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Abstract. In this paper, we study accelerated Halpern-type iterative method for finding zero solution of sum of two

monotone operators which solves variational inequality problem of inverse strongly monotone mapping in 2-uniformly

convex and uniformly smooth real Banach spaces. The strong convergence of our proposed method is establish under

some standard conditions imposed on parameters. Our theorems generalize many recently announced results in the

literature.

1. Introduction

Let E be a real Banach space with norm || · ||. Let E∗ denotes the dual of E, and 〈x, f 〉, the value of

f ∈ E∗ at x ∈ E.

Definition 1.1. A mapping A : D(A) ⊆ E→ R(A) ⊆ E
(

where D(A) and R(A) are the domain of A and

the range of A, respectively
)

is called

(a) γ-strongly monotone if there exists a constant γ > 0 such that

〈Ax−Ay, x− y〉 ≥ γ||x− y||2, ∀x, y ∈ D(A).
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(b) α-inverse strongly monotone (see [2–4]) if there exists a positive real number α such that

〈x− y, Ax−Ay〉 ≥ α||Ax−Ay||2

for all x, y ∈ C.
(c) the variational inequality problem on C that is defined as follows:

find x∗ ∈ C such that 〈x− x∗, Ax∗〉 ≥ 0 for all x ∈ C. (1.1)

The set of solutions of the variational inequality problem is denoted by VI(C, A).
(d) Lipschitz continuous if there exists a constant L > 0 such that ∀x, y ∈ D(A),

||Ax−Ay|| ≤ L||x− y||.

A multi-valued operator A : E→ 2E∗ with graph G(A) = {(x, x∗) : x∗ ∈ Ax} is said to be monotone

if for any x, y ∈ D(A), (where D(A) denote domain of A), x∗ ∈ Ax and y∗ ∈ Ay

〈x− y, x∗ − y∗〉 ≥ 0.

A monotone operator B is said to be maximal if for any monotone operator S : E → 2E∗ such that

G(B) ⊆ G(S), we have that B = S. Let E be a reflexive, strictly convex and smooth real Banach

space and B : E → 2E∗ be a maximal monotone operator, then for each r > 0 and x ∈ E, there

corresponds a unique element xr ∈ E such that

Jx ∈ Jxr + rBxr.

This unique element xr is define as the resolvent of B, denoted by JB
r x. In other words, JB

r =

(J + rB)−1J for all r > 0. It is easy to show that B−10 = F(JB
r ) for all r > 0, where F(JB

r ) denotes the

set of all fixed points of JB
r . Also, the Yosida approximation of B can be defined for each r > 0 by

Ar =
J−JJB

r
r (see [11]) for more details. Consider an inclusion problem of finding:

z ∈ E such that 0 ∈ (A + B)z. (1.2)

where B : E → 2E∗ be a maximal monotone operator and A : E → E∗ be a Lipschitz continuous

monotone operator. This problem is called monotone inclusion problem(1.2) became a problem

of contemporary interest due to its vast applicability in solving many important problems such as

convex minimization problem, variational inequality inequality, Nash equilibrium problem in non-

cooperative games, image restoration, and signal processing, (See, for example, [1,16–18,23–26,34]

and the references therein). Many iterative algorithms for solving problem (1.2) have been intro-

duced in the setting of real Hilbert spaces H, among which are the well-known forward-backward

splitting algorithm of Passty [24], Lions and Mercier [25] and Peaceman-Rachford algorithm [33]

plus many others. The forward-backward algorithm generates a sequence {xn}
∞

n=1 given by:

x1 ∈ H, xn+1 = (I + λnB)−1(I − λnA)xn, n ∈N (1.3)

where ∀n ∈ N, λn > 0 and D(B) ⊂ D(A). The algorithm (1.3) has been extensively studied by

many authors due to nonexpansive nature of the resolvent operator (I + λnB)−1 in the backward
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step (1.3). To obtain strong convergence, Takahashi et al. [30] studied a modified Halpern-type

algorithm in real Hilbert spaces. They proved that the sequence generated by their algorithm

converges strongly to solution of (1.2). Also, Kitkuan et al. [32] proved a strong convergence

theorem by introducing and studying a viscosity type algorithm approximating of solutions of

problem (1.2) in the setting of real Hilbert spaces.

Due to the known slow convergence properties of iterative methods involving monotone operators,

the inertial technique has been successfully employed to accelerate the convergence process of the

algorithm (1.3) and its modifications. For example, Lorenz and Pock [27] proved weak convergence

of sequence of iterate generated by an inertial version of the algorithm (1.3) for a solution of (1.2)

in the setting of real Hilbert spaces. Also, Cholamjiak et al. [28] proved strong convergence of an

inertial Halpern-type version of algorithm (1.3) in a real Hilbert space. In 2021, Adamu et al. [29]

introduced and studied a three-step modified inertial viscosity-type of algorithm in the setting of

real Hilbert spaces and established strong convergence result.

