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Abstract. What distinguishes entire topological indices from other topological indices is that their formulas include

information about both the edges and vertices, not just the connections between vertices. This provides more compre-

hensive and detailed picture of the graph’s structure. In our article, we study and analyze some entire Zagreb indices

by investigating their behavior for four families of graphs; subdivision graphs, central graphs, corona products and m

bridge graphs over path, cycle and complete graphs. We explore the properties of these graph structures by deriving

explicit formulae for the first, second and modified first entire Zagreb indices for each family. Our results provide

detailed information on the structural properties stored by the first, second and modified entire Zagreb indices. These

different graph families show the way for future research and potential applications in fields such as chemical modeling

and network investigation.

1. Introduction

A graph comprises both edges and a set of vertices that is not empty. In this study, we specifically

examine finite graphs that are undirected, without any loops or multiple edges between the same

pair of vertices. The number of vertices n and edges m in the graph G are referred to as the

order and size, respectively. The degree of any vertex and edge in G is denoted by dx. The line

graph L(G) is defined as the graph where each vertex represents an edge of G. Two vertices are

adjacent in L(G) if and only if the corresponding edges in G share a common vertex. The path,

cycle and complete graphs with n vertices are known as Pn, Cn and Kn, respectively. For a more

comprehensive understanding of the symbols and explanations, please refer to [1].
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A topological index is a numerical value linked to the chemical structure, aiming to correlate

the structure with various physicochemical properties, chemical reactivity, or biological activity.

In molecular modeling, these indices play a crucial role in understanding the structural features

and predicting the properties or activities of molecules.

The concept of topological indices was first introduced by Harold Wiener when he discovered the

initial topological index, which is called the Wiener index [2] in 1947 for searching boiling points.

One of the initial topological indices introduced is the Zagreb index, which was first introduced

by Gutman and Trinajstić [3], where they investigated how the total energy of π-electron depends

on the structure of molecules. The first and the second Zagreb indices for a molecular graph are

defined as follows:

M1(G) =
∑

x∈V(G)

d2
x,

M2(G) =
∑

xy∈E(G)

dxdy.

For the latest research on Zagreb indices, we direct the reader to recent studies [4–15].

In 2018, Alwardi, A., et al. [16] introduced the definitions of the first and second entire Zagreb

topological indices as shown below:

ME1 (G) =
∑

x∈V∪E

d2
x,

ME2 (G) =
∑

x adjacent to y
or x incident to y

dxdy.

The entire Zagreb indices have been receiving significant attention from numerous authors, as

shown by [17–25].

In this study, we have established implicit expressions for the subdivision and central graphs

pertaining to the first, second and modified first entire Zagreb indices. Recently, in [30], the same

authors of this paper have introduced the modified first entire Zagreb index as

MME1 (G) =
∑

x adjacent to y
or x incident to y

(dx + dy).

2. Entire Zagreb Indices of Some Derived Graphs

The derived graphs are those graphs which can be obtained by some particular operations from

a given graph. By researching the relationships between a graph and its derived graph, one can

acquire information about one based on the information on the other. In this section, we will study

three types of derived graphs namely the subdivision graph, central graph and the corona product.
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2.1. Entire topological indices of the subdivision graph. The subdivision of a graph G, denoted

by S(G), is obtained by inserting an additional vertex into each edge of G, [26]. Subdivision graphs

are used to obtain several mathematical and chemical properties of more complex graphs from

more basic graphs. The subdivision graph of the cycle graph is illustrated in Figure1.

Figure 1. Subdivision of the cycle S(C(G)).

In Figure 1, the new vertices that are added to the cycle graph are green.

Proposition 2.1. For the path Pn and the cycle Cn, we have

i. ME1 (S(Pn)) = 16n− 24.

ii. ME2 (S(Pn)) = 32n− 54.

iii. MME1 (S(Pn)) = 32n− 46.

iv. MME1 (S(Cn)) = ME2 (S(Cn)) = 2ME1 (S(Cn)) = 32n.

Proposition 2.2. Let S(Kn) be the subdivision of the complete graph Kn. Then,

i. ME1 (S(Kn)) = n4
− 2n3 + 3n2

− 2n.

ii. ME2 (S(Kn)) =
n5
− 2n4 + 8n3

− 14n2 + 7n
2

.

iii. MME1 (S(Kn)) = n4 + n3
− n2
− n.

