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Abstract. In this study, we introduce novel types of m-quasi-ideals and m-bi-ideals in the context of b-semirings,

expanding the scope of algebraic structures in this field. We provide detailed characterizations of these ideals, focusing

on their distinct properties and interactions within b-semirings. Utilizing an algebraic approach, we elucidate the

fundamental properties of m-bi-ideals, examining their behavior and structural role. Additionally, we explore the

generators of m-bi-ideals and offer characterizations based on their relationship with bi-ideals. Our findings contribute

to a deeper understanding of m-ideals and m-bi-ideals, opening new avenues for further research in algebraic theory

and the study of semirings.

1. Introduction

In recent years, the study of semirings has gained significant attention in algebra due to their

wide-ranging applications in various mathematical and computational fields. Within this area,

b-semirings have emerged as a key focus, offering a rich structure for exploring new types of

ideals. This paper introduces and explores new concepts of m-quasi-ideals and m-bi-ideals in

the context of b-semirings. These ideals extend the traditional notion of ideals in semirings,

providing fresh insights into their algebraic properties and potential applications. By employing

algebraic methods, we characterize these m-ideals and m-bi-ideals, analyzing their generators and

fundamental properties. This investigation not only enhances the understanding of b-semirings

but also contributes to the broader field of algebra by uncovering new structural relationships and

behaviors within these mathematical constructs.
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Vandiver [1] introduced the concept of a semiring in 1934. Regular rings have been exten-

sively studied for their own sake and their connection to operator algebras. In 2009, Ronnason [2]

proposed the idea of b-semirings. In an article submitted for publication, Mohanraj et al. [3] estab-

lished the concepts of weak-1 ideals and weak-2 ideals in b-semirings. This study characterizes

different regular b-semirings using multiple weak ideals. Semigroups, which emerged as a gen-

eralization of group theory in the early 20th century, are basic structures that have been widely

recognized in various areas of science and mathematics, as noted by Munir and Habib [4, 5]. Due

to their inherent connection to finite automata, they have numerous applications in theoretical

computer science. Examples include time-invariant processes, abstract evolution equations, and

graph theory. Semigroups are algebraic structures that have an essential ideal, similar to other

algebraic structures. Steinfeld [6,7] was one of the pioneers of the concept of semigroups and rings

as quasi-ideals. Iseki [8] extended this idea to semirings with no zero and explored significant

semiring descriptions based on quasi-ideals. Mathematicians have found it useful and fascinating

to generalize the ideals found in algebraic structures. This generalization of values led to one-sided

ideals and pseudo-ideals [9].

Lajos developed the concept of bi-ideals as a more general version of quasi-ideals in associative

rings. Later, Szasz [10] and other mathematicians applied these ideas to study various semigroups.

Kar et al. [11] introduced generalized bi-ideals for ternary semigroups. In [12], the study of semir-

ings and ordered semirings through the hypothesis of an ordered b-semiring is described. The

paper attempts an in-depth analysis of Type-1 bi-ideals, Type-2 bi-ideals over ordered b-semiring.

Many mathematicians have used various ideals to prove significant results and characterizations

of algebraic structures, see [13]. Salahuddin et al. [14] defines left almost hyperideals, right almost

hyperideals, almost hyperideals, and minimal almost hyperideals. They proved that the intersec-

tion of almost hyperideals need not be an almost hyperideal, but the union of almost hyperideals

is an almost hyperideal. This is distinct from the classical concept of ideal theory.

In this paper, we delve into the significant classical results in bi-ideals, m-bi-ideals, and their

relationship with the elements and subsets of a b-semiring. We examine the conversion of bi-ideal

and quasi-ideal concepts into m-bi-ideal. The paper is divided into five sections. The first section

provides an overview of the topic, while the second section explores b-semirings and their relevant

definitions and results. In the third section, we cover m-bi-ideal and m-quasi-ideal generated by

single element and subset with numerical examples. Finally, we conclude our study in the fourth

section. The primary objective of this paper is to establish the relationship between bi-ideals and

m-bi-ideals in b-semirings and demonstrate the relationship between m-quasi ideals and m-bi-

ideals in b-semirings. Next, to characterize the generator of bi-ideal, weak-1 left ideal, weak-1

right ideal, weak-2 left ideal and weak-2 right ideal.
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2. Preliminaries

In this section, we will introduce the concept of m-bi-ideals in b-semirings. We will provide

an overview of the key theories and concepts explained in [2] and [15] that are relevant to this

topic.Here S denotes b-semiring unless otherwise mentioned.Also, ♦1 and ♦2 denotes MinMax-

product and MaxMin-product respectively.

