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ABSTRACT. This study evaluates the effectiveness of classical Autoregressive Integrated Moving Average (ARIMA) 

models and kth Simple Moving Average - ARIMA (kth SMA-ARIMA) models in forecasting the exchange rate between 

the Thai Baht (THB) and the Chinese Yuan (CNY). The analysis uses a dataset of historical monthly exchange rates 

from January 2011 to November 2022, covering 143 months. The dataset is divided into two segments: the initial 127 

months are used as the training dataset for model development, while the subsequent 16 months serve as the testing 

dataset to evaluate forecast accuracy. The Akaike Information Criterion (AIC) is the decision criterion for model 

selection during the development phase. The forecasting models' effectiveness is subsequently assessed on the testing 

dataset using two statistical measures: the Mean Absolute Percentage Error (MAPE) and the Root Mean Square Error 

(RMSE). The findings indicate that the classical ARIMA (0,1,1) model outperforms the kth SMA-ARIMA models in this 

study, exhibiting the lowest RMSE and MAPE of 0.1702 and 2.6644, respectively. Additionally, a focused comparison 

of the kth SMA-ARIMA models for k = 2, 3, and 4 reveals that the 2nd SMA-ARIMA (0,1,2) model demonstrates superior 

performance compared to the 3rd and 4th SMA-ARIMA models. This superiority is reflected in their respective RMSE 

values of 0.3202, 0.5146, and 0.6339, and corresponding MAPE values of 5.3533, 8.7531, and 10.4949. These results 

provide valuable insights for decision-makers in the financial sector, enhancing investment strategy formulation based 

on anticipated currency movements. 
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1. Introduction 

The exchange rate is a numerical representation of the proportion at which one currency may 

be traded for another ([1], [2]). Exchange rates impact the costs associated with international 

business. When the value of a nation's currency increases, foreign purchasers pay a higher price 

for exported goods and a lower price for imported goods. Trade imbalances and the ability to 

compete may be negatively impacted. A robust currency can impede the global competitiveness 

of local firms, whereas a depreciated currency might enhance export performance. Businesses are 

required to mitigate the risks associated with fluctuations in foreign currency exchange rates. 

Karakostas [3] forecasting exchange rates is a significant financial subject that is garnering 

attention, mostly due to its intricate nature and practical importance. In 2021, Thailand's top three 

trading partners are China, Japan, and the United States, respectively, with a total trade value of 

more than 7 trillion Baht. China has a proportion of trade value growth of more than 30%, 

whereas Thailand has a continuous trade deficit with China [4]. As a result, it will affect exchange 

rate changes and cause the Chinese Yuan to depreciate. In the past year, it was found that the 

Yuan exchange rate fluctuated within the range of 5.12 to 5.52 Baht per 1 Yuan [5].  Therefore, the 

basics of bilateral exchange rates change over time, so it is important to consider exchange rates. 

Before the 1980s, economists used financial or purchasing power parity (PPP) theory to forecast 

foreign exchange rates.  However, the models produced from these theories will remain 

inconsistent with the changing times [6]. In [7] the authors found that a simple random walking 

model performed better in the foreign exchange model than the economic theory model. 

Subsequent analyses generally confirm the general conclusion of the above studies; in particular, 

it is difficult to identify a model that explains and predicts all currencies for all periods ([8], [9]). 

Forecasting exchange rates using the time series method assumes the use of time series data 

in forecasting, that historical data will continue in its original form in the future. Many researchers 

use time series techniques to analyze data to play a role in forecasting future events. Exponential 

smoothing, Box–Jenkins methods, and neural networks are popular exchange rate forecasting 

techniques.  In recent years, many authors have been studying exchange rates. In [1] the authors 

found that the exponential smoothing method is better than the Autoregressive Integrated 

Moving Average (ARIMA) model in some cases for the forecast of the Romanian Leu and the 

