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Abstract. The purpose of this study is to conduct a complete examination into the fractional (2+1)-dimensional 

nonlinear KP-Burgers (KP-B) model in the setting of quantum plasma. The main goal is to present a mathematical 

explanation and derivation for the fractional (2+1)-dimensional nonlinear KP-B model. We used the reductive 

perturbation technique to obtain the fractional (2+1)-dimensional ion acoustic solitary wave, which leads to the 

nonlinear KP-B model. To solve the fractional space-time KP-B model, we used the modified sub-equation technique 

and the extended hyperbolic function methodology. This methodology covers rational, periodic wave, and 

hyperbolic function solutions. Ion acoustic waves were explored in relation to the effects of ion pressure and an 

external electric field. The effects of density and fractional order on the properties of a single solution are examined. 

The plasma system is defined as an unmagnetized epi plasma system composed of relativistic ions, positrons, and 

nonextensive electrons that can be found in a range of astrophysical and cosmological environments. The solution 

variables include electron-positron and ion-electron temperature ratios, electron and positron nonextensivity 

strength, ion kinematic viscosity, positron concentration, and the weakly relativistic streaming factor. The fractional 

order and associated plasma properties have a considerable influence on the phase velocity of ion acoustic waves. 

When the fractional order equals one, the obtained results are consistent with known outcomes. This work makes a 

substantial contribution to our understanding of nonlinear events in quantum plasmas, particularly ion acoustic 

waves. It provides a solid approach for solution development and analysis, with implications for a variety of 

astrophysical and cosmological scenarios. 

 

1. Introduction 

 Three well-known formulas used in mathematics relate to quantum plasma. The model 

of quantum hydrodynamics (QHD) is the first and most well-liked model. This model serves as 
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a fundamental framework for understanding the behavior of quantum plasmas. QHD describes 

the collective behavior of charged particles in a quantum mechanical framework, incorporating 

effects such as quantum statistics, quantum pressure, and quantum potential into the dynamics 

of the plasma. It provides a macroscopic description of quantum plasmas by combining classical 

fluid equations with quantum mechanical principles [1- 5]. For classical plasma fluid, the 

transport equations extend the principles of classical fluid dynamics to plasma systems, 

considering the conservation of momentum and energy of the plasma particles. They form a 

basis for understanding the macroscopic behavior of classical plasmas and can be viewed as a 

special case or a generalization of the QHD model when quantum effects are negligible. 

Researchers frequently aim to formulate and scrutinize nonlinear fractional differential 

equations (FDEs) or partial differential equations (PDEs) to investigate wave propagation and 

structural dynamics within quantum plasmas. By combining the QHD model with appropriate 

mathematical techniques and physical considerations, such as nonlinearities and quantum 

effects, researchers aim to develop models that accurately capture the complex behavior of 

quantum plasma waves. The combination of these models and equations enables researchers to 

gain insights into the behavior of quantum plasmas across various scales and conditions, from 

microscopic quantum effects to macroscopic plasma dynamics [1-27]. 

In investigations centered on unmagnetized ion-electron-positron quantum plasmas, 

researchers explore both linear and nonlinear ion-acoustic (IA) waves. Khan and Mushtaq 

delved into the properties and stability of ion-acoustic waves (IAWs) within ultracold quantum 

plasmas composed of electrons, positrons, and ions. Utilizing the Quasi-Hydrodynamic (QHD) 

model, they derived the Kadomtsev–Petviashvili (KP) equation to scrutinize the dynamics of 

IAWs under the influence of transverse perturbations. Khan and Haque utilized the QHD 

model to derive the nonlinear weakly limit of the deformed KdV-B model. This model helps in 

understanding the nonlinear dynamics of ion-acoustic waves in quantum plasmas. Khan and 

Masood made a significant discovery related to the Zabusky-Kruskal (ZK) equation, which was 

initially suggested thirty years ago. This equation has been employed to study ion-acoustic 

solitary waves (IASWs) in magnetized plasma. Their discovery likely contributes to further 

advancements in understanding IASWs in unmagnetized quantum plasmas. These research 

efforts demonstrate the ongoing exploration of various mathematical models and equations, 

such as the QHD model and derived nonlinear equations, to deepen our understanding of ion-

acoustic waves and related phenomena in quantum plasmas [1- 20]. 

 The investigation into the quantum ZK equation, which arises in quantum magneto 

plasma, involved employing sophisticated mathematical techniques such as the Hirota bilinear 

approach and the auxiliary equation method. These methods facilitated the derivation of both 

single-wave and multiple-soliton solutions through symbolic computation. The quantum ZK 
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equation plays a crucial role in understanding electrostatic wave propagation in nonlinear 

media characterized by both dispersive and dissipative properties. In one dimension, the 

dynamics of electrostatic wave propagation are governed by the KdV-B model, while in two 

dimensions, the KP-B model comes into play. These models incorporate both dispersive and 

dissipative effects, offering a comprehensive framework for studying nonlinear phenomena in 

quantum plasma systems. The dissipative factor present in the nonlinear KdV-B and KP-B 

models originates from the influence of kinematic viscosity on the plasma components. This 

factor accounts for how the motion of plasma particles is affected by internal friction or 

viscosity, leading to the dissipation of energy and the damping of wave oscillations. The 

extensive use of mathematical methods and models underscores the interdisciplinary nature of 

research in quantum plasma physics, where theoretical advancements are crucial for 

understanding complex plasma dynamics and phenomena. 