It is worth of mentioning that all the results obtained by the authors mentioned above were

established in the setting of real Hilbert spaces. Most real-life problems, however, do not reside

only in Hilbert spaces. In 2019, Shehu [13] proved the following theorem which extends the

inclusion problem (1.2) involving monotone operators to real Banach spaces:

Theorem 1.1. Let E be uniformly smooth and 2-uniformly convex real Banach space. Let A : E → E∗

be a monotone and L-Lipschitz continuous mapping and B : E → 2E∗ be a maximal monotone mapping.
Suppose (A + B)−1(0) is nonempty and that the normalized duality mapping J on E is weakly sequentially
continuous. Let {xn} be a sequence defined by:

x1 ∈ E;

yn = (J + λnB)−1(Jxn − λnAxn),

xn+1 = J−1(Jyn − λn(Ayn −Axn)), n ≥ 1,

(1.4)

whereλn satisfies the following condition: 0 < a < λn < 1
√

2µkL
, where µ is the 2-uniform convexity constant

of E; k is the 2-uniform smoothness constant of E∗ and L is the Lipschitz constant of A. Then, the sequence
{xn} converges weakly to a solution of problem (1.2).

He [19] further proved that the sequence {xn} generated by
x1 ∈ E;

yn = (J + λnB)−1(Jxn − λnAxn),

wn = J−1[Jyn − λn(Ayn −Axn)],

xn+1 = J−1[αnJx1 + (1− αn)Jwn)], ∀n ≥ 1,

(1.5)

converges strongly to the solution of problem (1.2), where {αn} is a real sequence in (0, 1) such that

lim
n→∞

αn = 0,
∞∑

n=1

αn = ∞.

Kimura and Nakajo [22] proved the following strong convergence theorem:
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Theorem 1.2. Let C be a nonempty closed and convex subset of a uniformly smooth and 2-uniformly convex
real Banach space E. Let A : C → E∗ be an α-inverse strongly monotone mapping and B : E → 2E∗ be a
maximal monotone mapping. Suppose the solution set (A + B)−1(0) is nonempty. Let u, {xn} in C be a
sequence defined by: x1 ∈ C;

xn+1 = ΠC(J + λnB)−1(γnJu + (1− γn)(Jxn − λnAxn)), ∀n ≥ 1,
(1.6)

where ΠC is the generalized projection,λn ∈ (0,∞) andγn ∈ [0, 1] such that lim
n→∞

γn = 0 and
∑
∞

n=1 γn = ∞.
Then, the sequence {xn} converges strongly to a solution of problem (1.2).

Recently, Adamu et al. [20] introduced the following modified inertial Halpern-type Forward-

Backward algorithm involving monotone operators in the setting of 2-uniformly convex and

uniformly smooth real Banach spaces.
w1, v ∈ E;

yn = J−1[Jwn + µn(Jwn − Jwn−1)],

zn = (J + λnB)−1(Jyn − λnAyn),

wn+1 = J−1[anJv + bnJyn + cnJzn)], ∀n ≥ 1,

(1.7)

and

µn ≤ µ̄n =


min

{
µ, ϑn
‖Jwn−Jwn−1‖

, ϑn
φ(wn,wn−1)

}
i f wn , wn−1,

µ, otherwise

(1.8)

where µ ∈ (0, 1), ϑn ∈ (0, 1) such that
∞∑

n=1

ϑn < ∞, {an}, {bn}, {cn} ⊂ (0, 1) with an + bn + cn = 1

and lim
n→∞

an = 0. They proved that the sequence {wn} generated by the algorithm (1.7) converges

strongly to the solution of the inclusion problem (1.2).

Motivated by the aforementioned results, we introduce and study inertial bilevel variational mono-

tone inclusion problem in the setting of 2-uniformly convex and uniformly smooth real Banach

spaces and establish strong convergence of the iterative sequence generated by our algorithm. It

is of interest to mention that the following condition ϑn
φ(wn,wn−1)

on inertial term in [20] is relaxed in

our result.

2. Preliminaries

Let E be a real Banach space and U = {x ∈ E : ||x|| = 1} a unit sphere in E. E is said to be smooth

if the limit

lim
t→0

||x + ty|| − ||x||
t

(2.1)

exists for all x, y ∈ U. It is said to be uniformly smooth if the limit (2.1) is attained uniformly for

x, y ∈ U.
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We denote by J the normalized duality mapping from E to 2E∗ (E∗ is the dual space of E) defined

by

J = { f ∈ E∗ : 〈x, f 〉 = ||x||2 = || f ||2}, x ∈ E,

where 〈., .〉 denotes the duality pairing between element of E and that of E∗. If E is a Hilbert space,

then J = I, where I is the identity mapping. The space E is said to be uniformly convex if for all

ε ∈ (0, 2], δE(ε) > 0 where δE is the modulus of convexity of E defined for all ε ∈ [0, 2] by

δE(ε) = inf
{
1− ||

x + y
2
|| : x, y ∈ BE, ||x− y|| ≥ ε

}
.

The space E is said to be 2-uniformly convex if there exists c > 0 such that for all ε ∈ [0, 2],

δE(ε) ≥ cε2. It is obvious that every 2-uniformly convex Banach space is uniformly convex. It

is known that all Hilbert spaces are uniformly smooth and 2-uniformly convex. It is also known

that all the Lebesgue spaces Lp are uniformly smooth and 2-uniformly convex whenever 1 < p ≤ 2

(see [9]).