Definition 2.1. A sub b-semiring Q of S is called a m-quasi ideals if Q♦1S
m
∩S

m
♦1Q ⊆ Q.

Definition 2.2. A sub b-semiring Q of S is called a m-Quasi ideals if Q♦2S
m
∩S

m
♦2Q ⊆ Q.

Definition 2.3. Let (S,♦1,♦2) be a b-semiring. The subset B of S is called m-bi-ideal if B is a sub
b-semiring of S there exists B♦2S

m
♦2B ⊂ B, where m is a positive integer.

Definition 2.4. Let (S,♦2,♦1) be a b-semiring. The subset B of S is called m-bi-ideal if B is a sub
b-semiring of S there exists B♦1S

m
♦1B ⊂ B, where m is a positive integer.

Notations: For a subset A of S and i = 1, 2, 3, ..., n
(i)

∑
A = {(a1♦1a2♦1...♦1an)|ai ∈ A}.

(ii)
∏

A = {(a1♦2a2♦2...♦2an)|ai ∈ A}.
(iii)

∑
(A♦2S) = {(a1♦2s1)♦1(a2♦2s2)♦1...♦1(an♦2sn)|ai ∈ A, si ∈ S}.

(iv)
∏
(A♦1S) = {(a1♦1s1)♦2(a2♦1s2)♦2...♦2(an♦1sn)|ai ∈ A, si ∈ S}.

(v)
∑
(A♦2S♦2A) = {(a1♦2s1♦2a1)♦1(a2♦2s2♦2a2)...♦1(an♦2sn♦2an) ai ∈ A, si ∈ S}

(vi)
∏
(A♦1S♦1A) = {(a1♦1s1♦1a1)♦2(a2♦1s2♦1a2)...♦2(an♦1sn♦1an) ai ∈ A, si ∈ S}.

What is the product of any two m1-bi-ideal and m1
′

-bi-ideal of S? We answer the questions by

introducing m1-bi-ideals.

3. m1-bi-ideals of b-semiring

In this section, we introduce m1-bi-ideals of b-semirings and their generalizations. Examples are

provided to illustrate the results.

Remark 3.1. The binary operation ∧ and ∨ is defined as follows x ∧ y = min
{
x, y

}
, x ∨ y = max

{
x, y

}
and

0 0 0 0 0 0
a1 0 0 0 0 0
a2 a3 0 0 0 0
a4 a5 a6 0 0 0
a7 a8 a9 a10 0 0
a11 a12 a13 a14 a15 0

♦1


0 0 0 0 0 0
b1 0 0 0 0 0
b2 b3 0 0 0 0
b4 b5 b6 0 0 0
b7 b8 b9 b10 0 0
b11 b12 b13 b14 b15 0

 =


0 0 0 0 0 0
c1 0 0 0 0 0
c2 c3 0 0 0 0
c4 c5 c6 0 0 0
c7 c8 c9 c10 0 0
c11 c12 c13 c14 c15 0

, where

c1 = a1 ∧ b1 ∧ b2 ∧ b4 ∧ b7 ∧ b11; c2 = a2 ∧ (a3 ∨ b1) ∧ b2 ∧ b4 ∧ b7 ∧ b11; c3 = a2 ∧ a3 ∧ b3 ∧ b5 ∧

b8 ∧ b12; c4 = a4 ∧ (a5 ∨ b1) ∧ (a6 ∨ b2) ∧ b4 ∧ b7 ∧ b11; c5 = a4 ∧ a5 ∧ (a6 ∨ b3) ∧ b5 ∧ b8 ∧ b12;
c6 = a4 ∧ a5 ∧ a6 ∧ b6 ∧ b9 ∧ b13; c7 = a7 ∧ (a8 ∨ b1) ∧ (a9 ∨ b2) ∧ (a10 ∨ b4) ∧ b7 ∧ b11; c8 =

