺 (

𝑦𝛼

𝛼
) and 𝐻 = 𝐻 (

𝑦𝛼

𝛼
) represent undefined functions of their 

respective indicated variables. 

The resultant solution is encapsulated by three distinct functions that depend on time and space 

variables. Through judicious selection of these arbitrary functions in Equation (19), an extensive 

spectrum of solution structures for the fractional space-time (2+1) Burgers equation, as provided 

in Equation (3), can be thoroughly explored. It should be noted that when 𝛼 equals 1, Equations 

(10) through (19) correspond to Equations (5) through (14) outlined in the work by Peng and 

Yamba [11]. 

4. General solutions of Equation (5) 

Upon conducting a parallel analysis, we derive an auto-Bäcklund transformation 

corresponding to Equation (5): 

𝑀 = 𝜑−1𝐷𝑦
𝛼𝜑 + 𝑀1, 𝑁 = 𝜑−1𝐷𝑥

𝛼𝜑 + 𝑁1,                              (20) 

wherein 𝜑 represents the anomalous fractional manifold and constitutes an arbitrary function 

that satisfies Equation (5). Moreover, 𝜑 complies with the equation 

𝐷𝑡
𝛼𝜑 = 4𝐷𝑥

𝛼𝛼𝛼𝜑 + 12𝑁1𝐷𝑥
𝛼𝛼𝜑 + 12𝐷𝑥

𝛼𝑁1𝐷𝑥
𝛼𝜑 + 12𝑁1

2𝐷𝑥
𝛼𝜑.                                (21) 

Considering an alternative initial solution with 𝑀1 = 0 and 𝑁1 = 0, one can derive the Cole–Hopf-

type fractional transformation denoted as Equation (13), in which 𝜑 is subject to 𝐷𝑡
𝛼𝜑 = 4𝐷𝑥

𝛼𝛼𝛼𝜑 

for Equation (5). Upon selecting a different exact solution, 𝑀1 = 𝜑 and 𝐷𝑦
𝛼𝑁1 = 𝐷𝑥

𝛼𝜑, another 

novel auto-Bäcklund fractional transformation materializes, represented by Equation (12), 

pertaining to Equation (5), with the stipulation that 

𝐷𝑡
𝛼𝜑 = 4𝐷𝑥

𝛼𝛼𝛼𝜑 + 12𝜑𝐷𝑥
𝛼𝛼𝜑 + 12𝐷𝑥

𝛼𝜑𝐷𝑥
𝛼𝜑 + 12𝜑2𝐷𝑥

𝛼𝜑, 𝐷𝑥
𝛼𝜑 = 𝐷𝑦

𝛼𝜑.                                        (22) 

Furthermore, selecting an initial solution of 𝑀1 = 0 and 𝑁1 (
𝑥𝛼

𝛼
,

𝑡𝛼

𝛼
) results in a solution expressed 

by Equation (19), which also satisfies Equation (5), provided that satisfies the subsequent 

condition as a surrogate for 𝑁1 =
𝐷𝑡

𝛼𝑓−𝐷𝑥
𝛼𝛼𝑓

2𝐷𝑥
𝛼𝑓

 in the Riccati equation: 

𝐷𝑥
𝛼𝑁1 =

𝐷𝑡
𝛼𝑓−4𝐷𝑥

𝛼𝛼𝛼𝑓

12𝐷𝑥
𝛼𝑓

−
𝐷𝑥

𝛼𝛼𝑓

𝐷𝑥
𝛼𝑓

𝑁1 − 𝑁1
2.                                   (23) 

5. Kink-solutions of Equation (3) 

To examine the multiple-kink wave solutions of Equation (3), let us consider 

𝑁 = 𝑒(𝑘𝑖𝑥𝛼+𝑟𝑖𝑦𝛼−𝑐𝑖𝑡𝛼)/𝛼.                                    (24) 
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Upon substituting Equation (24) into the linear term of Equation (3), the dispersion relation can 

be derived as:  

𝑐𝑖 = −𝑘𝑖
2.                                (25) 