Euro, US Dollar, British Pound, Japanese Yen, Chinese Yuan, and Russian Ruble. In [10] the 

authors forecast the exchange rate for the Malaysian Ringgit (MYR) against the US dollar (USD) 
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by using Artificial Neural Network (ANN) and ARIMA techniques. The results showed that the 

ANN model is better for forecasting USD/MYR Exchange Rate data than the ARIMA model. In 

[11], a Nonlinear Autoregressive with Exogenous Input (NARX) Neural Network approach was 

used to forecast the Euro exchange rate against the US dollar. It appears to be an effective 

approach to forecasting currency exchange rates. In [12], they researched daily Euro/Yuan 

exchange rates using artificial neural networks. The results indicated that incorporating 

additional variables such as year, month, day of the month, and day of the week into the analysis 

significantly improved the accuracy and organization of the time series equalization. In [13], they 

compared forecast models to assess their accuracy in the short-term using data on the EUR /USD 

exchange rate by using three methods: ARIMA, Recurrent Neural Network (RNN) of the Elman 

type, and Long Short-Term Memory (LSTM). Results show that LSTM provided the best forecast 

model. In [2], they showed that the future closing price of the AUD/JPY, NZD/USD, and 

GBP/JPY can be accurately predicted by utilizing a novel Convolutional Neural Network (CNN) 

model integrated with a random forest regression layer. The findings revealed that the CNN 

outperformed the ARIMA, Multi-Layer Perceptron (MLP), and Linear Regression (LR) models . 

The above study revealed that no work has employed a SMA-ARIMA model for predicting 

currency exchange rates. Therefore, this paper aims to investigate the optimal forecasting model 

for predicting the exchange rate between the Thai Baht and the Chinese Yuan (THB/CNY) by 

comparing kth SMA-ARIMA models to classical ARIMA models. 

ARIMA is a comprehensive model utilized to analyze and forecast time series data. It is 

suitable for a wide range of time series data, provided that it can be made stationary and exhibits 

linear relationships. By ensuring the data satisfies these criteria and applying necessary 

transformations, ARIMA can effectively capture and forecast the underlying patterns and trends 

in the time series. To effectively employ ARIMA, the data should possess specific characteristics 

and meet certain criteria: univariate time series, stationarity (meaning its mean and variance 

remain constant over time), linear relationships, and the absence of seasonal patterns. ARIMA is 

designed to analyze univariate time series data, stationary time series, and linear relationships 

within the data. While it can capture various patterns through AR and MA components, it may 

need to be better suited for highly non-linear data. Additionally, ARIMA is not inherently 

designed to handle seasonal patterns.  
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The SMA-ARIMA model is a hybrid approach that combines SMA's smoothing capabilities 

with the ARIMA model's forecasting abilities. This integration leverages the strengths of both 

techniques to enhance the accuracy of time series forecasting. SMA is employed to smooth time 

series data by averaging data points over a specified period. It helps reduce short-term 

fluctuations and reveals the underlying trend in the data. 

The remainder of this paper is structured as follows. Section 2 provides an overview of the 

study area and the methods used for data collection. Section 3 presents a detailed explanation of 

the ARIMA and the kth SMA-ARIMA models. Section 4 presents the results obtained from the 

analysis. Finally, Section 5 concludes the paper. 

 

2. Data 

The historical daily THB/CNY exchange rates provided by the Bank of Thailand 

(https://www.bot.or.th) were collected from January 2011 to November 2022 and averaged into 

monthly data. The dataset, consisting of 143 observations, has been divided into training and 

testing datasets. The first 127-month exchange rates (until July 2021) were used as the training 

dataset for model building, while the testing dataset, comprising the remaining 16-month 

exchange rates, was used to compare the forecast accuracy of the forecasting methods. 

This paper compares the forecasting potential of two models: the ARIMA and SMA-ARIMA 

models. Therefore, the study derives the forecasting performance from these two models to 

identify the most suitable forecasting procedure for each stock price, following the steps outlined 

below: 

1. Fit the ARIMA model to the training dataset. 

2. Fit the SMA-ARIMA model to the training dataset. 

3. Compare the forecast accuracy measures for all models using the training dataset. 

4. Compare the forecast accuracy measures for the models using the testing dataset. 

 

3. Methods 

This section details ARIMA and kth SMA-ARIMA models, including model selection criteria 

and accuracy metrics. 