a7 ∧ a8 ∧ (a9 ∨ b3) ∧ (a10 ∨ b5) ∧ b8 ∧ b12; c9 = a7 ∧ a8 ∧ a9 ∧ (a10 ∨ b6) ∧ b9 ∧ b13; c10 = a7 ∧
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a8 ∧ a9 ∧ a10 ∧ b10 ∧ b14; c11 = a11 ∧ (a12 ∨ b1) ∧ (a13 ∨ b2) ∧ (a14 ∨ b4) ∧ (a15 ∨ b7) ∧ b11; c12 =

a11 ∧ a12 ∧ (a13 ∨ b3) ∧ (a14 ∨ b5) ∧ (a15 ∨ b8) ∧ b12; c13 = a11 ∧ a12 ∧ a13 ∧ (a14 ∨ b6) ∧ (a15 ∨ b9) ∧ b13;
c14 = a11 ∧ a12 ∧ a13 ∧ a14 ∧ (a15 ∨ b10)∧ b14; c15 = a11 ∧ a12 ∧ a13 ∧ a14 ∧ a15 ∧ b15.

Remark 3.2. The binary operation ♦2 is defined as follows
0 a1 a2 a3 a4 a5
0 0 a6 a7 a8 a9
0 0 0 a10 a11 a12
0 0 0 0 a13 a14
0 0 0 0 0 a15
0 0 0 0 0 0

♦2


0 b1 b2 b3 b4 b5
0 0 b6 b7 b8 b9
0 0 0 b10 b11 b12
0 0 0 0 b13 b14
0 0 0 0 0 b15
0 0 0 0 0 0

 =


0 0 c1 c2 c3 c4
0 0 0 c5 c6 c7
0 0 0 0 c8 c9
0 0 0 0 0 c10
0 0 0 0 0 0
0 0 0 0 0 0

, where

c1 = b6 ∧ a1; c2 = (b7 ∧ a1) ∨ (b10 ∧ a2); c3 = (b8 ∧ a1) ∨ (b11 ∧ a2) ∨ (b13 ∧ a3); c4 = (b9 ∧ a1) ∨

(b12 ∧ a2) ∨ (b14 ∧ a3) ∨ (b15 ∧ a4); c5 = b10 ∧ a6; c6 = (b11 ∧ a6) ∨ (b13 ∧ a7); c7 = (b12 ∧ a6) ∨

(b14 ∧ a7)∨ (b15 ∧ a8); c8 = b13 ∧ a10; c9 = (b14 ∧ a10)∨ (b15 ∧ a11); c10 = b15 ∧ a13

Remark 3.3. If m = 1, then B♦2S
m
♦2B ⊂ B is called 1-bi-ideal or simply a bi-ideal.

Theorem 3.1. Every bi-ideal is a m1-bi-ideal.

Proof. Let B be the bi-ideal of S, from Definition 2.4, B♦2S♦2B ⊆ B. Now, it is also true that

B♦2S
1
♦2B ⊆ B. Similarly, we can see that B♦2S

2
♦2B ⊆ B♦2S

1
♦2B ⊆ B. In general, B♦2S

m
♦2B ⊆

B♦2S
m−1
♦2B ⊆ B. Hence, B is a m-bi-ideal of S.

Remark 3.4. The reverse implication of the Theorem 3.1 does not satisfied, see the Example 3.1.

Example 3.1. Consider the b-semiring(S1,♦1,♦2), where ♦1 and ♦2 are defined in the above Note 3.1.

Let S1 =





0 s1 s2 s3

0 0 s4 s5

0 0 0 s6

0 0 0 0


∣∣∣∣∣∣∣s′si ∈ Z∗}


(3.1)

Let Q =





0 b1 0 0

0 0 0 0

0 0 0 b2

0 0 0 0


∣∣∣∣∣∣∣b′si ∈ Z∗


(3.2)

is a sub b-semiring. Now,

B♦2S
2
1♦2B =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


∣∣∣∣∣∣∣n′si ∈ Z∗


⊆ B. (3.3)

Thus, B is a m-bi-ideal but it may not necessarily be a bi-ideal of S1 by
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(B♦2S1♦2B) =





0 0 0 m1

0 0 0 0

0 0 0 0

0 0 0 0


∣∣∣∣∣∣∣m′s

i ∈ Z∗


* B. (3.4)

Theorem 3.2. The product of any two m1-bi-ideal and m1
′

-bi-ideal of S with identity element e is a
max(m1, m1

′

)-bi-ideal of S.

