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Abstract. Many authors have extended the concept of convergence from number sequences to sequences of sets. In this

paper, we focus on two notable adaptations: Wijsman convergence and randomly ideal convergence. We introduce and

analyze several new types of convergence for sequences of sets: I
ψ
W3

-convergence, I
∗,ψ
W3

-convergence, I
ψ
W3

-Cauchy,

I
∗,ψ
W3

-Cauchy, (I ψ
W3

, I ψ
W)-convergence, and (I

∗,ψ
W3

, I ∗,ψW )-convergence. These new concepts expand the framework of

convergence and provide a deeper understanding of the behavior of set sequences under various conditions. Through

rigorous analysis, we demonstrate the relationships between these new forms of convergence and their classical counter-

parts, highlighting their theoretical significance and potential applications in mathematical analysis and related fields.

Our findings offer a comprehensive exploration of these advanced convergence concepts, paving the way for further

research and development in this area.

1. Introduction

Fast [11] and Steinhaus [26] independently introduced the concept of statistical convergence

for sequences of real numbers in the same year 1951, and since then several generalizations and

applications of this notion have been investigated by various authors, including [1–4,6,19,20,22,25].

One of its interesting generalizations is I -convergence, which was provided by Kostyrko et al. [14].

Balcerzak et al. [3] recently researched I -convergence for function sequences. The concept of

statistical convergence has applications in many fields of mathematics, including number theory by

Erdos and Tenenbaum [8], statistics and probability theory by Fridy and Khan [13] and Ghosal [10],

approximation theory by Gadjiev and Orhan [9], Hopfield neural network by Martinez et al. [21],

and optimization by Pehlivan and Mamedov [24].
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Some authors have expanded the concept of convergence of point sequences to convergence of

set sequences. The idea of Wijsman convergence in [35,36] is one of these expansions discussed in

this study. Nuray and Rhoades proposed statistical convergence definitions for set sequences in

[22]. Ulusu and Nuray [33,34] investigated the concept of Wijsman lacunary statistical convergence

of set sequences. Nuray et al. [23] investigated the relationship between the concepts of Wijsman

Cesáro summability and Wijsman lacunary convergence of double sequences of sets. This notion

is used in a variety of ways in [7, 29–32]. Kisi and Nuray [17] proposed a new convergence

notion for set sequences termed Wijsman I -convergence. Dundar and Pancaroglu [7] recently

extended this approach to Wijsman regularly ideal convergence of double sequences of sets. In [5],

The authors expanded those concepts to triple sequences of sets and studied some relationship

between them. We present the ideas of Wijsman convergence and Randomly ideal convergence for

triple set sequences in this paper. In addition, we study some of these ideas’ features and examine

their relationship.

The paper is organized as follows: In section 2, we present and investigate the notions of IW3-

convergence, I ∗W3
-convergence, IW3-Cauchy, and I ∗W3

-Cauchy, and build a diagram to explain the

relationships between them. Part four investigates and demonstrates the concepts of randomly

(I
ψ

W3
, I ψ

W)-convergence and randomly (I
∗,ψ

W3
, I ∗,ψW )-convergence.

Throughout of this paper, I3 ⊂ 2N×N×N denotes a strongly admissible ideal, and (X,ψ, ∗)

denotes a Menger probabilistic metric space and ℘,℘mnk are any non-empty closed subsets of X.

Furthermore, N and R denote the set of all positive integers and the set of all real numbers,

respectively. Next, we recall some definitions and notions which are useful for the development

of this paper.

Definition 1.1. [27] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is said to be a continuous t-norm

if ([0, 1], ∗) is a topological monoid with unit 1 such that κ1 ∗ κ2 ≤ κ3 ∗ κ4 whenever κ1 ≤ κ3,κ2 ≤ κ4

for all κ1,κ2,κ3,κ4 ∈ [0, 1].

Let D denote the set of all distribution functions and D+ = {ψ : ψ ∈ D ,ψ(t) = 0 for all t ≤ 0}.

Let τa be the specific distribution function defined by

τa(t) =

 1, if t > a;

0, if t ≤ a.

Definition 1.2. [27] A function ψ : R→ R+ is called a distribution function if it is non-decreasing

and left-continuous with inft∈R ψ(t) = 0 and supt∈R ψ(t) = 1.

Definition 1.3. [15] A Menger probabilistic metric space (or random metric spaces) is a triple

(X,ψ, ∗), where X is a nonempty set, ∗ is a continuous t-norm, and ψ is a mapping from X×X into

D+ such that, if ψξ,ζ denotes the value of ψ at a point (ξ, ζ) ∈ X×X, the following conditions hold:

for all ξ, ζ, η ∈ X,

(PM1) ψξ,ζ(t) = τ0(t) for all t > 0 if and only if ξ = ζ;
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(PM2) ψξ,ζ(t) = ψζ,ξ(t) for all t > 0;

(PM3) ψξ,ζ(t + s) ≥ ψξ,η(t) ∗ψη,ζ(s) for all t, s > 0 and ξ, ζ, η ∈ X.