3.1 Autoregressive Integrated Moving Average Model 

The Autoregressive Integrated Moving Average (ARIMA) model, which was developed by 

Box et. al. [14], is widely recognized as one of the most commonly used forecasting techniques. 
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The ARIMA model was selected in light of the observed trend in the monthly data and by the 

recommendations of Box and Jenkins. For a nonstationary time series of data 𝑦𝑡  (𝑡 = 1, … , 𝑛), the 

ARIMA model, denoted as ARIMA(p, d, q), can be expressed by: 

   𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + 𝜃𝑞(𝐵)𝜀𝑡,    (2.1) 

where  𝜙𝑝(𝐵) = (1 − 𝜙1𝐵 − 𝜙2𝐵2−. . . −𝜙𝑝𝐵𝑝) is the autoregressive operator of order p: AR(p), 

𝜃𝑞(𝐵) = (1 − 𝜃1𝐵 − 𝜃2𝐵2−. . . −𝜃𝑞𝐵𝑞) is the moving average operator of order q: MA(q), c is a 

constant term, (1 − 𝐵)𝑑 is the differencing operator, and d is the number of times needed to 

differentiate 𝑦𝑡 to make the data stationary, B is the backward shift operator defined as 𝐵𝑘𝑦𝑡 =

𝑦𝑡−𝑘, and 𝜀𝑡 is an error term, usually a white noise process with variance 𝜎2. If d is nonzero, a 

basic differencing transformation can be employed to eliminate the trend [15] . In all instances, if 

there is a trend, the model does not incorporate a constant term c [16]. 

The Box and Jenkins' ARIMA modeling is best performed by following a protocol consisting 

of a four-step iterative process [17]. 

Step 1: Data Preparation. In this step, we apply transformations and differencing to the time 

series to assess its stationarity. The first part of this process involves using the augmented Dickey-

Fuller (ADF) unit root test ([15], [18]) to check for data stationarity. 

Step 2: Model Identification and Parameter Estimation. First, we estimate the general form or 

order of the model. Then, we use maximum likelihood estimation [19] to estimate the model 

parameters. Finally, we use the t-test to check the statistical significance of each parameter in the model. 

Step 3: Diagnostic Checking. To assess the appropriateness of the model, the Ljung-Box test 

is conducted to ensure that the residuals exhibit characteristics of white noise [20]. The 

Kolmogorov-Smirnov (K-S) test is also performed to check for normality. If the forecast model 

fails these suitability checks, the researcher must redefine the forecast model. If the model is 

inadequate, the first three stages are repeated until a satisfactory ARIMA model is obtained. This 

protocol is repeated until a suitable ARIMA model is selected for the analyzed time series. The 

AIC is computed for each model, and the smallest AIC is chosen. 

Step 4: Forecasting. Use the identified optimal forecasting model from Step 3 to predict future 

outcomes. 

3.2 The kth Simple Moving Average –ARIMA Model 

The kth Simple Moving Average – ARIMA (kth SMA – ARIMA) model was proposed by [21] 

and [22]. It is based on modifying a given time series 𝑥𝑡 into a new k-time moving average time 
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series and then predicting the new time series 𝑥�̂� by using the ARIMA model from the Box and 

Jenkins method. Once the new time series 𝑥�̂� is predicted, a back-shift operator is then applied to 

obtain the forecasted values 𝑦�̂� of the original time series 𝑦𝑡. The kth SMA -ARIMA process 𝑥𝑡 of a 

time series 𝑦𝑡 and the corresponding back -shift operator of the forecasted values 𝑦�̂� are defined by 

𝑥𝑡 =
1

𝑘
∑ 𝑦𝑡−𝑘+1+𝑗

𝑘−1
𝑗=0 ; t = k, k+1, …, n,    (2.2) 

and 

 𝑦�̂� = 𝑘𝑥�̂� − 𝑦𝑡−1 − 𝑦𝑡−2−. . . −𝑦𝑡−𝑘+1,    (2.3) 

respectively. 