Proof. i. There are n vertices of degree (n − 1),
(

n(n− 1)
2

)
vertices of degree two and n(n − 1)

edges of degree (n− 1). We have

ME1 (S(kn)) = n4
− 2n3 + 3n2

− 2n.

ii. For the second entire Zagreb index, we have

ME2 (G) =
∑

uv∈E(G)

dudv +
∑

e f∈E(L(G))

ded f +
∑

v incident to e

dvde,



4 Int. J. Anal. Appl. (2024), 22:144

to calculate the first part we use the partition in Table 1 and, we get

∑
uv∈E(G)

dudv = (2n− 2)(n2
− n).

Table 1. The partition of the edges in the subdivision of complete graph.
Edge type The number of edges

En−1,2 n(n− 1)

Also, by using the adjacent edge partition as in Table 2, we have∑
e f∈E(L(G))

ded f = (n− 1)2
(

n3
− 2n2 + n

2

)
.

Table 2. The partition of the adjacent edges in the subdivision of complete graph.
(de, d f ), where e f ∈ E(L(G)) Number of pairs

(n− 1, n− 1)
n(n− 1)

2
+

n(n− 2)(n− 1)
2

And by using Table 3, we get

∑
v incident to e

dvde = (n− 1)2(n2
− n) + (2n− 2)(n2

− n).

Table 3. The partition of the vertices incident with the edges in the subdivision of

complete graph.
Edv,de , where v incident to e Number of pairs

En−1,n−1 n(n− 1)

E2,n−1 n(n− 1)

Thus, ME2 (S(kn)) =
n5
− 2n4 + 8n3

− 14n2 + 7n
2

.

iii. Similarly, as mentioned in ii, we get

MME1 (S(kn)) = n4 + n3
− n2
− n.

�

Proposition 2.3. Let S(Kr,s) be the subdivision of complete bipartite graph Kr,s. Then

i. ME1 (S(Kr,s)) = sr(s + r + 4 + s2 + r2).

ii. ME2 (S(Kr,s)) =
rs4 + rs3 + r4s + r3s + 8rs2 + 8r2s + 2r2s2

2
.
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iii. MME1 (S(Kr,s)) = rs3 + sr3 + 4sr2 + 8rs + 4rs2.

Proof. i. We have r vertices of degree s, s vertices of degree r and rs vertices of degree two.

Similarly, for the edges we have rs edges of degree s and rs edges of degree r. We get

ME1 (S(Kr,s)) = sr(s + r + 4 + s2 + r2).

ii. For the second entire Zagreb index, we have

ME2 (G) =
∑

uv∈E(G)

dudv +
∑

e f∈E(L(G))

ded f +
∑

v incident to e

dvde,

to calculate the first part we use the partition in Table 4 and, we get

∑
uv∈E(G)

dudv = 2rs2 + 2r2s.

Table 4. The partition of the edges in the subdivision of complete bipartite graph .
Edge type The number of edges

Es,2 rs

Er,2 rs

Also, by using the adjacent edge partition as in Table 5, we have∑
e f∈E(L(G))

ded f = s2r
(

s(s− 1)
2

)
+ r2s

(
r(r− 1)

2

)
+ r2s2.

Table 5. The partition of the adjacent edges in the subdivision of complete bipartite graph.
(de, d f ), where e f ∈ E(L(G)) Number of pairs

(s, s) r
(

s(s− 1)
2

)
(r, r) s

(
r(r− 1)

2

)
(s, r) rs

And by using Table 6, we get

∑
v incident to e

dvde = rs3 + 2rs2 + 2r2s + r3s.
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Table 6. The partition of the vertices incident with the edges in complete bipartite graph.
Edv,de , where v incident to e Number of pairs

Es,s rs

E2,s rs

E2,r rs

Er,r rs

Thus,

ME2 (S(Kr,s)) =
rs4 + rs3 + r4s + r3s + 8rs2 + 8r2s + 2r2s2

2
.

iii. Similarly, as ii, we get

MME1 (S(Kr,s)) = rs3 + sr3 + 4sr2 + 8rs + 4rs2.

�

Theorem 2.4. Let G be any graph with n vertices, m edges, and S(G) its subdivision. Then

i ME1 (S(G)) = M1(G) + F(G) + 4m.

ii ME2 (S(G)) = 4M1(G) + M2(G) +
F(G)

2
+

1
2

∑
v∈V(G)

d4
v.

iii MME1 (S(G)) = 4M1(G) + F(G) + 8m.