 The study of nonlinear waves such as solitons and solitary waves holds great 

significance in various fields, including technical and laboratory research, as well as 

astrophysical and space contexts. These waves have been observed in phenomena such as polar 

magnetospheres, solar wind, and Earth's magnetotail, highlighting their importance in 

understanding complex plasma dynamics. Solitons and solitary waves are intriguing aspects of 

nonlinear events in spatially expanded systems. 

 They represent locally optimized solutions to nonlinear partial differential equations 

and can exhibit positive or negative wave amplitudes. Their potential applications range from 

laboratory experiments to astrophysical observations. Mahmood et al. investigated quantum 

electron-ion (e-i) IASWs in plasma using the Sagdeev potential technique. Masood used a 

Quantum Magneto Hydrodynamics (QMHD) model to study both nonlinear and linear 

propagating magneto-acoustic waves in dissipative quantum magneto plasmas. Akhtar and 

Hussain investigated shock waves of quantum ion-acoustic waves in a negative ion quantum 

plasma using a QHD approach. Despite these advancements, most studies have been limited to 

planar geometry in one dimension, which may not accurately reflect the complexity of wave 

behavior observed in laboratory settings. Laboratory waves are typically not confined to one 

dimension, highlighting the need for further research to explore multi-dimensional wave 

phenomena. Continued investigation into multi-dimensional wave behavior in quantum 

plasma systems is essential for advancing our understanding of complex plasma dynamics and 

for potential applications in various fields. This may involve developing theoretical models, 

conducting numerical simulations, and performing experimental studies in laboratory settings 

[10- 27]. 
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 Fractional calculus indeed holds great promise as a significant development in 

mathematics, with far-reaching implications across various fields. Its applications have 

expanded rapidly, and it has become a distinct and exciting research topic in recent years. One 

of the key strengths of fractional calculus lies in its ability to provide more accurate and precise 

representations of real-life phenomena compared to traditional integer-order calculus models. 

This is particularly evident in situations where systems exhibit non-local or long-range memory 

effects, which are effectively captured by fractional differential equations. A notable aspect of 

the development of fractional calculus is the discovery and establishment of multiple 

definitions of fractional derivatives. Each definition offers unique advantages and is applicable 

in different contexts. Some of the well-known definitions include Riemann–Liouville fractional 

derivative, Chen’s fractal definitions, Kolwankar–Gangal fractional derivatives, Cresson’s 

fractional derivatives, Caputo fractional derivative and modified Riemann–Liouville fractional 

derivative. Each of these definitions has found applications in various fields, including physics, 

engineering, biology, finance, and more. Researchers continue to explore the properties and 

applications of fractional calculus, paving the way for new insights and discoveries [28- 43]. As 

fractional calculus continues to evolve, it is likely to become a cornerstone of mathematical 

modeling and analysis in the 21st century, offering a powerful tool for understanding and 

describing complex phenomena in the natural and applied sciences. In their manuscript [39], 

Khalil et al. introduced the conformable fractional derivative (CFD) by establishing its definition 

through the limits as 

1
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Substituting 1 =  into the final equations, the noninteger differentials transition into the well-
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With  ,  represents two  −differentiable functions of a dependent variable, the above 

relations are proved in reference [39]. 
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This research paper has been arranged as follows. Section two derives the basic model of 

factional KP-B model. In section 3, we describe the procedure and construct explicit solitary 

wave solution for the desired model. We discuss the outcomes in section 4. Finally we conclude 

the manuscript and give some prospects and discussion.   

 

2. The formulation problem of the derivation KP-B model 

 We investigate fractional nonlinear shock and IASW propagation in a totally ionized, 

unmagnetized, three-component plasma system composed of relativistic hot ions, positrons, 

and nonextensive electrons. It is anticipated that the spatial fractional speed of quantum ions in 

acoustics will be substantially greater than any spatial fractional speed associated with the 

plasma flow. It can be assumed that the neutrality of charges equilibrium criteria is 

0 0 0e i pn n n= + where 
0 0,p in n and 

0en stands for the concentrations of ions, positrons, and 

unperturbed electrons, respectively. It is also assumed that the electron and positron 

concentrations follow an equilibrium 𝑞-distribution function. It is possible to acquire the 

normalized non extensive concentrations of positron and electron [44] as 
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where 
0 0/p ea n n= and /e pT T = . In 

en and 
pn , we use q tends to 1 for isothermal electrons 

and positrons, 1q  for sub-thermal electrons and 1 1q−    for super-thermal electrons. The 

dynamics of two-dimensional IASWs in weakly relativistic plasma are given by the fractional 

continuity and motion equations for a normalized fluid. Additionally, closure for the model is 

provided by the fractional Poisson equation formulated in a two-dimensional fractional 

representation  

( ) ( ) 0,t i x i y iD n D n u D n v  + + =                                             (1) 