Consequently, we define 

𝜃𝑖 =
𝑘𝑖𝑥𝛼+𝑟𝑖𝑦𝛼+𝑘𝑖

2𝑡𝛼

𝛼
.                              (26) 

The multiple-kink solution of Equation (3), using the Cole–Hopf transformation method, is 

posited as 

𝑁 = 𝑅 𝑙𝑛( 𝑓).                                             (27) 

Consequently, it follows that 

𝑀 = 𝑅
𝐷𝑦

𝛼𝑓

𝑓
.                             (28) 

For the one-kink wave solution, let us consider the function: 

𝑓 = 1 + 𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+𝑘1
2𝑡𝛼)/𝛼.                                          (29) 

By substituting Equation (27) into Equation (7) and solving for 𝑅, we obtain  

𝑅 = 1.                                             (30) 

Consequently, we have: 

𝑁 = 𝑙𝑛( 1 + 𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+𝑘1
2𝑡𝛼)/𝛼).                                       (31) 

Therefore, the one-kink wave solution is given by: 

𝑀 =
𝑟1𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+𝑘1

2𝑡𝛼)/𝛼

1+𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+𝑘1
2𝑡𝛼)/𝛼

.                                        (32) 

Figure 1 depicts the evolutionary behavior of the one kink wave solution for 𝑘1 = 3 and 𝑟1 = −5  

at various values of 𝛼. The red layer corresponds to 𝛼 = 1, the green layer to 𝛼 = 0.9, the blue 

layer to 𝛼 = 0.8, the gold layer to 𝛼 = 0.7, the yellow layer to 𝛼 = 0.6, and the cyan layer to 𝛼 =

0.5. Figure 1(a) demonstrates the cross-section at 𝑦 = 2, while Figure 1(b) illustrates the cross- 

section at 𝑦 = 2 and 𝑥 = 2. From these figures, it is evident that the shape of the solution varies 

with the alteration of the fractional order. The modification of the solution's shape by adjusting 

the fractional order is pivotal in developing effective signal processing techniques capable of 

addressing the intricacies of real-world signals. Numerous real-world signals, including 

biomedical signals, seismic signals, and financial data, display non-stationary behavior, 

indicating that their statistical properties vary over time. Conventional approaches predicated on 

integer-order differential equations may fall short in adequately capturing the intricate dynamics 

of such signals. Incorporating fractional-order dynamics can significantly enhance signal 
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processing techniques, enabling more precise modeling and analysis of non-stationary signals. 

Fractional calculus offers a robust framework to characterize the memory and long-range 

dependence attributes of signals, thereby facilitating the development of more accurate models 

and algorithms for applications such as signal denoising, feature extraction, and classification. 

  

                         (a)                                      (b) 

Figure 1. One kink wave solution structures with 𝑘1 = 3, 𝑟1 = −5, 𝛼 = 1, 0.8, 0.6, 0.4, 0.2, 0.1: a) 

Cross-section at 𝑦 = 2 and b) Cross-section at 𝑥 = 2. 

The two-kink wave solution can be expressed as 

𝑓 = 1 + 𝑒𝜃1 + 𝑒𝜃2 + 𝑎12𝑒𝜃1+𝜃2.                                          (33) 

By inserting Equation (32) into Equation (28) and subsequently substituting the outcome into 

Equation (7), we derive that 𝑅 = 1 and 

𝑎12 = 0,                                                   (34) 

indicating no phase shifts. Consequently,  

𝑎𝑖𝑗 = 0,1 ≤ 𝑖 < 𝑗 ≤ 3.                             (35) 

Therefore, we obtain 

𝑁 = 𝑙𝑛( 1 + 𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+𝑘1
2𝑡𝛼)/𝛼 + 𝑒(𝑘2𝑥𝛼+𝑟2𝑦𝛼+𝑘2

2𝑡𝛼)/𝛼).                                    (36) 

The two-kink wave solution for 𝑀 is given by 

𝑀 =
𝑟1𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+𝑘1

2𝑡𝛼)/𝛼+𝑟2𝑒(𝑘2𝑥𝛼+𝑟2𝑦𝛼+𝑘2
2𝑡𝛼)/𝛼

1+𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+𝑘1
2𝑡𝛼)/𝛼+𝑒(𝑘2𝑥𝛼+𝑟2𝑦𝛼+𝑘2