We can summarize the process of developing the subject model as follows:   

Step 1: Transform the original time series into the kth SMA-ARIMA process using Eq. (2.2). 

Step 2: Prepare the data by checking for stationarity. Conduct the ADF test to determine the 

order of differencing, denoted as d. Iterate d = 0, 1, 2, ... until stationarity is achieved. 

Step 3: Identify and estimate the parameters for the model. Decide the order of the process, 

denoted as r. In our case, we set r = 6, where p + q = 6. Once (d, r) is selected, generate all possible 

sets of (p, q) for p + q ≤ r. For each set of (p, q), estimate the parameters in the model. 

Step 4: Perform diagnostic checking to confirm the model's suitability. Use the Ljung-Box test 

to verify that the residuals behave like white noise. Additionally, the K-S test will be conducted 

to assess normality. The AIC is calculated for each model, and the model with the lowest AIC is 

selected. 

Step 5: Forecasting. Utilize the optimal forecasting model identified in Step 4 to predict future 

outcomes and determine the estimates for the original time series using Equation (2.3). 

3.3 Model Selection Criterion 

The best-fit model could be determined by using the Akaike Information Criterion (AIC) 

which is a widely used model selection criterion due to its computational simplicity and effective 

performance [23]. The AIC [24], is given as  

     𝐴𝐼𝐶 = −2 log 𝐿 + 2𝑚                  (2.4) 

where L is the likelihood of the model and m is the total number of estimated parameters in the 

model. The optimal model is selected from the models that adequately fit the data. The AIC value 

is computed for each candidate model, and the model with the lowest AIC value is identified as 

the most appropriate. 
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3.4 Accuracy Metrics 

Two common metrics, Root Mean Square Error (RMSE) and Mean Absolute Percentage Error 

(MAPE), have been applied to evaluate the forecasting methods.  

The most common forecasting measure is RMSE calculated by Eq. (2.5): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑡 − �̂�𝑡)2𝑛

𝑡=1     (2.5)  

where ty   is the actual value at time t, ˆ
ty is the forecasted value at time t, and n is the sample size . 

MAPE is a relative forecasting accuracy measure and it is a scale-independent measure that is 

defined as : 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑡−�̂�𝑡

𝑦𝑡
|𝑛

𝑡=1 × 100    (2.6) 

The model demonstrating the lowest values of RMSE and MAPE was designated as the most 

suitable for future exchange rate predictions. 

The criteria for evaluating forecasting accuracy based on the MAPE have been established as 

follows ([25], [26]): 

a. Forecasting accuracy is considered excellent when the MAPE is below 10%. 

b. Forecasting accuracy is considered satisfactory when the MAPE falls between 10% and 20%. 

c. Forecasting accuracy is deemed acceptable when the MAPE ranges from 20% to 50%. 

d. Forecasting accuracy is evaluated as poor when the MAPE exceeds 50%. 

 

4. Results 

This section presents descriptive statistics for the exchange rates and reports the results 

obtained from applying the ARIMA and kth SMA-ARIMA models. All computations involved in 

this task were performed using the R programming language version 4.4.1. 

4.1 Descriptive Statistics 

Before fitting the model, descriptive statistics were conducted on the 127-month currency 

exchange rates and presented in Table 1. Table 1 summarizes the dataset, revealing that the 

average exchange rate was 4.958 Thai Baht per Yuan, with a standard deviation of 0.324 Baht. The 

coefficient of variation was 6.535%, indicating that the dataset exhibited low dispersion around 

its mean. 
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Table 1: Descriptive statistics of the 127-month exchange rate 

Variable Exchange Rate 

Mean 4.958 

Median 4.960 

Minimum 4.278 

Maximum 5.648 

Standard deviation 0.324 

Coefficient of variation 6.535 

 

4.2 ARIMA Model Results 

To determine the stationarity of the monthly exchange rate, time series plots were created to 

visualize the movement of the exchange rate for the training dataset, as depicted in Figure 1. 