1( ) ( ) ( ) ( ) 0,t x y x i x i x yD u uD u vD u D n D p D u D u           −+ + + + − + =        (2) 

1 ( ) 0,t x y y i y i x yD v uD v vD v D n D p D v D v        −+ + + + − + =               (3) 
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( ) ( 1) .x y e p iD D n n n  + = − − −                                                   (5) 

Note that equations (1) to (5) reduced to the well-known equations as obtained in [44]. In this 

case, 𝑛i represents the concentration of ions normalized by the unperturbed electron 

concentration 
0en , the ion velocity is u  and the electrostatic potential is  , the ions flow 

velocities along the x and y directions are represented by u and v normalized by /s e ic T m= , 

the constant coefficient of dynamic viscosity is denoted by  , ,i pT T and 
eT  are the 

temperature ion, positron and electron plasma, the particles' masses are 
em  for electrons and 

im  for ions, 
iP  is pressure and 

xD and yD describes the conformable fractional differential in 

relation to x, 
x x xD D D  = and y y yD D D  =  the twice conformable fractional differential in 

relation to x and y. Ions are thought to have a relatively small relativistic influence, which can 

be expanded to 

2 2 2 21/ 1 / 1 / 2 .u c u c = −  +
 
In this collision less plasmas, the ion kinematic viscosity i  

has an influence on dissipation. It is well understood that the ion kinematic viscosity for 

collisionless plasmas is affected by mass, ion-ion collision time, ion temperature, and ion gyro 

frequency. This information is applied in a wide range of astrophysical challenges, particularly 

in the solar wind [52].  

Through the application of reductive perturbation techniques, the scale's new stretching 

coordinates (time and space) are provided as
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with   is the small expansion parameter, which is proportional to the magnitude of the 

perturbation and indicates the system's nonlinearity intensity. Here, V signifies the fractional 

spatial phase velocity of the wave propagating in the x-direction. The fractional operator can be 

represented in the following manner: 
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Substituting the operators in equation (7) into equations (1), (2) and (5) we have 
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The dependent variables ni, pi u, v and φ can be expanded in the manner described below within 

the power series of   as 
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We assume the value of  to be small, allowing us to set its value as 0  = , while 

0i maintains a finite value approximately of unity. Since 2 21 / 2 ,u c = + therefore, equations (9) 

and (11) can be expressed in this way 
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Using (13) in equation (8) and collecting terms of   in the lowest order, from equation (8), one 

can obtain: 

( ) ( )

( )( )( )

( )( )( )

2 3 3 2 3

1 2 3 1 2 3

2 3 2 3

1 2 3 0 1 2 3

2 3 3 5 7

1 2 3 1 2 3

1 ... 1 ...

1 ... ...

1 ... ... 0,

i i i i i i

i i i

i i i

V D n n n D n n n

D n n n u u u u

D n n n v v v

 

 









        

      

      

− + + + + + + + + +

+ + + + + + + + +

+ + + + + + + + =

 
0: 0,D u =  

3

1 0 1 1 0 1: 0,i i i i iVD n u D n u D n D u   

    − + + + =  



8 Int. J. Anal. Appl. (2024), 22:147 

 

5

2 1 0 2 2 0 2 1 1 1 1 1: 0,i i i i i i iVD n D n u D n u D n D u u D n n D u D v       

        − + + + + + + + =  Using 

(13) in equation (10) and collecting terms of   in the lowest order, from equation (10), one can 

obtain: 

( ) ( )
( ) ( )

( ) ( ) ( )

( )

3 5 7 3 3 5 7

1 2 3 1 2 3

2 3 3 5 7

0 1 2 3 1 2 3

3 5 7 3 5 7 2 3

1 2 3 1 2 3 1 2 3

1
2 3 2 3

1 2 3 1 2

... ...

... ...

... ... ...

1 ... 1i i i i i

V D v v v D v v v

u u u u D v v v

v v v D v v v D

n n n D p p

 

 





 

 





        

      

             

      
−

− + + + + + + +

+ + + + + + + +

+ + + + + + + + + + +

+ + + + + + + +( )

( ) ( )( )
3

3 5 7 2 3 5 7

1 2 3 1 2 3

2

1 0 1 1 1

...

... ... 0,

: 0,

i

i

p

D v v v D v v v

V D v u D v D D p

 

 

   

   

        

   

+

− + + + + + + + =

− + + + =

 

Using (13) in equation (14) and collecting terms of   in the lowest order, from equation (14), 

one can obtain: 
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2 0 1 2

2
:

0, 1.5 ,

i i

i i

V u
V u D u D u u D u D n D p

u

u
D p D u

c

    

    

 

 

 
      

    

− 
− − + + − + − 

 

+ − = = =

Using 

(13) in equation (15) and collecting terms of   in the lowest order, from equation (12), one can 

obtain: 
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( ) ( )

( ) ( ) ( )

( ) ( )

( )

2 3 2

1 2 1 2

2 3 2

0 1 1 2 1 1 2

2

1 0 1 1 0 1 0 12

2

1 2

1 ... 1 ...

( ...) 1 ... ... 1 ...