Definition 1.4. [27] Let (X,ψ, ∗) be a random metric space and H be a non-empty subset of X.

Then for any ξ ∈ X, we define the distance from ξ to ℘ by

ψξ,℘(t) = sup
ζ∈℘

ψξ,ζ(t) for t > 0.

Definition 1.5. [5] A non trivial ideal I3 of N ×N ×N is said to be strongly admissible if

{i} ×N ×N, N × {i} ×N and N ×N × {i} belong to I3 for each i ∈ N. It is clear that a strongly

admissible ideal is an admissible ideal.

If I 0
3 =

{
A ⊂N×N×N : (∃m(A) ∈N) (i, j, k ≥ m(A))⇒ (i, j, k) < A

}
. Then, I 0

3 is a non-

trivial strongly admissible ideal and we can see that I3 is a strongly admissible ideal if and only

if I 0
3 ⊂ I3.

Definition 1.6. [5] An admissible ideal I3 ⊂ N×N×N satisfies the property (AP3) if for every

countable family of mutually disjoint sets {℘1,℘2, · · · } belong to I3, there exits a countable family

of sets {01,02, · · · } such that ℘ j40 j ∈ I3 is included in the finite union of rows and columns in

N×N×N for each j ∈N and G =
⋃
∞

j=1 0 j ∈ I3, consequently 0 j ∈ I3 for each j ∈N.

Remark 1.7. Note that if I is the ideal I0 then I -convergence coincides with the usual conver-

gence and if we take Id =
{
A ⊂N×N×N : δ3(A) = 0

}
then Id-convergence becomes statistical

convergence.

2. Wijsman I3-convergence of triple sequences

In this part, we present and investigate the concepts of IW3-convergence, I ∗W3
-convergence,

IW3-Cauchy, and I ∗W3
-Cauchy, as well as their relationships.

Definition 2.1. Let (X,ψ, ∗) be a random metric spaces. A triple sequence of sets {℘mnk} is Wijsman

convergent to ℘ with respect to probabilistic metric ψ if for each ξ ∈ X,

lim
m,n,k→∞

ψξ,℘mnk(t) = ψξ,℘(t) for all t > 0.

or equivalently,

lim
m,n,k→∞

ψξ,℘mnk−℘(t) = 1 for all t > 0.

In this case, we write ψ-limm,n,k→∞ ℘mnk = ℘.

Definition 2.2. Let (X,ψ, ∗) be a probabilistic metric space. A triple sequence of sets {℘mnk} is

IW3-convergent to ℘ if for every ε > 0, λ ∈ (0, 1) and each ξ ∈ X,{
(m, n, k) ∈N×N×N : ψξ,℘mnk−℘(ε) ≤ 1− λ

}
∈ I3.

In this case, we write I
ψ

W3
-limm,n,k→∞ ℘mnk = ℘.
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Definition 2.3. Let (X,ψ, ∗) be a random metric space. A triple sequence of sets {℘mnk} is I ∗W3
-

convergent to ℘ if there exits a set A3 ∈ F (I3), this means B = N ×N ×N \A3 ∈ I3 such that

ψ-limm,n,k ℘mnk = ℘ and (m, n, k) ∈ A3. In this case we write I
∗,ψ

W3
-lim℘mnk = ℘.

Theorem 2.4. Let (X,ψ, ∗) be a random metric space. If a triple sequence of sets {℘mnk} is I
∗,ψ

W3
-convergent,

then it is I
ψ

W3
-convergent.

Proof. Suppose that I
∗,ψ

W3
-limm,n,k ℘mnk = ℘. Then there exists a set A3 ∈ F (I3) (i.e. N×N×N \

A3 = B ∈ I3) such that for each ξ ∈ X, ψ-limm,n,k ℘mnk = ℘ and (m, n, k) ∈ A3. Let ε > 0,λ ∈ (0, 1),

then there exists n0 ∈ N such that for each ξ ∈ X, ψξ,℘mnk−℘(ε) > 1 − λ for all (m, n, k) ∈ A3 and

m, n, k ≥ n0. Then, for each ε > 0,λ ∈ (0, 1), and x ∈ X, we have that

E(λ, x) = {(m, n, k) ∈N×N×N : ψξ,℘mnk−℘(ε) ≤ 1− λ} ⊂ B∪ (A3 ∩K) , where

K = ({1, 2, · · · , n0 − 1} ×N×N)∪ (N× {1, 2, · · · , n0 − 1} ×N)∪ (N×N× {1, 2, · · · , n0 − 1}) .