The normalized duality mapping J has the following properties (see, Takahashi [10]):

(a) If E is reflexive and strictly convex with the strictly convex dual space E∗, then J is single-

valued, one-to-one and onto mapping. In this case, J−1 : E∗ → E and we have J−1 = J∗,
where J∗ is the normalized duality mapping on E∗;

(b) if E is uniformly smooth, then J is norm-to-norm uniformly continuous on bounded subsets

of E.

Lemma 2.1. Let p, q > 1 be such that 1
p +

1
q = 1, then the space E is q-uniformly smooth if and only if its

dual E∗ is p-uniformly convex.

Lemma 2.2. [21] If E is a 2-uniformly convex and uniform smooth real Banach space. Then J−1 is
Lipschtzian from E∗ into E, i.e. there exists constant L∗ > 0 such that for all x∗, y∗ ∈ E∗ the following holds

||J−1x∗ − J−1y∗|| ≤ L∗||x∗ − y∗||.

Let E be a real smooth Banach space. The following functional is studied in Alber [6], Kamimura

and Takahashi [7] and Reich [8]

φ(x, y) = ||x||2 − 2〈x, Jy〉+ ||y||2 (2.2)

for all x, y ∈ E. It is obvious from the definition of φ that for all x, y ∈ E, (||x|| − ||y||)2
≤ φ(x, y) ≤

(||x||+ ||y||)2. The following Lemma was proved in Kamimura and Takahashi [7].

Lemma 2.3. Let E be a uniformly convex, smooth real Banach space, and let {xn}, {yn} be sequences in E.
If {xn} or {yn} is bounded and lim

n→∞
φ(xn, yn) = 0, then lim

n→∞
||xn − yn|| = 0.

Let E be a reflexive, strictly convex, smooth real Banach space and C a nonempty, closed convex

subset of E. From Alber [6], we see that for x ∈ E, there exists a unique element x0 ∈ C
(

denoted



6 Int. J. Anal. Appl. (2024), 22:210

by ΠC(x)
)

which is called the generalized projection from E onto C such that for all y ∈ C,

φ(x0, x) = min
y∈C

φ(y, x).

If E is a Hilbert space, then ΠC coincides with the metric projection from E onto C. The following

lemmas are well known, see [6] and [7].

Lemma 2.4. Let E be a smooth real Banach space, C a nonempty, closed convex subset of E and x0 ∈ E, then

φ(x0, x) = min
y∈C

φ(y, x)

if and only if

〈y− x0, Jx0 − Jx〉 ≥ 0, ∀y ∈ C.

Lemma 2.5. Let E be a real Banach space. The following are equivalent

(1) E is 2-uniformly smooth;
(2) There exists a constant k > 0 such that for all x, y ∈ E,

||x + y||2 ≤ ||x||2 + 2〈y, J(x)〉+ 2k2
||y||2.

The constant k is called the 2-uniform smoothness constant of the space. In Hilbert spaces H,
k = 1

√
2
.

The following Lemma that gives some identities of functional φ can be found in [6].

Lemma 2.6. Let E be a uniformly convex, smooth real Banach space, then the following hold:

(i) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz− Jy〉, ∀ x, y, z ∈ E.

(ii) φ(x, y) + φ(y, x) = 2〈x− y, Jx− Jy〉, ∀ x, y, z ∈ E.

Let C be a nonempty, closed and convex subset of a uniformly convex real Banach space E. Let

the functional V : E× E∗ → R be defined for all x ∈ E, x∗ ∈ E∗ by

V(x, x∗) := ||x||2E − 2〈x, x∗〉+ ||x∗||2E∗ (2.3)

which satisfies the following conditions (see [6]), for all x ∈ E, x∗ ∈ E∗ ,

V(x, x∗) = φ(x, J−1x∗),

and for all x ∈ E, x∗ ∈ E∗

V(x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V(x, x∗ + y∗), ∀ x ∈ E, x∗, y∗ ∈ E∗. (2.4)

The following Lemmas are essential in the study of our result.

Lemma 2.7. [12] Suppose that E is 2-uniformly convex real Banach space, then there exists µ ≥ 1 such
that ∀x, y ∈ E

µ||x− y||2 ≤ φ(x, y). (2.5)
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Lemma 2.8 ( [11]). Let the multivalued operator B : E → 2E∗ be maximal monotone and A : E → E∗

be a Lipschitz continuous and singled-valued monotone mapping, then the mapping A + B is a maximal
monotone.

Lemma 2.9 ( [13]). Let the multivalued operator B : E→ 2E∗ be maximal monotone and A : E→ E∗ be a
single-valued mapping. Define a mapping

Tλx = JB
λ ◦ J−1(J − λA)(x), x ∈ E,λ > 0. (2.6)

Then F(Tλ) = (A + B)−1(0), where F(Tλ) denotes the set of all fixed points of Tλ.

Lemma 2.10 ( [15]). Let {an} be a sequence of real numbers such that there exists a subsequence {ni} of
{n} such that ani ≤ ani+1 for all i ∈ N. Then there exists a non-decreasing sequence {mk} ⊂ N such that
mk →∞ and the following properties are satisfied by all (sufficiently large) numbers k ∈N:

amk ≤ amk+1

ak ≤ amk+1

In fact, mk = max{ j ≤ k : a j < a j+1}.