Proof. Let B1 and B2 be the two bi-ideals of S.

Now, B1♦2S
m1♦2B1 ⊂ B1 and B2♦2S

m1♦2B2 ⊆ B2, m1 and m1
′

are positive integers. From

Note 3.2, (B1♦2B2)2 = (B1♦2B2)♦2(B1♦2B2) ⊆ (B1♦2S♦2B1)♦2B2 ⊆ (B1♦2S♦2e...♦2e♦2B1♦2B2) ⊆

(B1♦2S♦2S...♦2S♦2B1)♦2B2 ⊆ (B1♦2S
m
♦2B1)♦2B2 ⊆ B1♦2B2, then (B1♦2B2)2

⊆ B1♦2B2. Also,

B1♦2B2(Smax(m1,m1
′
))♦2B1♦2B2 ⊆ eB1♦2S♦2S

max(m1,m1
′
)
♦2B1♦2B2 ⊆ B1♦2S

m1♦2B2. Therefore,

B1♦2B2 is max(m1, m1
′

)-bi-ideal S.

Theorem 3.3. IfB is a ♦1 closure of S, R is a subset of S andB be m1-bi-ideal (m > 1), thenB♦2R(R♦2B)
is m1-bi-ideal.

Proof. Now, (B♦2R)2=(B♦2R)♦2(B♦2R)=(B♦2R♦2B)♦2R ⊆ (B♦2R♦2S)♦2B ⊆ (B♦2(Sm)♦2B)♦2

R ⊆ B♦2R. Then, (B♦2R)2
⊆ B♦2R of S. Also, B♦2R♦2(Sm)♦2B♦2R♦2 ⊆ B♦2S♦2S

m
♦2B♦2R ⊆

B♦2S
m
♦2B♦2R

⊆ B♦2R. Therefore, B♦2R is a m1-bi-ideal of S. Similarly, we can demonstrate that the m1-bi-ideal

of S is the R♦2B.

Theorem 3.4. If B is a intersection of all bi-ideals with bipotencies m1, m2..., then B is also bi-ideal with bi
potency is max{m1, m2...}

Proof. Let {Bζ : ζ ∈ ∧} be a set of m-bi-ideals of S, thenB=∩Bζ. Thus,B is a sub b-semiring of S.

Since Bζ♦2S
m
♦2Bζ ⊆ Bζ ⊆ B for all ζ ∈ ∧. Therefore, B♦2S

max{mζ :ζ∈∧}
♦2B ⊆ BζS

m
♦2Bζ ⊆ Bζ ⊆ Bζ

for all ζ ∈ ∧. This implies that B♦2S
max{mζ:ζ∈∧}

♦2B ⊆ Bζ ⊆ B. Therefore, B is an m-bi-ideal with

bipotency max{m1, m2....}.

Theorem 3.5. Every m1-quasi ideal is a m1-bi-ideal.

Proof. Let Q be a m1-quasi ideal of S. Clearly, Q is a sub b-semiring. Now, Q♦2S
m
♦2Q ⊆

Q♦2S
m
♦2S = Q♦2S

m+1
⊆ Q♦2S

m. Similarly, Q♦2S
m
♦2Q ⊆ S

m
♦2Q. We get Q♦2S

m
♦2Q ⊆ (Q♦2S

m) ∩

(Sm
♦2Q) ⊆ Q. Hence, Q is bi-ideal with potency m.

Remark 3.5. The reverse implication of the Theorem 3.5 does not hold, see the following Example 3.2.
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Example 3.2. Let S1 be a b-semiring and B be a sub b-semiring as in Example 3.1.

B♦2S
2
1♦2B =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


∣∣∣∣∣∣∣n′si ∈ Z∗


⊆ B. (3.5)

Thus B is a m1-bi-ideal of S1 but it may not be a m1-quasi ideal by

(B♦2S
2
1)∩ (S

2
1♦2B) =





0 0 0 r1

0 0 0 0

0 0 0 0

0 0 0 0


∣∣∣∣∣∣∣r′si ∈ Z∗


* B. (3.6)

Theorem 3.6. If Q is a ♦2 product of any (m1, m2)-quasi ideal and (n1, n2)-quasi ideal, then Q is a
max{m1, m2, n1, n2}-bi-ideal of S with identity element.