Since ℘∪ (A3 ∩K) ∈ I3, we get E(λ, x) ∈ I3 and consequently, I
ψ

W3
-limm,n,k ℘mnk = ℘. �

Theorem 2.5. Let (X,ψ, ∗) be a random metric space. If the ideal I3 has the property (AP3), then
I
ψ

W3
-convergent implies I

∗,ψ
W3

-convergence of triple sequences of sets.

Proof. Suppose that I3 possesses property (AP3). Now, let I
ψ

W3
-limm,n,k ℘mnk = ℘. Then, for each

ε > 0,λ ∈ (0, 1) and ξ ∈ X,

E(λ, x) = Eλ = {(m, n, k) ∈N×N×N : ψξ,℘mnk−℘(ε) ≤ 1− λ} ∈ I3. Take

E1 = {(m, n, k) ∈N×N×N : ψξ,℘mnk−℘(ε) ≤ 1} and

En = E(n, x) = {(m, n, k) ∈N×N×N : 1−
1
n
≤ ψξ,℘mnk−℘(ε) < 1−

1
n + 1

}

for n ≥ 2 and n ∈ N. It is clear that Ei ∩ Ek = 1 − λ for i , k and Ei ∈ I3 for each i ∈ N. By the

property (AP3) there exits a sequence of sets {0k}k∈N such that Ek40k is included in finite union of

rows and columns in N×N×N for each k and G =
⋃
∞

k=1 0k ∈ I3. Now, we shall prove that for

A3 = N×N×N \G we have ψ-limm,n,k ℘mnk = ℘, where (m, n, k) ∈ A3.

Let η ∈ (0, 1), ε > 0 be given. Take n ∈N such that 1
n < η. Then

{(m, n, k) ∈N×N×N : ψξ,℘mnk−℘(ε) ≤ 1− η} ⊂
k⋃

n=1

En.

Since Ek40k, k = 1, 2, · · · are included in finite union of rows and columns, there exists n0 ∈N such

that k⋃
n=1

Ek

∩ {(m, n, k) : m ≥ n0, n ≥ n0 ∧ k ≥ n0} =

 k⋃
n=1

0k

∩ {(m, n, k) : m ≥ n0, n ≥ n0 ∧ k ≥ n0}.

If m, n, k > n0 and (m, n, k) < G, then (m, n, k) <
⋃k

n=1 0k and (m, n, k) <
⋃k

n=1 Ek. This implies that

ψξ,℘mnk−℘(t) > 1− 1
n > 1− η. Therefore, I

∗,ψ
W3

-limm,n,k ℘mnk = ℘. �



Int. J. Anal. Appl. (2024), 22:154 5

Definition 2.6. Let (X,ψ, ∗) be a random metric space. A triple sequence of sets {℘mnk} is I
ψ

W3
-

Cauchy if for every ε > 0,λ ∈ (0, 1) and each ξ ∈ X, there exits p = p(λ), q = q(λ) and r = r(λ) in

N such that {
(m, n, k) ∈N×N×N : ψξ,℘mnk−℘pqr(ε) ≤ 1− λ

}
∈ I3.

Theorem 2.7. Let (X,ψ, ∗) be a random metric space. If a triple sequence of sets {℘mnk} is I
ψ

W3
-convergent,

then it is I
ψ

W3
-Cauchy.

Proof. Suppose that I
ψ

W3
-limm,n,k ℘mnk = ℘. Then, for each ε > 0,λ ∈ (0, 1), and each ξ ∈ X, we

have

G(x,λ) = {(m, n, k) ∈N×N×N : ψξ,℘mnk−℘(ε) ≤ 1− λ} ∈ I3.

This implies that

Gc(x,λ) = {(m, n, k) ∈N×N×N : ψξ,℘mnk−℘(ε) > 1− λ} < I3.

Choose η ∈ (0, 1) such that (1 − η) ∗ (1 − η) > 1 − λ. Since I3 is a strongly admissible ideal, then

for all p, q, r ∈N such that (p, q, r) ∈ Gc(x,λ),

ψξ,℘mnk−℘pqr(2ε) ≥ ψξ,℘mnk−℘(ε) ∗ψ℘pqr−℘,x(ε) > (1− η) ∗ (1− η) > 1− λ.

Hence

{(n, m, k) ∈N×N×N : ψξ,℘mnk−℘pqr(2ε) ≤ 1− λ} ∈ I3

and so {℘mnk} is I
ψ

W3
-Cauchy. �

Definition 2.8. Let (X,ψ, ∗) be a random metric space. A triple sequence of sets {℘mnk} is I
∗,ψ

W3
-

Cauchy if there exits a set A3 ∈ F (I3), this means that B = N ×N ×N \A3 ∈ I3 such that for

each ξ ∈ X and (m, n, k), (p, q, r) ∈ A3, limm,n,k,p,q,r ψξ,℘mnk−℘pqr(t) = 1 for all t > 0.

Theorem 2.9. Let (X,ψ, ∗) be a random metric space. If a triple sequence of sets ℘mnk is I
∗,ψ

W3
-Cauchy,

then it is I
ψ

W3
-Cauchy.