Lemma 2.11 ( [14]). Let {an} be a sequence of non-negative real numbers satisfying the following relation:

an+1 ≤ (1− αn)an + αnδn + γn, n ≥ 0,

where (i) {αn} ⊂ [0, 1],
∞∑

n=1

αn = ∞, (ii) lim sup
n→∞

δn ≤ 0 and (iii) γn ≥ 0(n ≥ 0). Then lim
n→∞

an = 0.

3. Main Results

We begin this section with the following assumptions under which the strong convergence

results are established:

Assumption 3.1. Let C be a nonempty closed and convex subset of 2-uniformly convex and uniformly
smooth real Banach space E with dual E∗. Suppose the following conditions are satisfied:

(C1) A : E → E∗ is a monotone and L-Lipschitz continuous operator with L > 0, and B : E → 2E∗

maximal monotone operators such that (A + B)−10 , ∅.
(C2) F : E → E∗ is δ−inverse strongly monotone such that VI(C, F) , ∅; ||Fu|| ≤ ||Fu − Fv|| for all

u ∈ C, v ∈ VI(C, F) and δ > 2L∗, where L∗ is a Lipschitz constant for J−1; J is the duality mapping
from E into E∗.

(C3) {γn} is a sequence in
(
0, µ2

)
, where µ is as defined in (2.5), γn = ◦(θn), where {θn}

∞

n=1 is a sequence

in (0, 1) such that lim
n→∞

θn = 0 and
∞∑

n=1
θn = ∞.

(C4) Γ := {z ∈ (A + B)−1(0) : 〈F(x), x− z〉 ≥ 0, ∀ x ∈ (A + B)−1(0)} , ∅.
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Algorithm 3.1. Initialization: Let α > 0 and choose x0, x1 ∈ E to be arbitrary.

Iterative Steps: Calculate xn+1 as follows:

Step 1. Given the iterates xn−1 and xn for each n ≥ 1, choose αn such that

αn ≤ ᾱn =


min

{
α, γn
‖Jxn−Jxn−1‖

}
, i f xn , xn−1,

α, otherwise

(3.1)

Step 2. Compute 

un = J−1(Jxn + αn(Jxn − Jxn−1))

vn = JB
λn
◦ J−1(Jun − λnAun)

wn = J−1(Jvn − λn(Avn −Aun))

yn = ΠCJ−1(Jwn − βnFwn)

xn+1 = J−1(θnJx0 + (1− θn)Jyn).

(3.2)

where {λn} and {βn} satisfies the condition: λn ∈ (0, (µ/(2L∗L2))0.5) and 0 < a < βn < b < δ/2L∗,
where [a, b] ⊂ (0, 1), µ, δ, L∗ and L are positive constants defined in (C2) and (C3).

Theorem 3.1. Let C be a nonempty closed and convex subset of 2-uniformly convex and uniformly smooth
real Banach space E with dual E∗. Suppose conditions (C1) to (C4) are satisfied. Let {xn}

∞

n=1 be sequence
generated by Algorithm 3.1, then {xn}

∞

n=1 converges strongly to some point in Γ.

Proof. Let p ∈ Γ, then we know from Lemma 2.6(i) that

φ(p, xn) = φ(p, un) + φ(un, xn) + 2〈p− un, Jun − Jxn〉.

This implies that

φ(p, un) = φ(p, xn) −φ(un, xn) + 2〈p− un, Jxn − Jun〉. (3.3)

But from the Algorithm 3.1, Lemma 2.7 and the fact that ab ≤ a2+b2

2 , a, b ∈ R, we have that

〈p− un, Jxn − Jun〉 = ||p− un||||Jxn − Jun||

≤
1
2
||Jxn − Jun||[||p− un||

2 + 1]

=
αn

2
||Jxn − Jxn−1||[||p− un||

2 + 1]

≤
αn

2
||Jxn − Jxn−1||[(||p− xn||+ ||xn − un||)

2 + 1]

≤
αn

2
||Jxn − Jxn−1||[2(||p− xn||

2 + ||xn − un||
2) + 1]

= αn||Jxn − Jxn−1||[||p− xn||
2 + ||un − xn||

2] +
αn

2
||Jxn − Jxn−1||

≤
γn

µ
φ(p, xn) +

γn

µ
φ(un, xn) +

γn

2
. (3.4)
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Thus, from (3.3) and (3.4), we obtain

φ(p, un) ≤ (1 +
2γn

µ
)φ(p, xn) − (1−

2γn

µ
)φ(un, xn) + γn (3.5)

Using Lemma 2.6(i), we get

φ(p, vn) = φ(p, un) −φ(vn, un) + 2〈p− vn, Jun − Jvn〉. (3.6)

And using (2.4), Lemma 2.2, (3.5) and (3.6), we obtain

φ(p, wn) = φ(p, J−1(Jvn − λn(Avn −Aun)))

= V(p, Jvn − λn(Avn −Aun))

≤ V(p, Jvn) − 2λn〈J−1(Jvn − λn(Avn −Aun)) − p, Avn −Aun〉

= φ(p, vn) − 2λn〈J−1(Jvn − λn(Avn −Aun)) − J−1(Jvn), Avn −Aun〉

+2λn〈vn − p, Avn −Aun〉

≤

(
1 +

2γn

µ

)
φ(p, xn) −

(
1−

2γn

µ

)
φ(un, xn) + γn −φ(vn, un)