Proof. i. ME1 (S(G)) =
∑

x∈V(S(G))∪E(S(G))

d2
x

=
∑

v∈V(S(G))

d2
v +

∑
e∈E(S(G))

d2
e

= 4m +
∑

v∈V(G)

d2
v +

∑
uv∈E(G)

(d2
u + d2

v)

= M1(G) + F(G) + 4m.

ii. ME2 (S(G)) =
∑

x adjacent to y
or x incident to y

dxdy

= 2
∑

v∈V(G)

d2
v +

∑
uv∈E(G)

dudv +
∑

v∈V(G)

d2
v

(
dv(dv − 1)

2

)
+

∑
v∈V(G)

d3
v

+ 2
∑

uv∈E(G)

(du + dv)

= 2M1(G) + 2M1(G) + M2(G) +
1
2

∑
v∈V(G)

d4
v −

1
2

∑
v∈V(G)

d3
v +

∑
v∈V(G)

d3
v

= 4M1(G) + M2(G) +
F(G)

2
+

1
2

∑
v∈V(G)

d4
v.
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iii. MME1 (S(G)) =
∑

x adjacent to y
or x incident to y

(dx + dy)

=
∑

v∈V(G)

dv(dv + 2) +
∑

uv∈E(G)

(du + dv) +
∑

v∈V(G)

2dv

(
dv(dv − 1)

2

)
+ 2

∑
v∈V(G)

d2
v +

∑
uv∈E(G)

[(du + 2) + (dv + 2)]

= M1(G) + 2M1(G) +
∑

v∈V(G)

d2
v + 2

∑
v∈V(G)

dv +
∑

v∈V(G)

(d3
v − d2

v) +
∑

uv∈E(G)

4

+
∑

uv∈E(G)

(du + dv)

= M1(G) + 2M1(G) + M1(G) + 4m + F(G) −M1(G) + 4m + M1(G)

= 4M1(G) + F(G) + 8m.
�

2.2. Entire topological indices of the central graph. The central graph of a graph G is obtained

by subdividing each edge of G exactly once and joining all the nonadjacent vertices of G, also the

central graph of G is denoted by C(G) [27]. For example the central of the path Pn is illustrated in

Figure 2.

The central graph C(G) can be used to analyze the connectivity and closeness centrality of

vertices (nodes) in a network. Beyond network analysis, C(G) holds promise for unlocking new

solutions in graph algorithms and even combinatorial optimization a powerful technique for

tackling complex problems.

Figure 2. Central graph of the path C(Pn).
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In Figure 2 the green vertices represent the new vertices in the central of path graph.

Theorem 2.5. Let C(Pn) be a central of path graph. Then

i. ME1 (C(Pn)) = 2n4
− 11n3 + 28n2

− 29n + 10.

ii. ME2 (C(Pn)) =
4n5
− 31n4 + 115n3

− 221n2 + 229n− 104
2

.

iii. MME1 (C(Pn)) = 2n4
− 8n3 + 20n2

− 16n + 2.

Proof. i. We have n vertices of degree (n− 1) and (n− 1) vertices of degree two.

Similarly, for the edges we have 2(n− 1) edges of degree (n− 1) and (n− 1)(n− 2)/2 edges of

degree (2n− 4),

Thus,

ME1 (C(Pn)) = 2n4
− 11n3 + 28n2

− 29n + 10.

ii. For the second entire Zagreb index, we have

ME2 (G) =
∑

uv∈E(G)

dudv +
∑

e f∈E(L(G))

ded f +
∑

v incident to e

dvde,

to calculate the first part, we use the partition in Table 7 and, we get∑
uv∈E(G)

dudv = (2n− 2)2 + (n− 1)2
(

n2
− 3n + 2

2

)
.

Table 7. The partition of the edges in the central of path graph.
Edge type The number of edges

En−1,2 2n− 2

En−1,n−1
n2
− 3n + 2

2

Also, by using the adjacent edge partition as in Table 8, we have∑
e f∈E(L(G))

ded f = 2n5
− 18n4 + 70n3

− 143n2 + 152n− 67.

Table 8. The partition of the adjacent edges in the central of path graph.
(de, d f ), where e f ∈ E(L(G)) Number of pairs

(n− 1, n− 1) 2n− 3

(n− 1, 2n− 4) (2n− 4) + (n− 2)(2n− 6)

(2n− 4, 2n− 4) (n− 3)(n− 2) + (n− 2)
(
(n− 4)(n− 3)

2

)
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According to the partition in Table 9, we get

∑
v incident to e

dvde = 2n4
− 10n3 + 24n2

− 26n + 10.

Table 9. The partition of the vertices incident with the edges in the central of path graph.
Edv,de , where v incident to e Number of pairs

En−1,2n−4 (2n− 4) + (n− 3)(n− 2)

E2,n−1 2n− 2

En−1,n−1 2n− 2

Thus,

ME2 (C(Pn)) =
4n5
− 31n4 + 115n3

− 221n2 + 229n− 104
2

.

iii. Similaly, as ii, we get

MME1 (C(Pn)) = 2n4
− 8n3 + 20n2

− 16n + 2.