Proof. Let℘mnk be I
∗,ψ

W3
-Cauchy triple sequence, then by the definition, there exist a set A3 ∈ F (I3)

(i.e., N×N×N \A3 ∈ I3) such that for each ε > 0,λ ∈ (0, 1) and for each ξ ∈ X, ψξ,℘mnk−℘pqr(ε) >

1 − λ for all (m, n, k), (p, q, r) ∈ A3, m, n, k, p, q, r > N = N(x,λ) and N ∈ N. Then, for each

ε > 0,λ ∈ (0, 1) and for each ξ ∈ X, we have

G(λ, x) = {(m, n, k) ∈N×N×N : ψξ,℘mnk−℘pqr(ε) ≤ 1− λ} ⊂ B∪ (A3 ∩ T3) ,

where

T3 = ({1, 2, · · · , N − 1} ×N×N)∪ (N× {1, 2, · · · , N − 1} ×N)∪ (N×N× {1, 2, · · · , N − 1}) .

Since B∪ (A3 ∩ T3) ∈ I3, so we have G(λ, x) ∈ I3. Therefore, ℘mnk is I
ψ

W3
-Cauchy triple sequence.

�
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Theorem 2.10. Let (X,ψ, ∗) be a random metric space. If a triple sequence of sets ℘mnk is I
∗,ψ

W3
-convergent,

then it is IW3-Cauchy.

Proof. Let I
∗,ψ

W3
-limm,n,k ℘mnk = ℘. So there exists a set A3 ∈ F (I3) (i.e., B = N×N×N \A3 ∈ I3)

such that for each ξ ∈ X, we have

ψ- lim
m,n,k→∞
(m,n,k)∈A3

℘mnk = ℘.

Let λ ∈ (0, 1), ε > 0 be given. Then there exists n0 ∈N such that for each ξ ∈ X, ψ℘mnk−℘(ε) > 1− λ

for all (m, n, k) ∈ A3 and m, n, k ≥ n0. Choose η ∈ (0, 1) such that (1− η) ∗ (1− η) > 1− λ. Then

ψξ,℘mnk−℘pqr(2ε) ≥ ψξ,℘mnk−℘(ε) ∗ψξ,℘pqr−℘(ε) > (1− η) ∗ (1− η) > 1− λ.

Therefore, for each ξ ∈ X and (m, n, k), (p, q, r) ∈ A3, we have

lim
m,n,k,p,q,r→∞

ψξ,℘mnk−℘pqr(ε) = 1.

This implies that ℘mnk is I
∗,ψ

W3
-Cauchy triple sequence and by the Theorem 2.9, ℘mnk is I

ψ
W3

-Cauchy

triple sequence. �

From the proof of Theorem 2.10, we have

Corollary 2.11. Let (X,ψ, ∗) be a random metric space. If a triple sequence of sets {℘mnk} is I
∗,ψ

W3
-convergent,

then it is I
∗,ψ

W3
-Cauchy.

Theorem 2.12. Let {Pi}i∈N be a countable collection of subsets of N×N×N such that {Pi}i∈N ∈ F (I3)

for each i, where F (I3) is a filter associate with a strongly admissible ideal I3 with the property (AP3).
Then there exists a set P ⊂N×N×N such that P ∈ F (I3) and the set P \ Pi is finite for all i.

Proof. Let A1 = N×N×N \ P1, Am = (N×N×N \ Pm) \ (A1 ∪A2 ∪ · · · ∪Am−1), (m = 2, 3, · · · ).

It is easy to see that Ai ∈ I3 for each i and Ai∪A j = ∅, when i , j. Then by (AP3) property of I3 we

conclude that there exists a countable family of sets {B1, B2, · · · } such that A j4B j ∈ I 0
3 , i.e., A j4B j

is included in finite union of rows and columns in N ×N ×N for each j and B =
⋃
∞

j=1 B j ∈ I3.

Put P = N×N×N \ B. It is clear that P ∈ F (I3).

Now we prove that the set P \ Pi is finite for each i. Assume that there exists a j0 ∈N such that

P \ P j0 has infinitely many elements. Since each A j4B j ( j = 1, 2, 3, · · · , j0) are included in finite

union of rows and columns, there exists m0, n0, k0 ∈N such that
j0⋃

j=1

B j

∩Cm0n0k0 =


j0⋃

j=1

A j

∩Cm0n0k0 (2.1)

where Cm0n0k0 =
{
(m, n, k) : m ≥ m0, n ≥ n0, k ≥ k0

}
. If m ≥ m0, n ≥ n0, k ≥ k0 and (m, n, k) < B, then

(m, n, k) <
⋃ j0

j=1 B j and so by (2.1), (m, n, k) <
⋃ j0

j=1 A j.