Based on the analysis of Figure 1, the data exhibits a fluctuating pattern; the average value 

changes over time, indicating that the exchange rate series is non-stationary. As the Box-Jenkins 

model does not apply to non-stationary data, it was necessary to transform the training dataset 

into a stationary series. To achieve this, a first differencing transformation (d=1) was applied, and 

the resulting plot is shown in Figure 2. From Figure 2, it can be inferred that the differenced series 

appears stationary. The ADF test was conducted to confirm the stationarity, and the results are 

presented in Table 2. The ADF test yielded a t-test statistic of -4.3399 and a p-value of less than 

0.001 for the first differenced exchange rate, indicating significance below the 0.01 level. 

Therefore, it can be concluded that the first differenced exchange rate is stationary, thus making 

it suitable for ARIMA model identification. 

 

Figure 1: Time series plot of the training dataset 
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Figure 2: Differenced exchange rate plot 

 

Table 2: ADF unit root test for time series 

Time Series Difference Order (d) t-statistic p-value 

Exchange Rate 0 -1.7913 0.6633 

 1 -4.3399* < 0.001 

2nd SMA 0 -1.7598 0.6764 

 1 -4.1146* < 0.001 

3rd SMA 0 -2.3315 0.4388 

 1 -4.0559* < 0.001 

4th SMA 0 -1.9414 0.6009 

 1 -5.5941* < 0.001 

 *Significant at the 0.01 level of significance 

 

Our next step is determining the suitable p and q values for ARIMA models by analyzing the 

autocorrelation function (ACF) and partial autocorrelation function (PACF) plots derived from 

the differenced time series, as depicted in Figure 3. Upon examining these plots, the ARIMA(0,1,1) 

model may be appropriate for the exchange rate. This is supported by the fact that the ACF plot 

only displays a significant spike at lag 1, while the PACF plot does not exhibit any significant 

lags. Nonetheless, we explored various models with different p and q parameters, assessing their 

performance using the AIC to determine the most optimal forecasting model. The findings 

presented in Table 3 reveal that the ARIMA(0,1,1) model, with an AIC value of -359.20, is the best 

choice. 
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Figure 3: ACF and PACF plots of the differenced exchange rate series 

 

Table 3: AIC for the ARIMA and kth SMA-ARIMA models 

(p,d,q) Classical ARIMA 2nd SMA -ARIMA 3rd SMA -ARIMA 4th SMA -ARIMA 

 (0,1,0) -334.17 -375.90 -409.73 -437.81 

(0,1,1) -359.20 -498.83 -500.02 -574.75 

(0,1,2) -358.57 -528.84 -594.38 -608.06 

(0,1,3) -357.42 -527.35 -612.73 -660.70 

(1,1,0) -356.55 -443.89 -521.33 -586.40 

(2,1,0) -358.63 -476.41 -567.37 -633.48 

(3,1,0) -356.71 -490.22 -567.36 -632.43 

(1,1,1) -358.23 -522.84 -550.07 -635.81 

(1,1,2) -358.34 -527.28 -612.80 -635.08 

(1,1,3) -356.35 -525.01 -612.53 -678.76 

(2,1,1) -356.69 -526.70 -566.25 -636.40 

(2,1,2) -356.35 -525.47 -613.30 -638.34 

(2,1,3) -354.34 -523.63 -611.41 -679.67 

(3,1,1) -355.24 -525.37 -571.05 -647.57 

(3,1,2) -357.00 -523.21 -611.52 -645.90 

(3,1,3) -355.24 -521.27 -609.39 -678.77 

 