�

Theorem 2.6. Let C(Cn) be a central of cycle graph, we have

i. ME1 (C(Cn)) = 2n4
− 11n3 + 26n2

− 17n.

ii. ME2 (C(Cn)) =
4n5
− 31n4 + 107n3

− 165n2 + 109n
2

.

iii. MME1 (C(Cn)) = 2n4
− 8n3 + 18n2

− 4n.

Proof. i. We have n vertices of degree (n− 1), n vertices of degree two, 2n edges of degree (n− 1)

and
n(n− 3)

2
of degree (2n− 4).

we get,

ME1 (C(Cn)) = 2n4
− 11n3 + 26n2

− 17n.

ii. For the second entire Zagreb index, we have

ME2 (G) =
∑

uv∈E(G)

dudv +
∑

e f∈E(L(G))

ded f +
∑

v incident to e

dvde,

to compute the initial segment, we utilize the division shown in the Table 10 and, we get
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uv∈E(G)

dudv =
n4
− 5n3 + 15n2

− 11n
2

.

Table 10. The partition of the edges in the central of cycle graph.
Edge type The number of edges

En−1,2 2n

En−1,n−1
n(n− 3)

2

Also, by using the adjacent edge partition as in Table 11, we have∑
e f∈E(L(G))

ded f = 2n5
− 18n4 + 66n3

− 112n2 + 74n.

Table 11. The partition of the adjacent edges in the central of cycle graph.
(de, d f ), where e f ∈ E(L(G)) Number of pairs

(n− 1, n− 1) 2n

(2n− 4, 2n− 4) n
(
(n− 3)(n− 4)

2

)
(n− 1, 2n− 4) n(2n− 6)

And by using Table 12, we get

∑
v incident to e

dvde = 2n(n− 1)2 + (n− 1)(2n− 4)(n2
− 3n) + 2n(2n− 2).

Table 12. The partition of the vertices incident with the edges in the central of cycle graph.
Edv,de , where v incident to e Number of pairs

En−1,n−1 2n

En−1,2n−4 n(n− 3)

E2,n−1 2n

Thus,

ME2 (C(Cn)) =
4n5
− 31n4 + 107n3

− 165n2 + 109n
2

.

iii. Straightforwardly, as ii, we get

MME1 (C(Cn)) = 2n4
− 8n3 + 18n2

− 4n.

�
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Theorem 2.7. Let be G any graph with n vertices, m edges and C(G) is the central graph of G. Then

i. ME1 (C(G)) = 2n4
− 9n3

− 2n2m + 14n2 + 12nm− 7n− 10m.

ii. ME2 (C(G)) =
50m + 4n5

− 23n4
− 8mn3 + 53n3 + 50mn2

− 57n2
− 84mn + 23n + n2M1(G)

2

+
9M1(G) − 6nM1(G)

2
.

iii. MME1 (C(G)) = 12mn− 2m− 6n3 + 6n2
− 2n− 2mn2 + 2n4.

Proof. From the definition of the central graph, we observe that there are two types of vertices;

m vertices of degree two and n vertices of degree n − 1, where n is the number of vertices

in G. In the same way for edges there are two types of edges according to their degrees;
n(n− 1) − 2m

2
edges of degree 2n− 4 and 2m of degree n− 1. Then

ME1 (C(G)) =
∑

x∈V(C(G))∪E(C(G))

d2
x

=
∑

v∈V(C(G))

d2
v +

∑
e∈E(C(G))

d2
e

= 4m + n(n− 1)2 + 2m(n− 1)2 + (2n− 4)2
(

n(n− 1) − 2m
2

)
= 2n4

− 9n3
− 2n2m + 14n2 + 12nm− 7n− 10m.

i.ii. ME2 (G) =
∑

x adjacent to y
or x incident to y

dxdy

= 2m(2n− 2) + (n− 1)2
(

n(n− 1) − 2m
2

)
+ m(n− 1)2 + (n− 1)2

( ∑
v∈V(G)

dv−1∑
i=1

dv − i
)

+ (n− 1)(2n− 4)
( ∑

v∈V(G)

((n− 1)dv − d2
v)

)
+ (2n− 4)2

( ∑
v∈V(G)

n−dv−2∑
i=1

(n− 1− dv − i)
)

+ 2m(2n− 2) + (n− 1)(2n− 4)
( ∑

v∈V(G)

(n− 1− dv)

)
+ (n− 1)2

∑
v∈V(G)

dv

= 2m(2n− 2) + (n− 1)2
(

n(n− 1) − 2m
2

)
+ m(n− 1)2 + (n− 1)2

( ∑
v∈V(G)

dv(dv − 1)
2

)