2𝑡𝛼)/𝛼
.                            (37) 

The evolutionary behavior of the two-kink wave solution is illustrated in Figure 2 with 

parameters 𝑘1 = −2, 𝑟1 = 3, 𝑘2 = −3, 𝑟2=2 at various values of 𝛼. The red layer corresponds to 𝛼 =

1, the green layer to 𝛼 = 0.8, the blue layer to 𝛼 = 0.6, and the gold layer to 𝛼 = 0.4. Figure 2(a) 

illustrates the cross-section at 𝑥 = 2, while Figure 2(b) depicts the cross-section at 𝑦 = 1, 𝑥 = 2. 
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From these figures, it is evident that the solution's shape varies with changes in the fractional 

order. The system's behavior demonstrates non-integer order dynamics, suggesting that 

conventional integer-order models may not accurately represent its dynamics. In control theory, 

fractional-order controllers have garnered attention for their enhanced flexibility and 

performance over traditional integer-order controllers. Integrating fractional-order dynamics 

into controller design enables effective regulation of complex systems that exhibit non-linear and 

time-varying characteristics. This application underscores the significance of understanding and 

accurately modeling fractional-order dynamics to optimize the control of various engineering 

systems. 

  

                           (a)                                    (b) 

Figure 2. Two kink wave solution structures with 𝑘1 = −2, 𝑟1 = 3, 𝑘2 = −3, 𝑟2 = 2, 𝛼 =

1, 0.8, 0.6, 0.4, 0.2, 0.1: a) Cross-section at 𝑥 = 2 and b) Cross-section at 𝑦 = 1, 𝑥 = 2. 

To derive the three-kink wave solution, let us define 

𝑓 = 1 + 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3.                                        (38) 

Following the same procedure as previously outlined, we obtain 

𝑁 = 𝑙𝑛( 1 + 𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+𝑘1
2𝑡𝛼)/𝛼 + 𝑒(𝑘2𝑥𝛼+𝑟2𝑦𝛼+𝑘2

2𝑡𝛼)/𝛼 + 𝑒(𝑘3𝑥𝛼+𝑟3𝑦𝛼+𝑘3
2𝑡𝛼)/𝛼).                                (39) 

This results in the three-kink wave solution 

𝑀 =
𝑟1𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+𝑘1

2𝑡𝛼)/𝛼+𝑟2𝑒(𝑘2𝑥𝛼+𝑟2𝑦𝛼+𝑘2
2𝑡𝛼)/𝛼+𝑟3𝑒(𝑘3𝑥𝛼+𝑟3𝑦𝛼+𝑘3

2𝑡𝛼)/𝛼

1+𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+𝑘1
2𝑡𝛼)/𝛼+𝑒(𝑘2𝑥𝛼+𝑟2𝑦𝛼+𝑘2

2𝑡𝛼)/𝛼+𝑒(𝑘3𝑥𝛼+𝑟3𝑦𝛼+𝑘3
2𝑡𝛼)/𝛼

.                                                  (40) 

The evolutionary behavior of the three-kink wave solution is depicted in Figure 3 with 

parameters 𝑘1 = −2, 𝑟1 = 3, 𝑘2 = −3, 𝑟2 = 2, 𝑘3 = 2, 𝑟3 = −3 for 𝛼 = 1. Figure 3(a) presents the 

cross section at 𝑥 = 1, while Figure 3(b) illustrates the cross section at 𝑦 = 1. 
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                                    (a)                                       (b) 

Figure 3. Three kink wave solution structures with 𝑘1 = −2, 𝑟1 = 3, 𝑘2 = −3, 𝑟2 = 2, 𝑘3 =

2, 𝑟3 = −3, 𝛼 = 1: a) Cross-section at 𝑥 = 1 and b) Cross-section at 𝑦 = 1. 