After identifying the model, residual diagnostics were conducted to assess the adequacy of 

the ARIMA(0,1,1) model. The ACF and PACF patterns shown in Figure 4 were examined to 

ensure that the residuals resemble white noise. Additionally, both the Ljung-Box and K-S tests 
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were performed, and the results are presented in Table 4. Based on the ACF and PACF plots in 

Figure 4, all values fell within the 95% confidence interval, indicating no autocorrelation in the 

residuals. The Ljung-Box test, conducted at a lag of 10, yielded a Q statistic of 4.5474 with a p-

value of 0.9193, greater than 0.01. This confirms that there is no autocorrelation in the residuals, 

therefore, the null hypothesis that the residuals are white noise was not rejected. Furthermore, 

the K-S test resulted in a value of 0.0716 with a p-value larger than 0.01, confirming the normality 

of the residuals. Consequently, the ARIMA(0,1,1) model is deemed appropriate for analyzing the 

exchange rates. 

 

 

Figure 4: Residuals, ACF, and PACF of the residuals from the ARIMA(0,1,1) model 

 

Table 4:  Ljung-Box and K-S tests for the residuals of the candidate models 

Candidate Model Ljung-Box Test K-S Test 

 Q p-value K-S p-value 

Classical ARIMA(0,1,1) 4.5474 0.9193 0.0716 0.5333 

2nd SMA-ARIMA(0,1,2) 2.6300 0.9888 0.0669 0.6256 

3rd SMA-ARIMA(2,1,2) 2.8227 0.9853 0.1022 0.1464 

4th SMA-ARIMA(2,1,3) 3.7834 0.9566 0.0610 0.7474 

 

4.2 The kth SMA-ARIMA Model Results 

After exploring different values of k ranging from 2 to 6 months, it was found that the SMA-

ARIMA model performed poorly with k = 5 and 6, so those models will not be discussed further. 

However, the SMA models with k = 2, 3, and 4 showed promising results, which will be reported 
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next. Stationarity of the time series for k = 2, 3, and 4-month SMA was investigated using the ADF 

test, and the results are presented in Table 2. It can be observed from Table 2 that all SMA time 

series became stationary after the first differencing (d=1) with a significance level of 0.01. 

Therefore, the ARIMA model with p and q parameters, where p + q ≤ 6, will be applied to the 

differenced time series of k = 2, 3, and 4-month SMA. The AIC values for different ARIMA models 

are presented in Table 3. From Table 3, it can be seen that the ARIMA(0,1,2), ARIMA(2,1,2), and 

ARIMA(2,1,3) models obtained the lowest AIC values for the k = 2, 3, and 4-month SMA time 

series, with AIC values of -528.84, -613.30, and -679.67, respectively. Next, the Ljung-Box test was 

performed with a total lag of 10, and the results are displayed in Table 4. Table 4 shows that all 

p-values obtained from the previous three models were greater than 0.01, indicating that the 

residuals obtained from the 2nd SMA-ARIMA(0,1,2), 3rd SMA-ARIMA(2,1,2), and 4th SMA-

ARIMA(2,1,3) models were white noise. Additionally, the K-S test was conducted to assess the 

normality of the residuals, as presented in Table 4. The results of the K-S test indicate that the 

residuals from the 2nd SMA-ARIMA(0,1,2), 3rd SMA-ARIMA(2,1,2), and 4th SMA-ARIMA(2,1,3) 

models followed a normal distribution, as evidenced by p-values exceeding 0.01 for each model. 