+ (n− 1)(2n− 4)(2m(n− 1) −M1(G)) + (2n− 4)2
( ∑

v∈V(G)

(n− dv − 2)(n− dv − 1)
2

)
+ 2m(2n− 2) + (n− 1)(2n− 4)(n2

− n− 2m) + 2m(n− 1)2

= 2m(2n− 2) + (n− 1)2
(

n(n− 1) − 2m
2

)
+ m(n− 1)2 + (n− 1)2(

1
2

M1(G) −m)
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+ (n− 1)(2n− 4)(2m(n− 1) −M1(G)) +
1
2
(2n− 4)2(n3 + M1(G) + 6m− 4mn− 3n2 + 2n)

+ 2m(2n− 2) + (n− 1)(2n− 4)(n2
− n− 2m) + 2m(n− 1)2

=
50m + 4n5

− 23n4
− 8mn3 + 53n3 + 50mn2

− 57n2
− 84mn + 23n + n2M1(G)

2

+
9M1(G) − 6nM1(G)

2
.

iii. MME1 (G) =
∑

x adjacent to y
or x incident to y

(dx + dy)

= 2m(n + 1) + (2n− 2)
(

n(n− 1) − 2m
2

)
+ m(2n− 2) + (2n− 2)

( ∑
v∈V(G)

dv−1∑
i=1

dv − i
)

+ (3n− 5)
( ∑

v∈V(G)

(n− 1)dv − d2
v

)
+ (4n− 8)

( ∑
v∈V(G)

n−dv−2∑
i=1

n− 1− dv − i
)

+ 2m(n + 1) + (3n− 5)
( ∑

v∈V(G)

n− 1− dv

)
+ (2n− 2)

∑
v∈V(G)

dv

= 2m(n + 1) + (2n− 2)
(

n(n− 1) − 2m
2

)
+ m(2n− 2) + (2n− 2)

( ∑
v∈V(G)

dv(dv − 1)
2

)

+ (3n− 5)(2mn− 2m−M1(G)) + (4n− 8)
( ∑

v∈V(G)

(n− dv − 2)(n− dv − 1)
2

)
+ (2mn + 2m) + (3n− 5)(n2

− n− 2m) + 2m(2n− 2)

= 2m(n + 1) + (2n− 2)
(

n(n− 1) − 2m
2

)
+ m(2n− 2) + (2n− 2)(

1
2

M1(G) −m)

+ (3n− 5)(2mn− 2m−M1(G)) +
1
2
(4n− 8)(n3 + M1(G) + 6m− 4mn− 3n2 + 2n)

+ (2mn + 2m) + (3n− 5)(n2
− n− 2m) + 2m(2n− 2)

= 12mn− 2m− 6n3 + 6n2
− 2n− 2mn2 + 2n4.

�

2.3. Entire topological indices of the corona product of two graphs. The corona product of two

graphs G1 and G2, is a graph denoted by G1 ◦G2 which is constructed by taking |n1| copies of G2

and joining each vertex of the ith copy with vertex u ∈ V(G1). The corona product of two graphs

can represent networks with hierarchical structures, like molecules with atoms and surrounding

bonds, or transportation systems with stations and connecting routes.
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Theorem 2.8. The corona product Pn ◦ Pm of two graphs Pn and Pm with
∣∣∣V(Pn)

∣∣∣ = n,
∣∣∣V(Pm)

∣∣∣ = m.
Then

i. ME1 (Pn ◦ Pm) = 5nm2 + 4m2 + 37mn− 32n− 20m + 2m3
− 28.

ii. ME2 (Pn ◦ Pm) =
−12m3

− 96m2
− 202m + m4n + 15m3n + 87m2n + 191mn− 284n + 12

2
.

iii. MME1 (Pn ◦ Pm) = −8m2
− 48m + 73mn− 60n + 14m2n + m3n− 28.

Proof. i. There are (n− 2) vertices of degree (m + 2), two vertices of degree (m + 1), 2n vertices

of degree two and n(m− 2) vertices of degree three.

For the edges, there are two edges of degree (2m + 1), (n − 3) edges of degree (2m + 2), four

edges of degree (m + 1), 2(m − 2) edges of degree (m + 2), 2n edges of degree three and

n(m− 3) edges of degree four.

ii. Regarding the second entire Zagreb index, we have

ME2 (G) =
∑

uv∈E(G)

dudv +
∑

e f∈E(L(G))

ded f +
∑

v incident to e

dvde,

by utilizing the partition specified in the Table 13, we calculate the first part,∑
uv∈E(G)

dudv = −m2
− 12m + 4m2n + 17mn− 15n− 4.