Since A j0 =
(
N×N×N \ P j0

)
\
⋃ j0

j=1 A j and (m, , n, k) < A j0 , (m, n, k) <
⋃ j0

j=1 A j we have (m, n, k) ∈
P j0 for m ≥ m0, n ≥ n0 and k ≥ k0. Therefore, for all m ≥ m0, n ≥ n0 and k ≥ k0 we get (m, n, k) ∈ P
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and (m, n, k) ∈ P j0 . This shows that the set P \ P j0 has a finite number of elements. This contradicts

our assumption that the set P \ P j0 is an infinite set. �

Theorem 2.13. Let (X,ψ, ∗) be a random metric space and I3 ⊂ 2N×N×N be a strongly admissible ideal
with property (AP3). Then the concepts I

ψ
W3

-triple Cauchy sequence and I
∗,ψ

W3
-triple Cauchy sequence

coincide.

Proof. If {℘mnk} is I
∗,ψ

3 -triple Cauchy sequence of sets, then it is I
ψ

W3
-triple Cauchy sequence by

Theorem 2.9 (even if I3 does not have the (AP3) property).

So, we have to prove the converse. Let {℘mnk} be an I
ψ

W3
-triple Cauchy sequence of sets. Then by

definition, there exists an m0 = m0(λ), n0 = n0(λ), k = k0(λ) such that

A(λ) =
{
(m, n, k) ∈N×N×N : ψξ,℘mnk−℘m0n0k0

(ε) ≤ 1− λ
}
∈ I3

for every λ ∈ (0, 1), ε > 0 and for each ξ ∈ X.

Let Pi =
{
(m, n, k) ∈N×N×N : ψξ,℘mnk−℘risiti

(ε) > 1− 1
i

}
, i = 1, 2, · · · , where ri = m0

(
1
i

)
, si =

n0

(
1
i

)
, ti = k0

(
1
i

)
. It is clear that Pi ∈ F (I3) for i = 1, 2, · · · . Since I3 has the property (AP3), then

by Theorem 2.12 there exists a set P ⊂N×N×N such that P ∈ F (I3), and P \ Pi is finite for all i.
Now we prove that

lim
m,n,k,r,s,t→∞
(m,n,k),(r,s,t)∈P

ψξ,℘mnk−℘rst(ε) = 1.

To prove this, let ε > 0, λ ∈ (0, 1) and w ∈N such that
(
1− 1

w

)
∗

(
1− 1

w

)
> 1−λ. If (m, n, k), (r, s, t) ∈

P, then P \Pw is finite set, so there exists q = q(w) such that (m, n, k), (r, s, t) ∈ P for all m, n, k, r, s, t >
q(w). Therefore, ψξ,℘mnk−℘rwswtw

(ε/2) > 1 − 1
w and ψz,℘rst−℘rwswtw

(ε/2) > 1 − 1
w for all m, n, k, r, s, t >

q(w). Hence it follows that

ψz,℘mnk−℘rst(ε) ≥ ψz,℘mnk−℘rwswtw
(ε/2) ∗ψz,℘rst−℘rwswtw

(ε/2) >
(
1−

1
w

)
∗

(
1−

1
w

)
> 1− λ

for all m, n, k, r, s, t > q(w).

Thus, for any ε > 0, λ ∈ (0, 1) there exists q = q(w) such that m, n, k, r, s, t > q(w) and m, n, k, r, s, t ∈
P ∈ F (I3),

ψz,℘mnk−℘rst(ε) > 1− λ

for every ξ ∈ X. This shows that ℘mnk is an I
∗,ψ

W3
-triple Cauchy sequence in X. �

The relationships discovered in this section are depicted in the diagram below.

I
∗,ψ

W3
-convergent

Thm 2.4//

Cor2.11
��

I
ψ

W3
-convergent

Thm2.7
��

(AP3)

Thm2.5// I
∗,ψ

W3
-convergent

I
∗,ψ

W3
-Cauchy

Thm2.9 // I
ψ

W3
-Cauchy oo

(AP3)

Thm2.13 // I
∗,ψ

W3
-Cauchy

Diagram I
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3. Wijsman randomly I3-convergence of triple sequences

In this part, we present and investigate the concepts of randomly (I
ψ

W3
, I ψ

W)-convergence and

randomly (I
∗,ψ

W3
, I ∗,ψW )-convergence, as well as their relationships.

Theorem 3.1. Let (X,ψ, ∗) be a random metric space and let {℘mnk} be a triple sequence of sets. Then, for
each ξ ∈ X and t > 0,

lim
m,n,k→∞

ψξ,℘mnk(t) = ψξ,℘(t) implies I3 − lim
m,n,k→∞

ψξ,℘mnk(t) = ψξ,℘(t).

Proof. Suppose that limm,n,k→∞ ψξ,℘mnk(t) = ψξ,℘(t) for all t > 0. Then, for every ε > 0,λ ∈ (0, 1)

and each x ∈ X there exists n0 = n0(λ, x) ∈ N such that ψξ,℘mnk−℘(ε) > 1 − λ for all m, n, k > n0.