9
3 1 ... ( ...) 1 ... ( ...) ( ...)

2

3 1 ...

i i i i

i i i i

i i

i i

V D p p D p p

u u D p p v D p p

p D u u p u u D u u
c

p p D

 

 

 

 

 

 



      

       


     

  

− + + + + + + +

+ + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + ( )3 5 7

1 2 3 ... 0,v v v   + + + =

3

0 1 1 1

5

1 0 2 1 2 1 1 1 1 1

2
1 1 1

0

: ( ) 3 0,

: ( ) 3 3

6
3 0,

i

i i i i

V u D p D u

D p V u D p D u u D p p D u

u D u D v
u

 

 

    

    

 

 

  

   



− − + =

− − + + +

+ + =

 

Using (13) in equation (12) and collecting terms of   in the lowest order, from equation (15), 

one can obtain: 

( ) ( )2 2 2 2

1 2 1 2 1 2

2 2 2

1 2 1 2

2
2 2 2 3

1 2 1 2 3

0

1
... ... (1 ( 1)( ...)

2

1
( 1)( 3)( ...) ...) ( 1)(1 ( 1)( ...)

8 2

( 1)( 3)( ...) ...) (1 ...),
8

: ( 1) 1 0,

i i i

D D q

q q q

q q n n n

 

              


       


      



+ + + + + =  + + + +

− + − + + + − − − + + +

− + − + + − − + + + +

− − − =

1 1 1

2
2 2

1 2 1 2

1
: ( 1) ( 1)( 1) 0,

2 2

( 1)(1 ) ( 1)( 3)(1 )
: .

2(1 ) 8(1 )

i

i

q q n

q a q q a
D n

a a






  

 
   

+  + + − − =

+ + + − −
= − −

− −

 

Doing the conformable factional integration and using the boundary conditions,
 

1 1 1 1 10, 0, 0, 0, 0 at ,i in v p u  = = = = = →                   (16) 

to obtain the subsequent  perturbed first-order quantities: 

( )

( )

( )

1 1 12

1 0

0
1 12

1 0

1 12

0

1 ( 1)(1 )
,

2(1 )[ 3 ]

,
[ 3 ]

3
,

3

i

i

q a
n

aV u

V u
u

V u

p
V u


 

  




  


 

+ +
= =

−− −

−
= −

− −

=
− −

                   (17) 

Also, we get the (2+1) nonlinear fractional KP-B model may be created 

( )1 2 3 4 0,D D A D A D A D A D     

          + + − + =                     (18) 
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The aforementioned formula, which reflects the two-dimensional space-time fractional KP-B 

equation, is extremely useful in studying the nonlinear propagation of weakly relativistic IA 

shock structures over the plasma system under discussion.The following forms are derived for 

equation (18) the nonlinearity
1A , dispersion 

2A , dissipation 
3A , and weakly transverse 

dispersion 
4A coefficients: 

2

2 0 2
1 1 02

1 0 0

2

0 0 1

2 ( ) 61
( )

2

( 3)(1 ) 1 9 1
,

4( )(1 ) 2

V u
A V u

K u u

q a K

V u a V u K

  
 



 

   

 −
= − + + 

 

 − −
+ + + 

− + −  

                                     (19) 

2
201 1

2 3 4 0

0 1 0

3
, , , ( ) 3 .

2( ) 2 2( )

K K
A A A K V u

V u V u

  
 

  

+
= = = = − −

− −
         (20) 

From first equation of (17) we have 

( )
2

1 0

1 ( 1)(1 )
.

2(1 )[ 3 ]

q a

aV u



  

+ +
=

−− −
 

So the fractional phase velocity takes the formulae  

0

1

1 2(1 )
3 ,

( 1)(1 )

a
V u

q a


  

 −
= + + 

+ + 
                      (21) 

based on the explicit equations for the phase velocity V, we find an inverse relation between V 

and the fractional order   this means that when   increases the phase velocity V decreases 

and vice versa.    

Consider the solutions involving travelling waves as 

( , , ) ( ), ,k            = = + +                           (22) 

with ,k  and    are numbers and frequencies of the wave. Though Equation (18) turns into 

2 2 2 3 2 4 (4)

4 1 3 2( ) '' ( '' ' ) ''' 0,k A A k A k A k       + + + − + =           (23) 

 

3 Explicit solitary wave solution for space time fractional KP-B equation 

 The extended sech-tanh function and extended hyperbolic function approaches were 

used to get the IASW solutions for the nonlinear (2+1) fractional KP-B equation. Many authors 

discuss the exact solution of nonlinear models see for example [40- 49]. Different electrostatic 

potential values result in various explicit solutions for Equation (18), that provide the 

subsequent cases: 

3-I: Extended hyperbolic function approach 

There is a generic solution in series for the nonlinear two-dimensional KP-B equation as
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2

0

1 2 1

( ) [ ( ) ( )] ( ) '( ) ( ) '( ),
N N N

i i i i

i i i i

i i i

a a g b g c g g d g g       − − −

−

= = =

= + + + +     (24) 

By maintaining a homogenous balance between the predominant nonlinear components and the 

highest order derivatives of ( )   in equation (23), N can be generated. Here, 
0, , ,i i ia a b c and 

id represent constants that will be determined later. Additionally, we consider g( )  as the 

auxiliary ordinary differential equation. 