Proof. By the Theorem 3.5, Now, (Q1♦2Q2)♦2(Q1♦2Q2) ⊆ Q1♦2(Q2♦2S♦2Q2) ⊆ Q1♦2Q2, i.e.,
(Q1♦2Q2)2

⊆ Q1♦2Q2. Therefore, Q1♦2Q2 is a closed under ♦2. Now, (Q1♦2Q2)♦2S
max{m1,m2,n1,n2}♦2

(Q1♦2Q2) ⊆ (Q1♦2Q2)♦2S
max{m1,m2,n1,n2}♦2(S♦2Q2) ⊆ Q1♦2(Q2♦2S

max{m1,m2,n1,n2}+1
♦2Q2) ⊆ Q1♦2Q2.

Therfore, Q1♦2Q2 is a max{m1, m2, n1, n2} bi-ideal of S.

Theorem 3.7. Every m-left ideal is a m-bi-ideal.

Proof. Since G represents the m-left ideal of S. Now, G♦2S
m
♦2G ⊆ G♦2G ⊆ G. This implies that

G is m-bi-ideal of S.

Theorem 3.8. Every m-right ideal of S is a m-bi-ideal.

Proof. The Proof follows from the Theorem 3.7.

Theorem 3.9. For S, let G be a q-left ideal and H be an r-right ideal. Then, G∩H is a k-bi-ideal with
k = max(m, n).

Proof. Let G be a q-left ideal and H is r-right ideal of S. Now, G and H are q-

bi and r-bi-ideals of S. By Theorem 3.4, the intersection is max(q, r)-bi-ideals. Also, G ∩

H♦2(Smax{q,r})♦2G∩H ⊆ G♦2S
max{q,r}

♦2G ⊆ S
max{q,r}+1

♦2G ⊆ S
m
♦2G ⊆ G. Similarly, we can prove

that G∩H♦2(Smax{q,r})♦2G∩H ⊆ H . Consequently, G∩H♦2S
max{q,r}

♦2G∩H ⊆ G∩H . Therefore,

G∩H is a k-bi-ideal with k = max(m, n)

Remark 3.6. Every 1-quasi ideal is equivalent to a quasi ideal (where m = 1).

Theorem 3.10. Let a ∈ S, then m1-bi-ideal generated by a is < a >mb= {na} ∪ {n
′

a2
} ∪ a♦2S

m
♦2a.
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4. m2-bi-ideals of b-semiring

What is the product of any two m2-bi-ideal and m2
′

-bi-ideal of S? We answer the questions by

introducing m2-bi-ideals.

We introduce m2-bi-ideals of b-semirings and their generalizations. Examples are provided to

illustrate our results.

Remark 4.1. If m = 1, then the subset B♦1S
m
♦1B ⊂ B is called 1-bi-ideal, or simply a bi-ideal.

Theorem 4.1. Every bi-ideal is a m2-bi-ideal.

Proof. Let B be the bi-ideal of S, by Definition 2.4, B♦1S♦1B ⊆ B. Now, B♦1S
1
♦1B ⊆ B.

Similarly, B♦1S
2
♦1B ⊆ B♦1S

1
♦1B ⊆ B. In general, B♦1S

m
♦1B ⊆ B♦1S

m−1
♦1B ⊆ B. Therefore, B is

a m-bi-ideal of S.

Remark 4.2. The reverse implication of the Theorem 4.1 does not satisfied the Example 4.1.

Example 4.1. Consider the b-semiring(S1,♦2,♦1), where ♦2 and ♦1 are defined in the above Note 3.1.