Table 13. The partition of the edges in the corona product.
Edge type The number of edges

Em+1,m+2 2

Em+2,m+2 n− 3

Em+1,2 4

Em+1,3 2m− 4

E2,3 2n

E3,3 nm− 3n

Em+2,2 2n− 4

Em+2,3 (m− 2)(n− 2)
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Also, by using the adjacent edge partition as in Table 14, we have∑
e f∈E(L(G))

ded f =
−12m3

− 70m2 + m4n + 13m3n + 55m2n + 63mn− 90m− 158n + 48
2

.

Table 14. The partition of the adjacent edges in the corona product.
(de, d f ), where e f ∈ E(L(G)) Number of pairs

(2m + 1, m + 1) 4

(2m + 1, m + 2) 2m− 4

(m + 1, m + 1) 2

(m + 2, m + 2) (m− 2)(m− 3) + (n− 2)

(2m + 1, 2m + 2) 2

(2m + 2, 2m + 2) n− 4

(2m + 1, m + 2) 4

(2m + 1, m + 3) 2m− 4

(m + 3, m + 3) (n− 2)
(
(m− 2)(m− 3)

2

)
(2m + 2, m + 2) 4n− 12

(2m + 2, m + 3) (2m− 4)(n− 3)

(m + 2, 3) 2n

(m + 1, 3) 4

(3, 4) 2n

(4, 4) nm− 4n

(m + 2, 4) 4m− 12

(m + 3, 3) 2n− 4

(m + 3, 4) (n− 2)(2m− 6)

(m + 2, m + 3) (2m− 4)(n− 2)

(m + 1, m + 2) 4m− 8
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Additionally, by utilizing Table 15, we have∑
v incident to e

dvde = 47mn− 48n− 12m2
− 44m + 12nm2 + nm3

− 14.

Table 15. The partition of the vertices incident with the edges in the corona product.
Edv,de , where v incident to e Number of pairs

E2,m+2 2n− 4

E2,m+1 4

E2,3 2n

E3,3 2n

E3,4 2mn− 6n

E3,m+2 2m− 4

E3,m+3 (n− 2)(m− 2)

Em+1,m+1 4

Em+1,m+2 2m− 4

Em+1,2m+1 2

Em+2,2m+2 2n− 6

Em+2,m+2 2n− 4

Em+2,m+3 (n− 2)(m− 2)

Thus,

ME2 (Pn ◦ Pm) =
−12m3

− 96m2
− 202m + m4n + 15m3n + 87m2n + 191mn− 284n + 12

2
.

iii. In the same manner , as ii, we get

MME1 (Pn ◦ Pm) = −8m2
− 48m + 73mn− 60n + 14m2n + m3n− 28.

�

Theorem 2.9. [30] For any graph G with m edges, we have:

MME1 (G) = F(G) + 2M2(G).

Proposition 2.10. [16] For any two graphs G1 and G2 with |V(G1)| = n1, |V(G2)| = n2 and |E(G1)| = m1,
|E(G2)| = m2, the first and second Zagreb indices of G1 ◦G2 are given by

M2(G1 ◦G2) = M2(G1) + n1M2(G2) + n2M1(G1) + n1M1(G2) + n2m1(n2 + 2) + m2(n1 + 4m1)

+ n1n2(n2 + 2m2).

Theorem 2.11. [28] Let G be a graph with n vertices and m edges. Then
F(G1 ◦G2) = F(G1) + n1F(G2) + n1n3

2 + 3n2M1(G1) + 6n2
2m1 + n1n2 + 3n1M1(G2) + 6n1m2.
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Theorem 2.12. For any two graphs G1 and G2 with
∣∣∣V(G1)

∣∣∣ = n1,
∣∣∣V(G2)

∣∣∣ = n2 and
∣∣∣E(G1)

∣∣∣ = m1,∣∣∣E(G2)
∣∣∣ = m2, the modified entire Zagreb index of G1 ◦G2 is given by

MME1 (G1 ◦G2) = F(G1) + n1F(G2) + n1n3
2 + 5n2M1(G1) + 6n2

2m1 + n1n2 + 5n1M1(G2)

+ 7n1m2 + 2M2(G1) + 2n1M2(G2) + n2
2m1n2 + 2n2m1.

Proof. By Theorem 2.9, we can write

MME1 (G1 ◦G2) = F(G1 ◦G2) + 2M2(G1 ◦G2).