+2λn||J−1(Jvn) − J−1(Jvn − λn(Avn −Aun))||||Avn −Aun||

+2〈p− vn, Jun − Jvn + λn(Avn −Aun)〉

≤

(
1 +

2γn

µ

)
φ(p, xn) −

(
1−

2γn

µ

)
φ(un, xn) + γn −φ(vn, un)

+2λ2
nL∗L2

||vn − un||
2 + 2〈p− vn, Jun − Jvn + λn(Avn −Aun)〉

≤

(
1 +

2γn

µ

)
φ(p, xn) −

(
1−

2γn

µ

)
φ(un, xn) + γn −

(
1−

2λ2
nL∗L2

µ

)
φ(vn, un)

+2〈p− vn, Jun − Jvn + λn(Avn −Aun)〉 (3.7)

By definition of vn := JB
λn
◦ J−1(Jun − λnAun), where JB

λn
= (J + λnB)−1J, then (Jun − λnAun) ∈

(Jvn + λnBvn). Since B is maximal monotone, then there exists say zn ∈ Bvn such that

Jun − λnAun = Jvn + λnzn

which implies

zn =
1
λn

(Jun − Jvn − λnAun), (3.8)

and since 0 ∈ (A + B)(p), Avn + zn ∈ (A + B)vn and A + B is monotone, then

〈p− vn, Avn + zn〉 ≤ 0. (3.9)

Combining (3.8) and (3.9), we get

〈p− vn, Jun − Jvn + λn(Avn −Aun)〉 ≤ 0. (3.10)
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Thus, from (3.7) and (3.10), we get

φ(p, wn) ≤
(
1 +

2γn

µ

)
φ(p, xn) −

(
1−

2γn

µ

)
φ(un, xn) + γn

−

(
1−

2λ2
nL∗L2

µ

)
φ(vn, un). (3.11)

Next, we obtain from (3.2) using properties of the functional φ and V that

φ(p, yn) = φ(p, ΠCJ−1(Jwn − βnFwn))

≤ φ(p, J−1(Jwn − βnFwn))

= V(p, Jwn − βnFwn)

≤ V(p, (Jwn − βnFwn) + βnFwn) − 2〈J−1(Jwn − βnFwn) − p, βnFwn〉

= V(p, Jwn) − 2〈J−1(Jwn − βnFwn) − p, βnFwn〉

= φ(p, wn) − 2βn〈wn − p, Fwn〉+ 2βn〈J−1(Jwn − βnFwn) −wn, Fwn〉

= φ(p, wn) − 2βn〈wn − p, Fwn − Fp〉 − 2βn〈wn − p, Fp〉

+2βn〈J−1(Jwn − βnFwn) − J−1(Jwn), Fwn〉

≤ φ(p, wn) − 2δβn||Fwn − Fp||2 + 2βn||J−1(Jwn − βnFwn) − J−1(Jwn)||||Fwn||

≤ φ(p, wn) − 2δβn||Fwn − Fp||2 + 2βnL∗||J−1(Jwn − βnFwn) − J−1(Jwn)||||Fwn||

= φ(p, wn) − 2δβn||Fwn − Fp||2 + 4L∗βn||(Jwn − βnFwn) − Jwn||||Fwn||

= φ(p, wn) − 2δβn||Fwn − Fp||2 + 4L∗β2
n||Fwn||

2

≤ φ(p, wn) − 2δβn||Fwn − Fp||2 + 4L∗β2
n||Fwn − Fp||2

= φ(p, wn) − 2βn(δ− 2L∗βn)||Fwn − Fp||2. (3.12)

Combining (3.11) and (3.12), we obtain

φ(p, yn) ≤
(
1 +

2γn

µ

)
φ(p, xn) −

(
1−

2γn

µ

)
φ(un, xn) + γn −

(
1−

2λ2
nL∗L2

µ

)
φ(vn, un)

− 2βn(δ− 2L∗βn)||Fwn − Fp||2.

Thus, taking ε ∈ (0, µ2 ), then from (C3) there exists a natural N ∈ N such that for all n ≥ N,
2γn
µ < θnε, therefore, for all n ≥ N,

φ(p, xn+1) = φ(p, J−1(θnJx0 + (1− θn)Jyn))

≤ θnφ(p, x0) + (1− θn)φ(p, yn)

≤ θnφ(p, x0) + (1− θn)
(
1 +

2γn

µ

)
φ(p, xn) − (1− θn)

(
1−

2γn

µ

)
φ(un, xn) + γn

− (1− θn)
(
1−

2λ2
nL∗L2

µ

)
φ(vn, un) − 2βn(1− θn)(δ− 2L∗βn)||Fwn − Fp||2 (3.13)

≤

{
1− θn(1− ε)

}
φ(p, xn) + θn(1− ε)

[φ(p, x0)

1− ε
+

εµ

2(1− ε)

]
.
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Thus, by induction we obtain that ∀ n ≥ N,

φ(p, xn) ≤ max
{
φ(p, xN),

2φ(p, x0) + εµ

2(1− ε)

}
.