Hence, for each ξ ∈ X we have

K(λ) = {(m, n, k) ∈N×N×N : ψξ,℘mnk−℘(ε) ≤ 1− λ} ⊂M3 ∈ I3,

where

M3 = ({1, 2, · · · , n0} ×N×N)∪ (N× {1, 2, · · · , n0} ×N)∪ (N×N× {1, 2, · · · , n0})

and then, we have that K(λ) ∈ I3. �

Definition 3.2. Let (X,ψ, ∗) be a random metric space. A triple sequence {℘mnk} is said to be

Wijsman randomly convergent (Rψ(W3, W )-convergent) if it is convergent in Pringsheim’s sense

with respect to probabilistic metric ψ and fore each ξ ∈ X and t > 0 the limits limm→∞ ψξ,℘mnk(t) =
ψξ,℘(t), n, k ∈ N, limn→∞ ψξ,℘mnk(t) = ψξ,℘(t), m, k ∈ N and limk→∞ ψξ,℘mnk(t) = ψξ,℘(t), m, n ∈ N

exist .

We can see that if {℘mnk} is Wijsman randomly convergent to H, the limits

lim
m→∞

lim
n→∞

lim
k→∞

ψξ,℘mnk(t) = ψξ,℘(t)

lim
m→∞

lim
k→∞

lim
n→∞

ψξ,℘mnk(t) = ψξ,℘(t)

lim
n→∞

lim
m→∞

lim
k→∞

ψξ,℘mnk(t) = ψξ,℘(t)

lim
n→∞

lim
k→∞

lim
m→∞

ψξ,℘mnk(t) = ψξ,℘(t)

lim
k→∞

lim
m→∞

lim
n→∞

ψξ,℘mnk(t) = ψξ,℘(t)

lim
k→∞

lim
n→∞

lim
m→∞

ψξ,℘mnk(t) = ψξ,℘(t)

exist for all t > 0. In this case we write Rψ(W3, W )-limm,n,k→∞ ψξ,℘mnk(t) = ψξ,℘(t) or℘mnk
Rψ(W3,W )
−−−−−−−−→

H.

Definition 3.3. Let (X,ψ, ∗) be a random metric space. A triple sequence {℘mnk} is said to be ran-

domly (I
ψ

W3
, I ψ

W)-convergent (Rψ(I
ψ

W3
, I ψ

W)-convergent) if it is I
ψ

W3
-convergent in Pringsheim’s
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sense with respect to probabilistic metric ψ and for every ε > 0, λ ∈ (0, 1) and each ξ ∈ X, the

following hold:{
k ∈N : ψξ,℘mnk−An(ε) ≤ 1− λ

}
∈ I , for some An ∈ X and each n ∈N,{

n ∈N : ψξ,℘mnk−Bm(ε) ≤ 1− λ
}
∈ I , for some Bm ∈ X and each m ∈N,{

m ∈N : ψξ,℘mnk−Ck(ε) ≤ 1− λ
}
∈ I , for some Ck ∈ X and each k ∈N.

If {℘mnk} is Rψ(I
ψ

W3
, I ψ

W)-convergent to H, then we write Rψ(I
ψ

W3
, I ψ

W)-limm,n,k→∞ ψξ,℘mnk(t) =

ψξ,℘(t) or ℘mnk

Rψ(I
ψ

W3
,I ψ

W)

−−−−−−−−−−→ ℘.

Theorem 3.4. Let (X,ψ, ∗) be a random metric space. If a triple sequence {℘mnk} is Rψ(W3, W )-convergent,
then {℘mnk} is Rψ(I

ψ
W3

, I ψ
W)-convergent.

Proof. Let {℘mnk} be Rψ(W3, W )-convergent to ℘. Then, {℘mnk} is convergent to H in Pringsheim’s

sense with respect to probabilistic metric ψ and for each ξ ∈ X the limits limm→∞ ψξ,℘mnk(t) =

ψξ,℘(t), n, k ∈ N, limn→∞ ψξ,℘mnk(t) = ψξ,℘(t), m, k ∈ N and limk→∞ ψξ,℘mnk(t) = ψξ,℘(t), m, n ∈ N

exist. By the Theorem 3.1, we get that {℘mnk} is I
ψ

W3
-convergent. Besides, for each ε > 0,λ ∈ (0, 1)

and each ξ ∈ X, there exist m = m0(λ, x), n = n0(λ, x), k = k0(λ, x) such thatψξ,℘mnk−℘(ε) > 1−λ for

each m, n ∈N and k > k0, ψξ,℘mnk−℘(ε) > 1−λ for each n, k ∈N and m > m0 andψξ,℘mnk−℘(ε) > 1−λ

for each m, k ∈ N and n > n0. Now, since I is an admissible ideal, for every ε > 0,λ ∈ (0, 1) and

each ξ ∈ X we have {n ∈ N : ψξ,℘mnk−℘(ε) ≤ 1 − λ} ⊂ {1, 2, · · · , n0} ∈ I , {m ∈ N : ψξ,℘mnk−℘(ε) ≤