Using the results of Proposition 2.10 and Theorem 2.11, we get

MME1 (G1 ◦G2) = F(G1) + n1F(G2) + n1n3
2 + 5n2M1(G1) + 6n2

2m1 + n1n2 + 5n1M1(G2) + 7n1m2

+ 2M2(G1) + 2n1M2(G2) + n2
2m1n2 + 2n2m1.

�

2.4. Entire topological indices of the m bridge over graphs. A bridge graph is a graph obtained

from the number of graphs G1, G2, G3....Gm by associating the vertices vi and vi + 1 by an edge

for every i = 1, 2...m − 1, [29]. The m bridge play a crucial role in network analysis and wireless

communications. They aid in comprehending network connectivity, facilitating the identification

of pathways in wireless communications. Moreover, they are employed to model particular

network setups or evaluate the effectiveness of wireless networks. Analyzing communication and

structural patterns within networks is of paramount importance. The bridge graph over path and

cycle are illustrated in Figure 3, 4.

Theorem 2.13. Let Gm be a bridge graph over path Pn. Then,

i. ME1 (Gm) = 8mn + 16m− 50.

ii. ME2 (Gm) = 16mn + 55m− 161.

iii. MME1 (Gm) = 16mn + 22m− 76.

Proof. i. We have mn− 2m + 2 vertices of degree two, m vertices of degree one and m-2 vertices

of degree three.

Similarly, for the edges we have mn− 3m+ 2 edges of degree two, m of degree one, m of degree

three and m− 3 of degree four, Thus,

ME1 (Gm) = 8mn + 16m− 50.

ii. For the second entire Zagreb index, we get

ME2 (G) =
∑

uv∈E(G)

dudv +
∑

e f∈E(L(G))

ded f +
∑

v incident to e

dvde,

to calculate the first part we use the partition in Table 16 and, we get

∑
uv∈E(G)

dudv = 4(mn− 3m + 2) + 2m + 6m + 9(m− 3).
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Table 16. The partition of the edges in the bridge graph over path.
Edge type The number of edges

E2,2 mn− 3m + 2

E2,1 m

E3,2 m

E3,3 m− 3

Also, by using the adjacent edge partition as in Table 17, we have∑
e f∈E(L(G))

ded f = 6m + 4(mn− 4m + 2) + 2m + 18 + 12(2m− 4) + 16(m− 4).

Table 17. The partition of the adjacent edges in the bridge graph over path.
(de, d f ), where e f ∈ E(L(G)) Number of pairs

(2, 3) m

(2, 2) mn− 4m + 2

(2, 1) m

(3, 3) 2

(3, 4) 2m− 4

(4, 4) m− 4

And by using Table 18, we get

∑
v incident to e

dvde = 4(2mn− 6m + 4) + 2m + m + 6m + 9m + 12(2m− 6).

Table 18. The partition of the vertices incident with the edges in the bridge graph

over path.
Edv,de , where v incident to e Number of pairs

E2,2 2mn− 6m + 4

E2,1 m

E1,1 m

E2,3 m

E3,3 m

E3,4 2m− 6

Thus,

ME2 (Gm) = 16mn + 55m− 161.
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iii. Similarly, as ii, we get

MME1 (Gm) = 16mn + 22m− 76.

�

Figure 3. Bridge graph over path Pn.

Theorem 2.14. Let Gm be a bridge graph over cycle Cn. Then,

i. ME1 (Gm) = 8mn + 72m− 100.

ii. ME2 (Gm) = 16mn + 256m− 396.

iii. MME1 (Gm) = 16mn + 104m− 138.

Proof. i. There are mn−m vertices of degree two, two vertices of degree three and m− 2 vertices

of degree four.

In the same way, for the edges we have mn − 2m edges of degree two, four edges of degree

three, 2m− 4 edges of degree four, two edges of degree five and m− 3 edges of degree six, we

get

ME1 (Gm) = 8mn + 72m− 100.

ii. For the second entire Zagreb index, we get

ME2 (G) =
∑

uv∈E(G)

dudv +
∑

e f∈E(L(G))

ded f +
∑

v incident to e

dvde,

to compute the first part, we use the partition in Table 19 and, we get

∑
uv∈E(G)

dudv = 4mn + 24m− 32.
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Table 19. The partition of the edges in the bridge graph over cycle.
Edge type The number of edges

E2,2 m(n− 2)

E3,2 4

E3,4 4

E4,4 m− 3

E2,4 2(m− 2)

Also, by using the adjacent edge partition as in Table 20, we have∑
e f∈E(L(G))

ded f = 4mn + 152m− 254.