2
2 4 3

2

3
2 2 4

3

4
2 2 2 4

4

, 2 ,

( 6 ) ,

( 20 24 ),

d g d g
Ag B g A g B g

d d

d g
A B g Ag B g

d

d g
g A AB g B g

d

 





= + = +

= + +

= + +

                         (25) 

where g( )  determines the actual parameters that should be chosen, which are A and B. We 

obviously obtain new solutions by extending the mapping. The left side of equation (23) can be 

transformed into a polynomial about g ( ),( ..., 2, 1,0,1,2,...)m m = − −  by substituting equation 

(24) into equation (23) and applying equation (25). A group of formulas in algebra for 

0, , , , , ,i i ik a a b c and 
id  can be obtained by making the diversified power g ( )m  's 

coefficients  zero. Using Maple or Mathematica to solve the algebraic equations, we are able to 

express 0, , , , , ,i i ik a a b c and id as A and B. By putting these results into equation (24) and 

applying the previously mentioned mapping, From equation (24), we may obtain the solutions 

for solitary waves.  

Balancing 

2

d

d





 
 
 

or 
2

2

d

d





with 

4

4

d

d




 gives 2 2 4,N N+ = +  so the leading order 2N = , 

hence, please accept the ansatz 

2 1 2 1 2
0 1 2 22 2

'( ) '( )
( ) ( ) ( ) '( ) ,

( ) ( ) ( ) ( )

b b d g d g
a a g a g c g

g g g g

 
    

   
= + + + + + + +   (26) 

with 0 1 2 1 2 2 1 2, , , , , , , , ,a a a b b c d d  and k are constants that need to be calculated and g( )  is the 

solution to equation (25). We may get a set of nonlinear algebra system for 

0 1 2 1 2 2 1 2, , , , , , , , ,a a a b b c d d  and k by substituting equations (26) and (25) in equation (23) and 

taking the coefficients of g ( )m   to zero. When we solve this system in Mathematica or Maple, 

we obtain 
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2 2 2

3 3 3
1 2

1 2 1 2 1 2

2 2

3 3 3
2 1

1 2 1 2 2

2 2

3 2 4
1 2 22

32

6 6 6
, , ,

25 25 25

6 3
, , ,

25 25 5

3 5
, 0,

125

o

A A A BB
a a a

A A A A A A A A

A B A A
c d k

A A A A A A A A

A A A A
b b d

AA A








=  =  = 

=  =  = 

=   = = =

          (27) 

Equations (26) and (27) can be swapped to produce the following concentration formulas for 

traveling wave solutions of equation (19): 

2
23

1 2

2 2

3 3 2 4

2
32 2

6 1 '( )
( ) 1 ( ) ( ) '( ) ,

25 ( )2

3 5
,

5 125

A B B B g
g g g

A A A A A gA

A A A A A

AA A A A

  


    




   

 

 
=  + + + + 

 

 
=  +  +  

 

    (28) 

1: If 0, 0,A B   so ( ) csch( )
A

g A
B

 = . then we can obtain 

2
23

1

1 2

6
( ) [1 csch( ) csch ( ) csch( )coth( )

25

1
coth( )],

2

A
A A A A

A A

A

     



=  + + −

−
           

(29) 

  2: If 0, 0,A B   so ( ) sec( )
A

g A
B

 = − −  or ( ) csc( )
A

g A
B

 = − −   then we can 

obtain 

2
23

2

1 2

6
( ) [1 1sec( ) sec ( )

25

1
sec( ) tan( ) 1 tan( )],

2

A
A A

A A

A A A

   

  

=  + − − − −

− − − + − −
                      (30) 

2
23

3

1 2

6
( ) [1 1csc( ) csc ( )

25

1
csc( )cot( ) cot( )],

2

A
A A

A A

A A A

   

  

=  + − − − −

− − − − −
                          (31) 

3: If 0, 0,A B   so ( ) sech( )
A

g A
B

 = − , then we can obtain 
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2
23

4

1 2

6
( ) [1 1sech( ) sech ( )

25

1
1sech( )tanh( ) tanh( )],

2

A
A A

A A

A A A

   

  

=  + − −

+ − −
                 (32) 

Several elements influence the height of the shock structure, such as the nonlinear (𝐴1), 

dispersion (𝐴2), dissipative (𝐴3) coefficients , and fractional phase velocity (𝑉). Moreover, the 

wave velocity relies on the interplay among the nonlinear coefficient (𝐴1), dispersion coefficient 

(𝐴2), dissipative coefficient (𝐴3), fractional order, and weakly transverse dispersion coefficients 

(
4A ). 