1− λ} ⊂ {1, 2, · · · , m0} ∈ I and {k ∈N : ψξ,℘mnk−℘(ε) ≤ 1− λ} ⊂ {1, 2, · · · , k0} ∈ I . Therefore, {℘mnk}

is Rψ(I
ψ

W3
, I ψ

W)-convergent. �

Definition 3.5. Let (X,ψ, ∗) be a random metric space. A triple sequence {℘mnk} is said to

be randomly (I
∗,ψ

W3
, I ∗,ψW )-convergent (Rψ(I

∗,ψ
W3

, I ∗,ψW )-convergent) if there exist the sets A ∈
F (I3), A1, A2, A3 ∈ F (I ) (i.e., N×N×N \A ∈ I3, N \Ai ∈ I , i = 1, 2, 3) limm,n,k→∞ ψξ,℘mnk(t),
where m, n, k ∈ A, limm→∞ ψξ,℘mnk(t), where m ∈ A1, limn→∞ ψξ,℘mnk(t), where n ∈ A2 and

limk→∞ ψξ,℘mnk(t), where k ∈ A3 exist for fixed m ∈N, n ∈N and k ∈N, respectively.

If Rψ(I
∗,ψ

W3
, I ∗,ψW )-convergent to H, then for each ξ ∈ X the limits

lim
m→∞

lim
n→∞

lim
k→∞

ψξ,℘mnk(t) = ψξ,℘(t)

lim
m→∞

lim
k→∞

lim
n→∞

ψξ,℘mnk(t) = ψξ,℘(t)

lim
n→∞

lim
m→∞

lim
k→∞

ψξ,℘mnk(t) = ψξ,℘(t)

lim
n→∞

lim
k→∞

lim
m→∞

ψξ,℘mnk(t) = ψξ,℘(t)

lim
k→∞

lim
m→∞

lim
n→∞

ψξ,℘mnk(t) = ψξ,℘(t)

lim
k→∞

lim
n→∞

lim
m→∞

ψξ,℘mnk(t) = ψξ,℘(t)
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exist for all t > 0 and are equal to H. In this case, we write Rψ(I
∗,ψ

W3
, I ∗,ψW )-limm,n,k→∞ ψξ,℘mnk(t) =

ψξ,℘(t) for all t > 0 or ℘mnk

Rψ(I
∗,ψ

W3
,I ∗,ψW )

−−−−−−−−−−−→ H.

Theorem 3.6. Let (X,ψ, ∗) be a random metric space. If a triple sequence {℘mnk} is Rψ(I
∗,ψ

W3
, I ∗,ψW )-

convergent, then {℘mnk} is Rψ(I
ψ

W3
, I ψ

W)-convergent.

Proof. Suppose that {℘mnk} is Rψ(I
∗,ψ

W3
, I ∗,ψW )-convergent. Then, it is I

∗,ψ
W3

-convergent and it follows

then by Theorem 2.4 that {℘mnk} is I
ψ

W3
-convergent. In addition, there exist A1, A2, A3 ∈ F (I )

such that for every ε > 0,λ ∈ (0, 1) and each ξ ∈ X, there exists k0 ∈ N such that for all k ≥ k0,

k ∈ A1 ψξ,℘mnk−Bm(ε) > 1 − λ for some Bm ∈ X and each m ∈ N, also there exists m0 ∈ N such

that for all m ≥ m0, m ∈ A2, ψ℘x,mnk−C j(ε) > 1 − λ for some C j ∈ X for all j ∈ N, moreover, there

exists n0 ∈ N such that for all n ≥ n0, n ∈ A3, ψξ,℘mnk−Dn(ε) > 1− λ for some Dn ∈ X for all n ∈ N.

Consequently, for every ε > 0,λ ∈ (0, 1) and each ξ ∈ X, we have

Q(λ) = {m ∈N : ψξ,℘mnk−Bm(ε) > 1− λ} ⊂W1 ∪ {1, 2, · · · , m0 − 1}(n, k ∈N)

S(λ) = {n ∈N : ψξ,℘mnk−Cn(ε) > 1− λ} ⊂W2 ∪ {1, 2, · · · , n0 − 1}(m, k ∈N)

V(λ) = {k ∈N : ψξ,℘mnk−Dk(ε) > 1− λ} ⊂W3 ∪ {1, 2, · · · , k0 − 1}(n, m ∈N)

for W1, W2, W3 ∈ I . Since I is an admissible ideal, we W1 ∪ {1, 2, · · · , m0 − 1} ∈ I , W2 ∪