Table 20. The partition of the adjacent edges in the bridge graph over cycle.
(de, d f ), where e f ∈ E(L(G)) Number of pairs

(2, 2) m(n− 3)

(2, 3) 4

(3, 3) 2

(2, 4) 2(m− 2)

(3, 5) 4

(4, 5) 4

(6, 5) 2

(4, 4) m− 2

(6, 4) 4(m− 3)

(6, 6) m− 4
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By utilizing Table 21, we get

∑
v incident to e

dvde = 8mn + 80m− 110.

Table 21. The partition of the vertices incident with the edges in the bridge graph

over cycle.
Edv,de , where v incident to e Number of pairs

E2,2 2mn− 4m

E2,3 4

E3,3 4

E3,5 2

E2,4 2(m− 2)

E4,4 2(m− 2)

E4,5 2

E4,6 2m− 6

Thus,

ME2 (Gm) = 16mn + 256m− 396.

iii. Likewise, as shown in ii, we obtain

MME1 (Gm) = 16mn + 104m− 138.

�

Figure 4. Bridge graph over cycle Cn.
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Theorem 2.15. Let Gm be a bridge graph over complete Kn. Then,

i. ME1 (Gm) = 2n4m− 9n3m + 26n2m− 12n2
− 23nm + 6n + 12m− 10.

ii. ME2 (Gm) =
36n2

− 23n4m + 85n3m− 32n3
− 127n2m + 127nm− 86n− 34m + 4n5m + 6

2
.

iii. MME1 (Gm) = 2n4m− 6n3m + 18n2m− 12n2
− 6nm− 6n + 8m− 12.

Proof. i. We have two vertices of degree n, m − 2 vertices of degree n + 1, mn −m vertices of

degree n− 1.

Similarly, for the edges we have two edges of degree 2n − 1, m − 3 edges of degree 2n, 2n − 2

edges of degree 2n − 3, (n − 1)(m − 2) edges of degree 2n − 2 and
m(n2

− 3n + 2)
2

edges of

degree 2n− 4. Thus,

ME1 (Gm) = 2n4m− 9n3m + 26n2m− 12n2
− 23nm + 6n + 12m− 10.

ii. For the second entire Zagreb index, we get

ME2 (G) =
∑

uv∈E(G)

dudv +
∑

e f∈E(L(G))

ded f +
∑

v incident to e

dvde,

to calculate the first part we use the partition in Table 22 and, we get

∑
uv∈E(G)

dudv =
−6n2 + n4m− 3n3m + 9n2m− 5nm + 6m− 10

2
.

Table 22. The partition of the edges in the bridge graph over complete.
Edge type The number of edges

En,n+1 2

En+1,n+1 m− 3

En,n−1 2(n− 1)

En−1,n−1
m(n2

− 3n + 2)
2

En+1,n−1 (n− 1)(m− 2)
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Also, by using the adjacent edge partition as in Table 23, we have∑
e f∈E(L(G))

ded f = 2n5m− 14n4m + 52n3m− 16n3 + 33n2
− 90n2m + 82nm− 45n + 16− 28m.

Table 23. The partition of the adjacent edges in the bridge graph over complete.
(de, d f ), where e f ∈ E(L(G)) Number of pairs

(2n− 3, 2n− 3) n2
− 3n + 2

(2n− 3, 2n− 1) 2(n− 1)

(2n− 2, 2n− 2)
(

n2
− 3n + 2

2

)
(m− 2)

(2n− 2, 2n− 1) 2(n− 1)

(2n− 2, 2n) (2n− 2)(m− 3)

(2n− 1, 2n) 2

(2n, 2n) m− 4

(2n− 4, 2n− 4) (mn−m)

(
n2
− 5n + 6

2

)
(2n− 4, 2n− 3) 2(n− 2)(n− 1)

(2n− 2, 2n− 4) (n− 2)(n− 1)(m− 2)

And by using Table 24, we get

∑
v incident to e

dvde = −12n2 + 2n + 22n2m− 16nm− 8n3m + 2n4m + 8m− 8.

Table 24. The partition of the vertices incident with the edges in the bridge graph

over complete.
Edv,de , where v incident to e Number of pairs

En,2n−1 2

En,2n−3 2(n− 1)

En+1,2n−1 2

En+1,2n 2m− 6

En+1,2n−2 (n− 1)(m− 2)

En−1,2n−3 2(n− 1)

En−1,2n−4 m(n− 2)(n− 1)

En−1,2n−2 (n− 1)(m− 2)
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Thus,

ME2 (Gm) =
36n2

− 23n4m + 85n3m− 32n3
− 127n2m + 127nm− 86n− 34m + 4n5m + 6

2
.

iii. Likewise, as mentioned in ii, we get

MME1 (Gm) = 2n4m− 6n3m + 18n2m− 12n2
− 6nm− 6n + 8m− 12.

�
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