3-2 The modified sub-equation technique
 

There is a general solution in series for the two-dimensional nonlinear KP-B model as

 
2

0

1 2 1

( ) [ ( ) ( )] ( ) '( ) ( ) '( ),
N N N

i i i i

i i i i

i i i

a a F b F c F F d F F       − − −

−

= = =

= + + + +     (33) 

with 
0, , ,i i ia a b c and 

id are constants to be calculated later. In equation (23), the uniform 

equilibrium between the highest-order derivatives of ( )  and the controlling nonlinear terms 

can be used to find the positive integer N and ( )F   explains how to solve the auxiliary 

ordinary differential equation that follows: 

2
2 3 4 2 3

2

3
2 2 3 4

3

4
2 2 2 3 4 2 5

4

3
, 2 ,

2

( 3 6 ) ,

1
(2 15 5(3 8 ) 60 48 ),

2

d F d g
AF B F CF A F BF C F

d d

d g
A BF BCF AF B F CF

d

d g
A F ABF B AC F ACF C F

d

 





= + + = + +

= + + + +

= + + + + +

        (34) 

with A, B and C are real values that ( )F   will be selected. Obviously, in order to get new 

solutions, we have to modify the sub-equation procedure. The equation's left-hand side of (23) 

able could be changed into a polynomial around ( ),( ..., 2, 1,0,1,2,...)mF m = − −  by 

substituting equation (33) into equation (23) and applying equation (43). An algebraic system of 

equations for 0, , , , , ,i i ik a a b c and id can be obtained by putting the coefficients of the distinct 

power of ( )mF  to zero. Using Maple or Mathematica to solve the algebraic equations, we 

obtain 0, , , , , ,i i ik a a b c and id expressed by A and B. Equation (26) can be solved for the 

solitary wave solutions of equation (23) by substituting these results and applying the 

previously mentioned mapping. 
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Balancing 
2

2

d

d





 or 

2

d

d





 
 
 

with 
4

4

d

d




 gives 2 2 4,N N+ = +  so the leading order 2N = , 

hence, please accept the ansatz 

2 1 2 1 2
0 1 2 22 2

'( ) '( )
( ) ( ) ( ) '( ) ,

( ) ( ) ( ) ( )

b b d F d F
a a F a F c F

F F F F

 
    

   
= + + + + + + +   (35) 

where ( )F   is the answer to equation (35), 
0 1 2 1 2 2 1 2, , , , , , , , ,a a a b b c d d  and k are constants 

that must be computed. Equations (35) and (34) can be substituted into equation (23) to get a 

system of nonlinear algebraic equations for and, where the coefficients of ( )mF   are set to 

zero. When we use Maple or Mathematica to solve this system, we gain  

2 2 2

3 3 3
1 2

1 2 1 2 1 2

2 2

3 3 3
2 1

1 2 1 2 2

2 2

3 2 4
1 2 22

32

6 6 ( 2 ) 6
, , ,

25 25 25

6 3
, , ,

25 25 5

3 5
, 0,

125

o

A A B AC A C
a a a

A A A A A A A A

A C A A
c d k

A A A A A A A A

A A A A
b b d

AA A








+
=  =  = 

=  =  = 

=   = = =

          (36) 

The subsequent concentration formulas for traveling wave solutions of equation (18) are given 

by substituting equations (29) into (28) 

2
23

1 2

2 2

3 3 2 4

2
32 2

6 ( 2 ) 1 '( )
( ) 1 ( ) ( ) '( ) ,

25 ( )2

3 5
.

5 125

A B AC C C F
F F F

A A A A A FA

A A A A A

AA A A A

  


    




   

 

 +
= + + + + 

 

 
= + + +  

 

  

(37) 

It is noted that the nonlinear coefficient (𝐴1), dispersion coefficient (𝐴2), and the dissipative 

coefficient (𝐴3) all affect the height of the shock structure. In addition, the wave speed 
 

depends on the dispersion coefficient (𝐴2), dissipative coefficient (𝐴3), the fractional order   

and weakly transverse dispersion 
4A coefficients. 

3-3 Extended technique of Sech-tanh 

The two-dimensional nonlinear KPB problem can be solved as a sequence of sech and tanh 

functions

 

( ) 1

0

1

( ) sech( ) tanh( ) sech ( ),
N

j

j j

j

a a b    −

=

= + +                           (38) 

with 0 1 1, ,..., , ,...,N na a a b b are arbitrary coefficients in this case. N= 2 is produced by equating the 

highest-order linear differential and nonlinear terms in Equation (23). Equation (23) has a 

solution that looks like this 
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2

0 1 2 1 2( ) sech( ) sech ( ) tanh( ) sech( ) tanh( ),a a a b b      = + + + +       (39) 

Replacing Equation (42) in Equation (23) yields an algebraic system of equations. By collecting 

the coefficients of  sech( ), sech( ) tanh( ),  2sech ( ), tanh( ),...  and set them equivalent to 

zero, we gain this system. The constraints 
0 1 2 1 2, , , , , ,a a a b b and ,k  solving this system yields 

3 3 2

3 3 4 3
0 1 2 1 2 2

1 2

12 12 5
2 , 0, , ,

5 5 10

A k A k A A
a b a a b k

A k A

 


 

−
= = = = = = =  (40) 

3 3 2

3 3 4 31 2
0 1 2 2

1 2

6 6 5
, , ,

5 5 51 1

A k A k A Aa b
a b a k

A k A

 


 

−
= = = = = = =

− −
    (41) 

Equation (18)'s electrostatic potential can be determined using IASW solution by substituting 

from Equations (41) and (40) into (39) 

2
23

7

1 2

4 3 2

3 3 4 2

2

2 2 3

6
( ) 2 sech ( ) 2 tanh( ) ,

25

12 5000
.