Let S =





s1 s2 s3 s4

s5 s6 s7 0

s8 s9 s10 s11

s12 0 0 0


∣∣∣∣∣∣∣s′si ∈ Z∗


. (4.1)

Let Q =





0 0 0 0

0 b1 0 0

0 0 b2 b3

b4 0 0 0


∣∣∣∣∣∣∣b′si ∈ Z∗


(4.2)

be a sub b-semiring. Then,

B♦1S
2
♦1B =





n1 0 0 0

n2 0 0 0

n3 0 0 0

n4 0 0 0


∣∣∣∣∣∣∣n′si ∈ Z∗


⊆ B. (4.3)

As a result, B is not a bi-ideal but m2-bi-ideal of S by

(B♦1S♦1B) =





m1 m2 m3 m4

m5 0 0 0

m6 m7 m8 m9

0 0 0 0


∣∣∣∣∣∣∣m′s

i ∈ Z∗


* B. (4.4)
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Theorem 4.2. The product of any two m2-bi-ideal and m2
′

-bi-ideal of S with identity element e is a
max(m2, m2

′

)-bi-ideal of S.

Proof. LetB1 andB2 be the two bi-ideals ofS. Now,B1♦1S
m2♦1B1 ⊂ B1 andB2♦1S

m2♦1B2 ⊆ B2,

where m2 and m2
′

are positive integers. By the Note 3.2, (B1♦1B2)2 = (B1♦1B2)♦1(B1♦1B2) ⊆

(B1♦1S♦1B1)♦1B2 ⊆ (B1♦1S♦1e...♦1e♦1B1♦1B2) ⊆ (B1♦1S♦1S...♦1S♦1B1)♦1B2 ⊆ (B1♦1S
m
♦1B1)♦1

B2 ⊆ B1♦1B2, then(B1♦1B2)2
⊆ B1♦1B2. Also, B1♦1B2(Smax(m2,m2

′
))♦1B1♦1B2 ⊆ B1♦1S♦1

S
max(m2,m2

′
)
♦1B1♦1B2 ⊆ B1♦1S

m2♦1B2. Therefore, B1♦1B2 is max(m2, m2
′

)-bi-ideal S.

Theorem 4.3. IfB is a ♦2 closure of S, R is a subset of S andB be m2-bi-ideal (m > 1), thenB♦2R(R♦2B)
is m2-bi-ideal.

Proof. Now, (B♦1R)
2=(B♦1R)♦1(B♦1R)=(B♦1R♦1B)♦1R ⊆ (B♦1R♦1S♦1B ⊆ (B♦1(S

m)♦1B)♦1R

⊆ B♦1R. Then, (B♦1R)
2
⊆ B♦1R of S.Also,B♦1R♦1(S

m)♦1B♦1R♦1 ⊆ B♦1S♦1S
m
♦1B♦1R ⊆

B♦1S
m
♦1B♦1R ⊆ B♦1R. Therefore,B♦1R is a m2-bi-ideal of S. Similarly, we can demonstrate

that the m2-bi-ideal of S is the R♦1B.

Theorem 4.4. Every m2-quasi ideal is a m2-bi-ideal.

Proof. Let Q be a m2-quasi ideal of S. Clearly, Q is a sub b-semiring. Now, Q♦1S
m
♦1Q ⊆

Q♦1S
m
♦1S = Q♦1S

m+1
⊆ Q♦1S

m. Similarly, Q♦1S
m
♦1Q ⊆ S

m
♦1Q. We get Q♦1S

m
♦1Q ⊆ (Q♦1S

m)∩

(Sm
♦1Q) ⊆ Q. Hence, Q is bi-ideal with potency m.

Remark 4.3. The reverse implication of Theorem 4.4 is not true, as shown in Example 4.2.

Example 4.2. Let S1 be a b-semiring and B be a sub b-semiring as shown in Example 3.1.

Let S =





s1 s2 s3 s4

s5 s6 s7 0

s8 s9 s10 s11

s12 0 0 0


∣∣∣∣∣∣∣s′si ∈ Z∗}


. (4.5)

Let Q =





0 0 0 0

0 b1 0 0

0 0 b2 b3

b4 0 0 0


∣∣∣∣∣∣∣b′si ∈ Z∗


(4.6)

be a sub b-semiring. Then,

B♦1S
2
♦1B =





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


∣∣∣∣∣∣∣n′si ∈ Z∗


⊆ B. (4.7)
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As a result, B is a not a quasi-ideal but a m2-bi-ideal of S by

(B♦1S♦1B) =





r1 0 0 0

r2 0 0 0

r3 r4 r5 0

0 0 0 0


∣∣∣∣∣∣∣r′si ∈ Z∗


* B. (4.8)

Theorem 4.5. If Q is a ♦1-product of any (m2, m1)-quasi ideal and (n1, n2)-quasi ideal, then S has
max{m2, m1, n1, n2}-bi-ideal with identity element.