Therefore,
{
φ(p, xn)

}
is bounded. So, by Lemma 2.7 it follows that {xn} is bounded and hence

{yn},{wn}, {un} and {vn} are all bounded. But from (3.13) we get that

(1− θn)
[
(1−

2γn

µ
)φ(un, xn) +

(
1−

2λ2
nL∗L2

µ

)
φ(vn, un) + 2βn(δ− 2L∗βn)||Fwn − Fp||2

]
≤ (φ(p, xn) −φ(p, xn+1)) + θn

(
φ(p, u) −φ(p, xn) +

γn

θn

)
. (3.14)

Now, we divide the remaining part of the proof into two cases.

Case 1. Assume that {φ(p, xn)}∞n=1 is non-increasing real sequence of numbers. Since {φ(p, xn)}∞n=1

is bounded, then the limit exists. So, lim
n→∞

(φ(p, xn) − φ(p, xn+1)) = 0. therefore, from (3.14), we

obtain

lim
n→∞

φ(un, xn) = lim
n→∞

φ(vn, un) = lim
n→∞
||Fwn − Fp|| = 0. (3.15)

Applying Lemma 2.3, we obtain from (3.15) that

lim
n→∞
||un − xn|| = lim

n→∞
||vn − un|| = 0. (3.16)

Also, from (2.4), we get

φ(wn, yn) = φ(wn, J−1(Jwn − βnFwn))

= V(wn, Jwn − βnFwn)

≤ V(wn, (Jwn − βnFwn) + βnFwn) − 2〈J−1(Jwn − βnFwn) −wn, βnFwn〉

= φ(wn, wn) − 2〈J−1(Jwn − βnFwn) −wn, βnFwn〉

= 2βn〈J−1(Jwn − βnFwn) − J−1(Jwn), Fwn〉

≤ 2βn||J−1(Jwn − βnFwn) − J−1(Jwn)||||Fwn||

≤ 2L∗β2
n||Fwn||

2

≤ 2L∗β2
n||Fwn − Fp||2. (3.17)

Using (3.15) into (3.17), we get

lim
n→∞

φ(wn, yn) = 0. (3.18)

Consequently, we get from (3.18) that

lim
n→∞
||wn − yn|| = 0. (3.19)

Since J is uniformly norm-to-norm continuous on set, we get from (3.16) and (3.19) that

lim
n→∞
||Jun − Jxn|| = lim

n→∞
||Jvn − Jun|| = lim

n→∞
||Jwn − Jyn|| = 0. (3.20)
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By (3.2), we get

||Jwn − Jvn|| = λn||Avn −Aun||

≤ λnL||vn − un||.

It follows from (3.20) that

lim
n→∞
||Jwn − Jvn|| = 0. (3.21)

Since

||Jxn − Jyn|| ≤ ||Jxn − Jun||+ ||Jun − Jvn||+ ||Jvn − Jyn||,

then by (3.20) and (3.21)

lim
n→∞
||Jxn − Jyn|| = 0. (3.22)

Moreover, from the iteration, we get that

||Jxn+1 − Jyn|| = αn||Jx0 − Jyn|| ≤ αnK→ 0 as n→∞, (3.23)

for some K > 0. Also, by (3.21) and (3.22) we obtain

||Jxn+1 − Jxn|| ≤ ||Jxn+1 − Jyn||+ ||Jyn − Jxn|| → 0 as n→∞. (3.24)

Since J−1 is norm-to-norm uniformly continuous on bounded subset of E∗, we get from (3.22) and

(3.24) that

lim
n→∞
||xn+1 − xn|| = 0 = lim

n→∞
||xn − yn||. (3.25)

Furthermore, since {xn} is bounded, there exists a subsequence {xni} of {xn} such that {xni} converges

weakly to a point x∗ in E as i → ∞. By (3.25), we get yni ⇀ x∗ as i → ∞. We now show that

x∗ ∈ (A + B)−1(0). Let (y, z) ∈ Graph(A + B), that is z ∈ (A + B)y which means z−Ay ∈ By. Also,

we know from vni = (J + λniB)
−1J ◦ J−1(Juni − λniAuni) that

(J − λniA)uni ∈ (J + λniB)vni

and
1
λni

(Juni − Jvni − λniAuni) ∈ Bvni .

Since B is maximal monotone, we get

〈y− vni , z−Ay−
1
λni

(Juni − Jvni − λniAuni)〉 ≥ 0. (3.26)

Thus,

〈y− vni , z〉 ≥ 〈y− vni , Ay +
1
λni

(Juni − Jvni − λniAuni)〉

= 〈y− vni , Ay−Auni〉+ 〈y− vni ,
1
λni

(Juni − Jvni〉

= 〈y− vni , Ay−Avni〉+ 〈y− vni , Avni −Auni〉+ 〈y− vni ,
1
λni

(Juni − Jvni〉

≥ 〈y− vni , Avni −Auni〉+ 〈y− vni ,
1
λni

(Juni − Jvni〉. (3.27)
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We know that lim
n→∞
||vn − un|| = 0. since A is Lipschitz continuous then lim

n→∞
||Avn −Aun|| = 0. Also,

since vni → x∗ as i→∞, then it follows from (3.27) that

〈y− x∗, z〉 ≥ 0. (3.28)

Furthermore, since A+B is maximal monotone, we get that 0 ∈ (A+B)x∗. Thus, x∗ ∈ (A+B)−1(0).