This demonstrates that the (2 + 1)-dimensional Burger's equation, as represented by Equation (3), 

yields 𝑁-kink solutions for finite values of 𝑁, where 𝑁 ≥  1. Based on the findings obtained, the 

general kink solutions can be represented in the following form: 

 𝑀 =
∑ 𝑟𝑖𝑒(𝑘𝑖𝑥𝛼+𝑟𝑖𝑦𝛼+𝑘𝑖

2𝑡𝛼)/𝛼𝑁
𝑖=1

1+∑ 𝑒(𝑘𝑖𝑥𝛼+𝑟𝑖𝑦𝛼+𝑘𝑖
2𝑡𝛼)/𝛼𝑁

𝑖=1

.                                                      (41) 

When 𝛼 = 1, the Equations (30), (31), (33), (34), (35), (36), and (37) correspond to Equations (14), 

(15), (19), (20), (22), (23), and (24) as presented in the study by Wazwaz [17]. 

6. Kink-solutions of Equation (5) 

To examine the multiple-kink wave solutions of Equation (5), we consider   

𝑁 = 𝑒(𝑘𝑖𝑥𝛼+𝑟𝑖𝑦𝛼−𝑐𝑖𝑡𝛼)/𝛼.                                           (42) 

By substituting Equation (42) into the linear term of Equation (5), we derive the dispersion 

relation   

𝑐𝑖 = −4𝑘𝑖
3.                               (43) 

Consequently, we obtain 

𝜃𝑖 =
𝑘𝑖𝑥𝛼+𝑟𝑖𝑦𝛼+4𝑘𝑖

3𝑡𝛼

𝛼
.                                    (44) 

Utilizing the Cole-Hopf fractional transformation, the multiple-kink wave solution of Equation 

(5) is given by 

𝑁 = 𝑅 𝑙𝑛( 𝑓).                                  (45) 

and 

𝑀 = 𝑅
𝐷𝑦

𝛼𝑓

𝑓
.                                (46) 

In relation to the single-kink wave solution, consider the function 
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𝑓 = 1 + 𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1
3𝑡𝛼)/𝛼.                                                          (47) 

By substituting Equation (45) into Equation (8) and determining the solution for 𝑅, we obtain 𝑅 =

1, and therefore 

𝑁 = 𝑙𝑛( 1 + 𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1
3𝑡𝛼)/𝛼+𝜌1).                                          (48) 

This yields the one kink wave solution: 

𝑀 =
𝑟1𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1

3𝑡𝛼)/𝛼+𝜌1

1+𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1
3𝑡𝛼)/𝛼+𝜌1

.                                            (49) 

The evolutionary behavior of the one-kink wave solution is illustrated in Figure 4 with 

parameters 𝑘1 = 3, 𝑟1 = 5, 𝜌1 = −50, for varying values of 𝛼. The depiction includes the red layer 

for 𝛼 = 1, the green layer for 𝛼 = 0.95, the blue layer for 𝛼 = 0.90, and the gold layer for 𝛼 = 0.80. 

Figure 4(a) represents the cross-section at 𝑦 = 1, while Figure 4(b) also represents the cross-

section at 𝑦 = 1. 

  

                                    (a)                                                                                            (b) 

Figure 4. One kink wave solution structures with 𝑘1 = 3, 𝑟1 = 5, 𝛼 = 1, 0.95, 0.90, 0.80: a) Cross- 

section at 𝑥 = 1 and b) Cross-section at 𝑦 = 1. 

In the context of the two-kink wave solution for Equation (5), we examine the function 

𝑓 = 1 + 𝑒𝜃1 + 𝑒𝜃2 + 𝑎12𝑒𝜃1+𝜃2.                                                        (50) 

Incorporating Equation (50) into Equation (45) and subsequently substituting the outcome into 

Equation (7), we determine that (𝑅 = 1), with no phase shifts observed, i.e, 𝑎12 = 0. Therefore, 

we conclude that 

𝑎𝑖𝑗 = 0, 1 ≤ 𝑖 < 𝑗 ≤ 3.                           (51) 

Consequently, we derive 

𝑁 = 𝑙𝑛( 1 + 𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1
3𝑡𝛼)/𝛼+𝜌1 + 𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1

3𝑡𝛼)/𝛼+𝜌2).                                      (52) 

This formulation yields the two-kink wave solution: 