Proof. By Theorem 4.4,

(Q1♦1Q2)♦1(Q1♦1Q2) ⊆ Q1♦1(Q2♦1S♦1Q2) ⊆ Q1♦1Q2, i.e., (Q1♦1Q2)2
⊆ Q1♦1Q2.

Therefore, Q1♦1Q2 is a closed under♦1. Now, (Q1♦1Q2)♦1S
max{m2,m1,n1,n2}♦1(Q1♦1Q2)

⊆ (Q1♦1Q2)♦1S
max{m2,m1,n1,n2}♦1(S♦1Q2) ⊆ Q1♦1(Q2♦1S

max{m2,m1,n1,n2}+1
♦1Q2) ⊆ Q1♦1Q2.

Hence, Q1♦1Q2 is a max{m2, m1, n1, n2}-bi-ideal of S.

Theorem 4.6. Every m-left ideal is a m2-bi-ideal.

Proof. Since G represents the m-left ideal of S. Now, G♦1S
m
♦1G ⊆ G♦1G ⊆ G. This implies that

G is m-bi-ideal of S.

Theorem 4.7. Every m-right ideal of S is a m2-bi-ideal.

Proof. The proof follows from the Theorem 4.6.

Theorem 4.8. For a q-left ideal G and r-right idealH of S, the intersection of G andH is a k-bi-ideal with
k = max(m, n).

Theorem 4.9. Let a ∈ S, then m2-bi-ideal generated by a is < a >mb= {na} ∪ {n
′

a2
} ∪ a♦1S

m
♦1a.

5. m-bi-ideals of b-semiring

This section presents m-bi-ideals of b-semirings and their generalizations. We provide examples

to illustrate our results.

Theorem 5.1. Every bi-ideal for m ≥ 1 is a m-bi-ideal of S.

Proof. The proof follows from Theorem 3.1 and Theorem 4.1.

Theorem 5.2. The product of any two m1-bi-ideal and m2-bi-ideal of S with identity element e is a
max(m1, m2)-bi-ideal of S.

Proof. The proof follows from Theorem 3.2 and Theorem 4.2.

Theorem 5.3. LetS be a b-semiring andR be a subset ofS. IfB is an m-bi-ideal (where m is not necessarily
one), then B♦2R is also an m-bi-ideal.
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Proof. The proof follows from Theorem 3.3 and Theorem 4.3.

Theorem 5.4. Every m-quasi ideal is also an m-bi-ideal.

Proof. The proof follows from Theorem 3.5 and Theorem 4.4.

Theorem 5.5. The ♦2 product of any m-quasi ideal and n-quasi ideal ofS, with identity e, is the max{m, n}-
bi-ideal of S.

Proof. The proof follows from the Theorem 3.6 and Theorem 4.5.

Theorem 5.6. For a q-left G and r-right H of S, their intersection G ∩H is a k-bi-ideal, where k =

max(m, n).

Proof. The proof follows from the Theorem 3.9 and Theorem 4.8.

Theorem 5.7. For a ∈ S, then m-bi-ideal generated by a is < a >mb= {na} ∪ {n
′

a2
} ∪ a♦2S

m
♦2a.

Proof. The Proof follows from the Theorem 3.10 and Theorem 4.9.

6. Conclusion

In our study, we introduced the concepts of m-quasi-ideals and m-bi-ideals in b-semirings as

generalizations of traditional bi-ideals, examining their fundamental properties and the structures

formed by m-ideals when subsets of b-semirings are considered. We explored the relationships be-

tween m-quasi-ideals and m-bi-ideals, setting the stage for further research on hyper b-semirings.

Looking forward, we plan to use m-bi-ideals to characterize various types of semirings, includ-

ing regular, irregular, and weakly regular semirings, and to investigate additional classes of

m-bi-ideals, such as prime, maximal, minimal, and main m-bi-ideals. These advancements have

potential applications in developing algebraic theory, cryptography, automata theory, mathemati-

cal modeling, and hyperstructure theory, providing new tools and frameworks for understanding

complex algebraic systems and their applications in computational and theoretical contexts.
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