Since p is the unique solution of the problem F in Γ, then

lim sup
i→∞

〈F(p), p− xni〉 = 〈F(p), x∗ − p〉 ≥ 0.

We now show that p = ΠΓx0. but by Lemma 2.4, we obtain

〈Jp− Jx0, p− x∗〉 ≤ 0, ∀x∗ ∈ Γ. (3.29)

Hence, p = ΠΓx0. Next, we show that

lim sup
n→∞

〈Jx0 − Jp, xn+1 − p〉 ≤ 0.

Using (3.25) and the fact that xni ⇀ x∗,we get

lim sup
n→∞

〈Ju− Jp, xn+1 − p〉 = lim sup
i→∞

〈Jx0 − Jp, xni+1 − xni〉+ lim sup
i→∞

〈Jx0 − Jp, xni − p〉

= 〈Jx0 − Jp, x∗ − p〉.

Therefore, we obtain that

lim sup
n→∞

〈Ju− Jp, xn+1 − p〉 = 〈Jp− Jx0, p− x∗〉 ≤ 0.

Hence,

φ(p, xn+1) = φ(p, J−1(θnJx0 + (1− θn)Jyn))

= V(p,θnJx0 + (1− θn)Jyn)

= V(p,θnJx0 + (1− θn)Jyn − θn(Jx0 − Jp)) + 2θn〈Jx0 − Jp, xn+1 − p〉

= V(p,θnJp + (1− θn)Jyn) + 2θn〈Jx0 − Jp, xn+1 − p〉

≤ θnV(p, Jp) + (1− θn)V(p, Jyn) + 2θn〈Jx0 − Jp, xn+1 − p〉

≤ (1− θn)V(p, yn) + 2θn〈Jx0 − Jp, xn+1 − p〉

= (1− θn)φ(p, xn) + 2θn〈Jx0 − Jp, xn+1 − p〉 (3.30)

By Lemma 2.11, we obtain φ(p, xn)→ 0 as n→∞. Also, by Lemma 2.7, we get xn → p.

Case 2. Let {φ(p, xn)}∞n=1 be a sequence of non-decreasing real numbers. Then, by Lemma 2.10,

we set Υn := φ(p, xn) and let r : N → N be a mapping for all n ≥ n0 (for some n0 large enough),

defined by

r(n) := max{k ∈N : k ≤ n, Γk ≤ Γk+1}.

Then, r is a non-decreasing sequence such that r(n)→∞ as n→∞. Thus

0 ≤ Υr(n) ≤ Υr(n)+1, ∀ n ≥ n0
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which means that φ(p, xr(n)) ≤ φ(p, xr(n)+1), for all n ≥ n0. Since {φ(p, xr(n))} is bounded, there-

fore lim
n→∞

φ(p, xr(n)) exists. Thus following the same line of action as in Case 1, we obtain that

lim
n→∞

φ(xr(n)+1, xr(n)) = 0 and for any {xr(n)} which is bounded, there exists a subsequence of {xr(n)},

still denoted by {xr(n)} such that xr(n) converges weakly to z as n → ∞, we then obtain z ∈ Γ..

Furthermore, for any p = ΠΓx0, we have

lim sup
n→∞

〈Jx0 − Jp, xr(n)+1 − p〉 ≤ 0. (3.31)

Also, like in (3.30), we get

φ(p, xr(n)+1) ≤ (1− θr(n))φ(p, xr(n)) + 2θr(n)〈Jx0 − Jp, xr(n)+1 − p〉. (3.32)

Using Υr(n) ≤ Υr(n)+1 and since θr(n) > 0 we obtain

φ(p, xr(n)) ≤ 2〈Jx0 − Jp, xr(n)+1 − p〉

which implies by (3.31)

lim sup
n→∞

φ(p, xr(n)) ≤ 0.

Thus

lim
n→∞

φ(p, xr(n)) = 0.

Now by (3.32), we have

lim
n→∞

φ(p, xr(n)+1) = 0.

Therefore, by Lemma 2.10, we get

φ(p, xn) ≤ φ(p, xr(n)+1)→ 0 as n→∞

which gives that lim
n→∞

φ(p, xn) = 0, which implies that lim
n→∞
||p− xn|| = 0. Thus xn → p := ΠΓx0. This

completes the proof.

�

Remark 3.2 Our result is more general than some related results in the literature and, hence,

might be applied for a wider class of mappings. For example, we next present the advantage of

our method compared with the recent results

4. Application

In this section, we study the problem of solving convex minimization problem.
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4.1. Application to convex minimization problem. Consider the structured nonsmooth convex

minimization problem:

f (x∗) + g(x∗) = min
x∈E
{ f (x) + g(x)} (4.1)

where f : E → R is a convex smooth function and g : E → R ∪ {+∞} is a proper convex and

lower-semicontinuous function. Solving (4.1) is equivalent to finding x∗ ∈ E such that

0 ∈ ∇ f (x∗) + ∂g(x∗)

where ∇ f is the gradient of f and ∇g is the subdifferential of g. Since ∇ f is (1/L)-Lipschitz

continuous, then it is L-inverse strongly monotone and ∂g is maximal monotone. Setting A = ∇ f ,

B = ∂g and F = I − x0, where I is an identity mapping and x0 is an arbitrary fixed vector in E, then