4.3 Effectiveness Evaluation Results 

The monthly currency exchange rate forecasting performances were evaluated using RMSE 

and MAPE (Eq. 2.5 and Eq. 2.6) on the testing dataset presented in Table 5. The classical 

ARIMA(0,1,1) model outperformed the kth SMA-ARIMA models, achieving the lowest RMSE and 

MAPE values of 0.1702 and 2.6644, respectively. These results are considered excellent, as the 

MAPE is below 10%. When considering only the kth SMA-ARIMA models, the results suggest that 

a smaller k value (k=2) leads to better performance for this dataset, with RMSE and MAPE values 

of 0.3202 and 5.3533, respectively. However, the 3rd SMA-ARIMA(2,1,2) model still demonstrates 

high forecasting accuracy, with a MAPE of 8.7531, falling below the 10% threshold. On the other 

hand, the 4th SMA-ARIMA(2,1,3) model exhibits satisfactory accuracy, as evidenced by its MAPE 

of 10.4949, which falls within the acceptable range of 10-20%. Based on these results, the optimal 

value of k differs from the findings of [21] and [22] due to the utilization of different time series 

data. 
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Table 5: RMSE and MAPE of the residuals obtained from the candidate models 

Model RMSE MAPE 

Classical ARIMA(0,1,1) 0.1702 2.6644 

2nd SMA-ARIMA(0,1,2) 0.3202 5.3533 

3rd SMA-ARIMA(2,1,2) 0.5146 8.7531 

4th SMA-ARIMA(2,1,3) 0.6339 10.4949 

 

In addition, the parameter estimate of the best fit ARIMA (0,1,1) model is given in Table 6, 

that is, the first-order moving average process with the first differencing. The forecast of ARIMA 

(0,1,1) is generated by the following equation for the next month (t) 

    (1 − 𝐵)𝑦𝑡 = (1 − 0.4317𝐵)𝜀𝑡.     (3.1) 

From Eq. (3.1), expanding the first differencing and the moving operator, it becomes 

    �̂�𝑡 = 𝑦𝑡−1 + 𝜀𝑡 − 0.4317𝜀𝑡−1.     (3.2) 

Neglecting the unknown value of t  in Eq. (3.2), the forecasting model can be written as 

    �̂�𝑡 = 𝑦𝑡−1 − 0.4317𝜀𝑡−1.        (3.3) 

 

Table 6: Parameter estimate of the ARIMA (0,1,1) model 

Parameter MA(1): 𝜃1 

Coefficient 0.4317 

Standard error 0.0844 

t-statistic 5.1149 

p-value < 0.001 

 

5. Conclusion and suggestion 

The main challenges financial traders and stock market investors face include reducing risk, 

maximizing returns, and implementing monetary policies. It is important to use appropriate 

forecasting methods to optimize processes and make strategic decisions. This study focuses on 

implementing classical Box-Jenkins ARIMA and SMA-ARIMA models, specifically ranging from 

the 2nd to the 4th order in the SMA component. The monthly THB/CNY exchange rate datasets 

are used for this analysis. The accuracy of the forecasting models is measured using RMSE and 

MAPE metrics. The findings of this study reveal that the ARIMA(0,1,1) model is the most suitable 
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choice for forecasting the exchange rate. It demonstrates the smallest RMSE and MAPE metrics 

of 0.1702 and 2.6644, respectively. These results indicate a high level of forecasting precision, 

given that the MAPE is significantly below the 10% threshold. Furthermore, a comparison of the 

kth SMA-ARIMA models (k = 2, 3, and 4) shows that the 2nd SMA-ARIMA(0,1,2) model performs 

better than the 3rd and 4th SMA-ARIMA models. This is evidenced by their respective RMSE 

values of 0.3202, 0.5146, and 0.6339, as well as the corresponding MAPE values of 5.3533, 8.7531, 

and 10.4949. The effectiveness of SMA-ARIMA models is influenced by the choice of k in the SMA 

component. The second SMA-ARIMA model, with a k value of 2, balances smoothing the data 

and preserving important trends and fluctuations, ultimately improving forecasting precision. 

However, higher-order SMA-ARIMA models (k = 3 and k = 4) may excessively smooth the data, 

resulting in less accurate predictions when reverting to the original time series. These findings 

deviate from the optimal value of k as determined in previous studies conducted by [21] and [22], 

highlighting the significant influence of utilizing different time series datasets. Therefore, future 

research in this field should further investigate the effects of diverse datasets on model selection 

and forecasting precision. 
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