10 500

A

A A

A A A A

A A A

  

   

   
 

 = + − 

 −
= + +  

 

                                    (42) 

2
23

8

1 2

4 3 2

3 3 4 2

2

2 2 3

6
( ) 1 sech ( ) tanh( ) 1sech( )(1 tanh( )) ,

25

6 625
.

5 125

A

A A

A A A A

A A A

  

     

   
 

 = − + − + − +
 

 −
= + +  

 

     (43) 

The obtained results when 1 = are the same obtained in references [44, 45].  

It is observed that the coefficients (𝐴1) for nonlinearity, (𝐴2) for dispersion term, and (𝐴3) for the 

dissipative term are all affect the height of the shock structure. In addition, the wave speed 
 

depends on the dispersion coefficient (𝐴2), dissipative coefficient (𝐴3), the fractional order   

and weakly transverse dispersion 
4A coefficients. 

The scalar function's gradient, , known as the potential electrostatically (which is likewise 

referred to as the voltage), can be used to express the electric field because it is irrotational. An 

electric field, denoted technically as the field of electricity E , is a vector that extends from 

regions with varying electric potential, from high to low, can be expressed as 

,E D e D e 
     = − = − −  

2
23 3

1

1 2 2

4 3 2

3 3 4 2

2

2 2 3

12
( ) sech ( )(1 tanh( )) ,

25 10

12 5000
.

10 500

A A
E e e

A A A

A A A A

A A A

 

  

   

   
 

 
= + + 

 

 −
= + +  

 

                   (44) 
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        (45) 

A Hamiltonian scheme provides fraction momentum of the potentials electrostatic reported in 

the earlier states 

0
( ) ,lim jM d







  
→

=                                        (46) 

where 
0

(.) ,d


 is the conformable fractional integration and  j=1,2,…,8 . the solitary Dust 

acoustic wave solution must be stable under the specific situation 

0.
M 







                                                       (47) 

 

4. Results and discussion 

 Numerical investigations have explored the impact of the non integer order   on 

several parameters, including the phase fractional velocity 𝑉, wave amplitude, wave speed  , 

and electrostatic potential  . These investigations examine the unperturbed ratio of positron-

electron density 
0 0/p ea n n= , electron-positron temperatures /e pT T = , ion-electron 

temperatures /i eT T = , normalized coefficient of ion kinematic viscosity (𝜇0), relativistic 

streaming coefficient (𝛽), and degree of electron- positron nonextensivity q. The purpose is to 

comprehend the nonlinear propagation of electrostatic IA waves in relativistic plasmas. 

Figure (1) represented the influence of the non-integer order  to the fractional phase 

velocity 𝑉 obtained by equation (21) via the initial ion flow velocity 
0u  along the x axes with 

different values of the fractional order 1, 0.9, 0.7, 0,5 = , when 0.01, 0.8, 0.01q a = = = and 

0.01 = , the lower curve (red curve) when 1 =  and the upper curve (black curve) when 

0.5 = . As shown in Fig. (1) the variation of initial velocity of the ions 
0u has an affection  on 

the phase velocity V . For 1 =  the increase of the 
0u leads to increase of V, also this affect 

applies for all other values of  . The variation of the fractional order   from 1 to 0.5 which 

gives by decreasing the fractional order increases the fractional wave phase velocity. 
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FIG.1 The fractional phase velocity V is depicted versus the initial ion flow velocity 
0u  with the 

variation of fractional order 1, 0.9, 0.7, 0,5 =  at 0.01, 0.8, 0.01q a = = = and 0.01 = . 

 

FIG.2 The phase velocity V is depicted versus the positrons nonextensivity 𝑞 with the variation 

of fractional order 1, 0.98, 0.96, 0,94 =  at 0.01, 0.1, 0.01a = = = and 0.02 = . 

 

Figure (2) represented the effects of the fractional order  to the fractional phase 

velocity 𝑉 via the positrons nonextensivity 𝑞 with different values of 1, 0.98, 0.96, 0,94 = , 

when 0.01, = 0.1, 0.01a = = and 0.02 = , the lower curve (red curve) when 1 =  and the 

upper curve (black curve) when 0.94 = . As shown in Fig. (2) the variation of positrons 

nonextensivity 𝑞 has an affection  on the phase velocity V . For 1 =  the increase of the q leads 

to decrease of V, also this affect applies for all other values of  . The variation of the fractional 

order   from 1 to 0.94 which gives by decreasing the fractional order increases the phase 

velocity of the wave. 

Figure (3) represented the effects of the fractional order  to the fractional phase 

velocity 𝑉 via the ion-electron temperature ratio /i eT T = , with different values of 

1, 0.98, 0.96, 0,94 = , when 0.7,q = 0.1, 0.01a = = and 0.02 = , the lower curve (red 
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curve) when 1 =  and the upper curve (black curve) when 0.94 = . As shown in Fig. (3) the 

variation of ion-electron temperature ratio /i eT T = , has an affection  on the phase velocity V . 