F is 1-Lipschitz continuous, so it is 1-inverse monotone. Hence, from Algorithm 3.1, we obtain the

following Algorithm:

Algorithm 4.1. Initialization: Let α > 0 and choose x0, x1 ∈ E to be arbitrary.
Iterative Steps: Calculate xn+1 as follows:

Step 1. Given the iterates xn−1 and xn for each n ≥ 1, choose αn such that

αn ≤ ᾱn =


min

{
α, γn
‖Jxn−Jxn−1‖

}
, i f xn , xn−1,

α, otherwise

Step 2. Compute 

un = J−1(Jxn + αn(Jxn − Jxn−1)

vn = J∂g
λn
◦ J−1(Jun − λn∇ f (un))

wn = J−1(Jvn − λn(∇ f (vn) −∇ f (un))

yn = ΠCJ−1((1− βn)wn + βnx0)

xn+1 = J−1(θnJx0 + (1− θn)Jyn).

where {λn} and {βn} satisfies the condition: λn ∈ (0, (µ/(2L∗L2))0.5) and 0 < a < βn < b < δ/2L∗,
where [a, b] ⊂ (0, 1), µ, δ, L∗ and L are positive constants defined in (C2) and (C3).

Theorem 4.1. Let C be a nonempty closed and convex subset of 2-uniformly convex and uniformly
smooth real Banach space E with dual E∗. Suppose that f : E → R is a convex smooth function and
g : E→ R∪ {+∞} is a proper convex and lower-semicontinuous function such that ∇ f is (1/L)-Lipschitz
continuous, ∂g is maximal monotone and S := min

x∈E
{ f (x) + g(x)} , ∅. Let {xn}

∞

n=1 be sequence generated

by Algorithm 4.1, then {xn}
∞

n=1 converges strongly to some point in S.
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4.2. Numerical examples. Next, we present some numerical examples to illustrate the efficiency

and performance of the proposed algorithm. We compare the performance of our method Algo-

rithm 3.1 with (1.4), (1.5) and (1.7).

Example 4.1. Let E = (l2(R), ||.||l2), where l2(R) := {x = (x1, x2, x3, . . . ), xi ∈ R :
∞∑

i=1
|xi|

2 <

∞} and ||x||l2 :=
(
∞∑

i=1
|xi|

2

) 1
2

, ∀x ∈ l2(R). Now, define the operator B : l2(R) → l2(R) by Bx =

(3x1, 3x2, 3x3, . . . ) , ∀x ∈ l2(R). Then, B is a maximal linear operator on l2(R) with resolvent JB
λn

=
x

1+3λn
∀x ∈ l2(R). Let C = {x ∈ l2(R) : |xi| ≤

1
i , i = 1, 2, 3, . . . }. Thus, we have explicit formula for PC.

Now, define the operator A : l2(R)→ l2(R) by

Ax =
(
||x||+

1
||x||+ α

)
x,

for some α > 0. Then, A is monotone on l2(R) (see [31]). Furthermore, define the mapping S : l2(R) →

l2(R) by Sx = (0, x1, x2, . . . ), and F : l2(R) → l2(R) by Fx = x − x0. Then, F is inverse strongly
monotone and Lipschitz continuous.
For this example, we take ε = 10−8 as the stopping criterion and choose the starting points as follows:
Case 1: Take x1 = (1, 1

2 , 1
3 , · · · ) and x0 = ( 1

2 , 1
5 , 1

10 , · · · ).
Case 2: Take x1 = (1, 1

2 , 1
7 , · · · ) and x0 = ( 1

2 , 1
4 , 1

10 , · · · ).
Case 3: Take x1 = (1, 1

4 , 1
8 , · · · ) and x0 = ( 1

2 , 1
6 , 1

9 , · · · ).

Case 4: Take x1 = ( 1
2 , 1

3 , 1
8 , · · · ) and x0 = (1, 1

4 , 1
9 , · · · ).

The numerical results reported in Table 1 and Figure 1.

Table 2. Numerical results for Example 4.1 with ε = 10−8.
Cases Algorithm

3.1
Algorithm
(1.7)

Algorithm
(1.5)

Algorithm
(1.4)

1 CPU Iter. 0.7635
10545

5.3401
47956

2.3226
32202

5.5915
54678

2 CPU Iter. 0.4805
10545

3.5037
47956

1.4088
32202

3.5795
54373

3 CPU Iter. 0.4764
10545

3.3908
47956

1.3816
32202

3.4018
53967

4 CPU Iter. 0.4843
10545

3.2722
47956

1.4390
32202

3.268
53694
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Figure 1. The behavior of TOLn with ε = 10−8 for Example 4.1: Top Left: Case 1;

Top Right: Case 2; Bottom Left: Case 3; Bottom Right: Case 4.

5. Conclusion

The approach for solving bilevel variational inclusion problem that uses monotone mappings in

the lower-level problem and an inverse strongly monotone mapping in the upper-level case in

two uniformly smooth convex real Banach spaces was proposed in the study. Our algorithm is an

accelerated Halpern-type iterative method. We prove a strong convergence theorem with some

assumptions on parameters.The effectiveness and performance of the suggested iterative strategy

are demonstrated using a numerical example. The outcome advances some recent findings in the

literature.
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