𝑀 =
𝑟1𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1

3𝑡𝛼)/𝛼+𝜌1+𝑟2𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1
3𝑡𝛼)/𝛼+𝜌2

1+𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1
3𝑡𝛼)/𝛼+𝜌1+𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1

3𝑡𝛼)/𝛼+𝜌2
.                                      (53) 
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The evolutionary behavior of the two kink wave solution is illustrated in Figure 5 for the 

parameters 𝑘1 = −2, 𝑟1 = 2, 𝜌1 = 10, 𝑘2 = −3, 𝑟2 = 2, 𝜌2 = −30 under varying values of 𝛼. The red 

layer represents 𝛼 =  1, the green layer represents 𝛼 =  0.95, the blue layer represents 𝛼 =  0.90, 

and the gold layer represents 𝛼 =  0.80. Figure 5(a) shows the cross-section at 𝑥 =  1, while 

Figure 5(b) depicts the cross-section at 𝑦 =  1. 

  

                             (a)                                                            (b) 

Figure 5. Two kink wave solution structures with 𝑘1 = −2, 𝑟1 = 2, 𝜌1 = 10, 𝑘2 = −3, 𝑟2 = 2, 𝜌2 = −30, 

𝛼 = 1, 0.95, 0.90, 0.80: a) Cross-section at 𝑥 = 1 and b) Cross-section at 𝑦 = 1. 

Considering the three-kink wave solution of equation (5), we define 

𝑓 = 1 + 𝑒𝜃1 + 𝑒𝜃2 + 𝑒𝜃3.                                            (54) 

Continuing as previously, we find 

𝑁 = 𝑙𝑛( 1 + 𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1
3𝑡𝛼)/𝛼+𝜌1 + 𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1

3𝑡𝛼)/𝛼+𝜌2 + 𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1
3𝑡𝛼)/𝛼+𝜌3).     (55) 

The corresponding three-kink wave solution is given by 

𝑀 =
𝑟1𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1

3𝑡𝛼)/𝛼+𝜌1+𝑟2𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1
3𝑡𝛼)/𝛼+𝜌2+𝑟3𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1

3𝑡𝛼)/𝛼+𝜌3

1+𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1
3𝑡𝛼)/𝛼+𝜌1+𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1

3𝑡𝛼)/𝛼+𝜌2+𝑒(𝑘1𝑥𝛼+𝑟1𝑦𝛼+4𝑘1
3𝑡𝛼)/𝛼+𝜌3

.         (56) 

The (2+1)-dimensional space-time fractional higher-order Burgers equation, represented by 

Equation (5), yields 𝑁-kink solutions for finite 𝑁, where 𝑁 ≥  1. From the results obtained, the 

general kink solutions can be expressed in the form:   

𝑀 =
∑ 𝑟𝑖𝑒(𝑘i𝑥𝛼+𝑟i𝑦𝛼+4𝑘i

3𝑡𝛼)/𝛼+𝜌𝑖𝑁
𝑖=1

1+∑ 𝑟𝑖𝑒(𝑘i𝑥𝛼+𝑟i𝑦𝛼+4𝑘i
3𝑡𝛼)/𝛼+𝜌𝑖𝑁

𝑖=1

.                             (57) 

Moreover, it should be noted that Equations (45), (46), (48), (49), (54), (55), and (56) correspond to 

Equations (33), (34), (36), (37), (39), (40), and (41) as presented in Wazwaz's study [17]. 

7. Conclusion 

This paper has investigated two forms of the (2+1)-dimensional fractional Burger's equations, 

with a focus on deriving solutions through the singular manifold (SM) method. By integrating 

the conformable fractional derivative (CFD) into the singular manifold (SM) method, we have 
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successfully obtained exact wave solutions. Furthermore, we identified multiple solutions, 

including kink wave solutions. Our research indicates that numerous nonlinear equations, even 

those involving higher derivatives, are capable of yielding comparable solutions. By selecting 

three functions arbitrarily, we elucidated the properties of these solutions and introduced new 

physical interpretations. Additionally, variations in the fractional order result in significantly 

more complex structures. When the fractional order is set to one, our findings align with those 

reported by Peng and Yamba [11] and Wazwaz [17]. 
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