For 1 =  the increase of the  leads to increase of V, also this affect applies for all other values 

of  . The variation of the fractional order   from 1 to 0.94 which gives by decreasing the 

fractional order increases the phase velocity of the wave. 

 

FIG.3 The phase velocity V is depicted versus the ion-electron temperature ratio  , with the 

variation of fractional order 1, 0.98, 0.96, 0,94 =  at 0.7, 0.1, 0.01q a= = = and 0.02 = . 

 

 

Figure 4 cross section behavior of soliton solution (42) when 0.02, 0.7, 0.1,q = = =  

00.01, 1, 0.8, 0.7, 0.01a p = = = = =  and 5 =   with different values of fractional order 

1, 0.95, 0.90. =  

 

Figure 4 represents the 3-dimentional cross section behavior of soliton solution (42) with 

0.02, 0.7, 0.1,q = = =
00.01, 1, 0.8, 0.7, 0.01a p = = = = =  and 5 = , fig (4-a) when 

1, =   fig (4-b)  when 0.95, =  and fig (4-c)  when 0.90 = . We see that the amplitude peak 

moves apart with the variation of fractional order. This means that the soliton solution 

depended on the fractional order. 
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Figure 5 cross section behavior of soliton solution (42) when 0.02, 0.7, 0.1,q = = =  

00.01, 1, 0.8, 0.7, 0.01, 2a p  = = = = = =  and 5 =   with different values of fractional 

order 1, 0.95, 0.90,0.80,0.70. =    

Figure 5 represents the 2-dimensional evolution behavior of soliton solution (29) with 

0.02, 0.7, 0.1,q = = =
00.01, 1, 0.8, 0.7, 0.01, 2a p  = = = = = =  and 5 = , green line 

when 1, = red line when 0.95, =  the blue line when 0.90, =  the orange line 

when 0.80, = and the black line when 0.70 = . We see that the amplitude peak moves apart 

with the variation of fractional order. This means that the soliton solution depended on the 

fractional order. 

 

5. Conclusion 

 The emergence of a two-dimensional nonlinear KP-B equation was stemmed from the 

study of shocks and the propagation of nonlinear IASWs within dissipation quantum plasma 

employing the reductive perturbation theory. This equation holds significant physical relevance 

across various applications. This investigation employing several methodologies including the 

extended sech-tanh, modification of extended mapping,  and extended sech function 

approaches.  These approaches were instrumental in addressing the nonlinear two-dimensional 

KP-B problem, specifically corresponding ions within solitary traveling waves.  

 Investigating the interesting world of un-magnetized epi plasma systems, which contain 

non-extensive electrons, relativistic ions, and positrons, provides important insights into 

astrophysical and cosmological phenomena. In this context, our study is dedicated to 

unraveling the complexities of 2-dim nonlinear electrostatic IA structures.  

 We derive solutions to the governing equations using detailed analysis, revealing 

complex dependencies on key parameters like positron concentration, electron-positron and 
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ion-electron temperature ratios, ion kinematic viscosity, electron and positron non-extensivity, 

and the weakly relativistic streaming factor. Notably, our investigation underscores the 

significant influence of the fractional order and associated plasma parameters on the phase  

fractional velocity of IA waves, while also highlighting the limited impact of the ion kinematic 

viscosity coefficient. This comprehensive study offers fresh insights into the dynamics of ion 

acoustic waves within complex plasma environments, thereby enhancing our understanding of 

fundamental astrophysical processes. 

In our research, we delved into the intricate dynamics of nonlinear wave phenomena 

within dissipative quantum plasmas, leading to the formulation of a comprehensive two-

dimensional KP-B equation. By leveraging the powerful tools of reductive perturbation theory, 

we unraveled the underlying mechanisms governing the propagation of shocks and IASWs. 

The derived KP-B equation unveils a rich tapestry of physical phenomena with wide-ranging 

applications. To tackle this complex problem, we employed a multifaceted approach, 

integrating techniques such as the extended sech-tanh, modification of extended mapping direct 

algebraic, and extended direct sech methods. Through meticulous analysis and computational 

simulations, we gained valuable insights into the behavior of ions within solitary traveling 

waves, paving the way for advancements in plasma physics and related disciplines. 

 This research focuses on small yet finite amplitude ion acoustic structures within a 

planar geometry, however it is critical to understand its limitations. We focus on the nonlinear 

propagation of shocks and solitons in our plasma model, which includes nonextensive 

electrons, positrons, and relativistic thermal ions. However, it is critical to recognize the broad 

range of future research potential. 

 Future research could look at the nonlinear analysis of other phenomena, including 

shock waves, solitary waves, vortices, solitons, and double layers, utilizing the same plasma 

model with nonextensive electrons, positrons, and relativistic thermal ions. Although these 

subjects are beyond the purview of our current research, they are critical to improving our 

understanding of plasma physics and discovering the features of astrophysical compact objects. 

As a result, they provide intriguing opportunities for future research and investigation in the 

sector. 
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