{1, 2, · · · , n0 − 1} ∈ I and W3 ∪ {1, 2, · · · , k0 − 1} ∈ I . Hence, we get Q(λ) ∈ I , S(λ) ∈ I and

V(λ) ∈ I Consequently, this proves that {℘mnk} is Rψ(I
ψ

W3
, I ψ

W)-convergent. �

Theorem 3.7. Let (X,ψ, ∗) be a random metric space. Let I ⊂ 2N be an admissible ideal with the property
(AP) and I3 ⊂ 2N×N×N be a strongly admissible ideal with the property (AP3). If a triple sequence {℘mnk}

is Rψ(I
ψ

W3
, I ψ

W)-convergent, then {℘mnk} is Rψ(I
∗,ψ

W3
, I ∗,ψW )-convergent.

Proof. Let {℘mnk} be Rψ(I
ψ

W3
, I ψ

W)-convergent. Then {℘mnk} is I
ψ

W3
-convergent and hence it follows

by Theorem 2.5 that, {℘mnk} is I
∗,ψ

W3
-convergent. Besides, for each ε > 0,λ ∈ (0, 1) and each ξ ∈ X

we have

Q(λ) = {k ∈N : ψξ,℘mnk−Bm(ε) > 1− λ} ∈ I , for some Bm ∈ X and each m ∈N,

S(λ) = {m ∈N : ψξ,℘mnk−Cn(ε) > 1− λ} ∈ I , for some Cn ∈ X and each n ∈N,

V(λ) = {n ∈N : ψξ,℘mnk−Dk(ε) > 1− λ} ∈ I , for some Dk ∈ X and each k ∈N.

Now, for each ξ ∈ X take E1 = {n, k ∈ N : ψξ,℘mnk−Bm(ε) ≤ 1} and E j = {k ∈ N : 1 − 1
j ≤

ψξ,℘mnk−Bm(ε) ≤ 1 − 1
j+1 } for some Bm ∈ X and for each m ∈ N. Clearly, El ∩ Ei = ∅ for l , i and

E j ∈ I for each j ∈ N. By the property (AP), there is a countable family of sets P1, P2, · · · in I

such that P j4E j is a finite set for each j ∈ N and P =
⋃

j∈N P j ∈ I . We will show that for some

Bm ∈ X and each m ∈ N, limk→∞ ψξ,℘mnk(t) = ψx,Bm(t), where k ∈ A, for some A = N \ P ∈ F (I )

for each t > 0 and each ξ ∈ X. To do this, Let η ∈ (0, 1). Take i ∈ N such that η > 1
i . Then,
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for each ξ ∈ X we have {n, k ∈ N : ψξ,℘mnk−Bm(t) ≤ 1 − η} ⊂
⋃i−1

r=1 Er for some Bm ∈ X and each

m ∈ N. Since each Er4Pr is a finite set for r ∈ {1, 2, · · · , i − 1}, there exists s0 ∈ N such that⋃i−1
r=1 Pr ∩ {s ∈ N : s ≥ s0} =

⋃i−1
r=1 Er ∩ {s ∈ N : s ≥ s0}. If s ≥ s0 and s < P, then s <

⋃i−1
r=1 Pr and

s <
⋃i−1

r=1 Er. Therefore, for each t > 0, η ∈ (0, 1) and each ξ ∈ X we haveψξ,℘mnk−Bm(ε) > 1− 1
i > 1−η

for some Bm ∈ X and each m ∈ N. This implies that limk→∞ ψξ,℘mnk(t) = ψx,Bm(t) for some k ∈ A.

Hence, for each ξ ∈ X we have I
∗,ψ

W -limk→∞ ψξ,℘mnk(t) = ψx,Bm(t) for some Bm ∈ X and each m ∈N.

By the similar argument, we have the same results for the sets S(λ) and V(λ). Hence, {℘mnk} is

Rψ(I
∗,ψ

W3
, I ∗,ψW )-convergent. �

The diagram below depicts the relationships discovered in this section.

Rψ(I
ψ

W3
, I ψ

W)-convergent oo
Thm3.4

Rψ(W3, W )-convergent

Rψ(I
∗,ψ

W3
, I ∗,ψW )-convergent

Thm3.6

OO

oo
(AP3)

Thm3.7
Rψ(I

ψ
W3

, I ψ
W)-convergent

Diagram II

4. Conclusion

Wijsman I
ψ

3 -Convergence for triple sequences and Wijsman randomly I
ψ

3 -Convergence for

triple sequences (see Diagrams I and II) have been defined and examined in this study. Fur-

thermore, some intriguing outcomes and relationships between these notions were demonstrated.

Future work will provide definitions of Rψ(I
ψ

W3
, I ψ

W)-Cauchy and Rψ(I
∗,ψ

W3
, I ∗,ψW )-Cauchy and

then investigate some relationships with the ideas discussed in this paper. On the other hand,

these ideas can be applied to the lacunary sequence.
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