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Abstract. Many authors have extended the concept of convergence from number sequences to sequences of sets. In this
paper, we focus on two notable adaptations: Wijsman convergence and randomly ideal convergence. We introduce and

.og¥ 4 7Y
analyze several new types of convergence for sequences of sets: S, -convergence, .f,.“-convergence, .7, -Cauchy,

f;\’ff—CauChy, (ﬂxg, Jx)—convergence, and (J;\’/g}, J;\}lp)—convergence. These new concepts expand the framework of
convergence and provide a deeper understanding of the behavior of set sequences under various conditions. Through
rigorous analysis, we demonstrate the relationships between these new forms of convergence and their classical counter-
parts, highlighting their theoretical significance and potential applications in mathematical analysis and related fields.
Our findings offer a comprehensive exploration of these advanced convergence concepts, paving the way for further

research and development in this area.

1. INTRODUCTION

Fast [11] and Steinhaus [26] independently introduced the concept of statistical convergence
for sequences of real numbers in the same year 1951, and since then several generalizations and
applications of this notion have been investigated by various authors, including [1-4,6,19,20,22,25].
One of its interesting generalizations is .# -convergence, which was provided by Kostyrko et al. [14].
Balcerzak et al. [3] recently researched .#-convergence for function sequences. The concept of
statistical convergence has applications in many fields of mathematics, including number theory by
Erdos and Tenenbaum [8], statistics and probability theory by Fridy and Khan [13] and Ghosal [10],
approximation theory by Gadjiev and Orhan [9], Hopfield neural network by Martinez et al. [21],
and optimization by Pehlivan and Mamedov [24].
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Some authors have expanded the concept of convergence of point sequences to convergence of
set sequences. The idea of Wijsman convergence in [35,36] is one of these expansions discussed in
this study. Nuray and Rhoades proposed statistical convergence definitions for set sequences in
[22]. Ulusu and Nuray [33,34] investigated the concept of Wijsman lacunary statistical convergence
of set sequences. Nuray et al. [23] investigated the relationship between the concepts of Wijsman
Cesédro summability and Wijsman lacunary convergence of double sequences of sets. This notion
is used in a variety of ways in [7,29-32]. Kisi and Nuray [17] proposed a new convergence
notion for set sequences termed Wijsman .#-convergence. Dundar and Pancaroglu [7] recently
extended this approach to Wijsman regularly ideal convergence of double sequences of sets. In [5],
The authors expanded those concepts to triple sequences of sets and studied some relationship
between them. We present the ideas of Wijsman convergence and Randomly ideal convergence for
triple set sequences in this paper. In addition, we study some of these ideas’ features and examine
their relationship.

The paper is organized as follows: In section 2, we present and investigate the notions of .y, -
convergence, .#y, -convergence, .#;-Cauchy, and .7, -Cauchy, and build a diagram to explain the
relationships between them. Part four investigates and demonstrates the concepts of randomly
(f;f,a, fvlf;)—convergence and randomly (f;’,f, ﬂ;\}LP)—convergence.

Throughout of this paper, %3 ¢ 2NXNXN denotes a strongly admissible ideal, and (X, 1, *)
denotes a Menger probabilistic metric space and @, ¢, are any non-empty closed subsets of X.
Furthermore, IN and R denote the set of all positive integers and the set of all real numbers,
respectively. Next, we recall some definitions and notions which are useful for the development

of this paper.

Definition 1.1. [27] A binary operation * : [0,1] x [0,1] — [0,1] is said to be a continuous f-norm
if ([0,1],#) is a topological monoid with unit 1 such that x; * k» < k3 * k4 whenever k1 < k3, k2 < k4

for all x1, 12, k3, k4 € [0, 1].

Let 2 denote the set of all distribution functions and 2% = {¢ : ¢ € Z,¢(t) = 0 forall t < 0}.
Let 7, be the specific distribution function defined by

1, ift>a;
Ta(t) :{

0, ift<a.

Definition 1.2. [27] A function ¢ : R — R is called a distribution function if it is non-decreasing

and left-continuous with infer ¢(t) = 0 and sup, g (f) = 1.

Definition 1.3. [15] A Menger probabilistic metric space (or random metric spaces) is a triple
(X, 1, *), where X is a nonempty set, * is a continuous t-norm, and ¢ is a mapping from X X X into
27 such that, if ¢ ¢ denotes the value of ¢ at a point (&, C) € X x X, the following conditions hold:
forall§,C,neX,

(PM1) ec(t) = to(t) forall t > 0if and only if & =
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(PMZ) ¢5,C(t) = lPC,E(t) forallt > 0;
(PM3) thec(t+5s) = hgy(t) * Py c(s) forallt,s >0and &,(,n € X.

Definition 1.4. [27] Let (X, ¢, *) be a random metric space and H be a non-empty subset of X.
Then for any & € X, we define the distance from ¢ to p by
Yep(t) = suppec(t) fort > 0.
Cep
Definition 1.5. [5] A non trivial ideal .#3 of IN X N X N is said to be strongly admissible if
{i} x N xIN, N x {i} x N and IN X N X {i} belong to .#; for each i € IN. It is clear that a strongly

admissible ideal is an admissible ideal.

If 7 = {ACNXNxN: (Im(A) e N) (i, j,k=m(A)) = (i,j,k) ¢ A}. Then, .77 is a non-
trivial strongly admissible ideal and we can see that .73 is a strongly admissible ideal if and only
if 77 C 7.

Definition 1.6. [5] An admissible ideal .3 C IN X IN X IN satisfies the property (AP3) if for every
countable family of mutually disjoint sets {p1, 92, - - } belong to .73, there exits a countable family
of sets {01, Uy, - -} such that p;AU; € #; is included in the finite union of rows and columns in
IN X IN XN for each j € N and G = U}il U; € %5, consequently U; € .73 for each j € IN.

Remark 1.7. Note that if .7 is the ideal %, then .#-convergence coincides with the usual conver-
gence and if we take .3 = {A CIN XIN XN : 63(A) = 0} then .;-convergence becomes statistical

convergence.

2. WIJSMAN .#3-CONVERGENCE OF TRIPLE SEQUENCES

In this part, we present and investigate the concepts of #;-convergence, .7, -convergence,

#w,-Cauchy, and .7, -Cauchy, as well as their relationships.

Definition 2.1. Let (X, ¢, *) be a random metric spaces. A triple sequence of sets {©;x} is Wijsman

convergent to  with respect to probabilistic metric ¢ if for each £ € X,

im g, (1) = Pgo(t) forallt > 0.

m,n,k— o0
or equivalently,
lim ¢e, —o(t) =1forallt>0.

m,n,k— oo

In this case, we write {-limy,; , k—co Pmnk = -

Definition 2.2. Let (X, ¢, *) be a probabilistic metric space. A triple sequence of sets {@,x} is
Sw,-convergent to ¢ if for every ¢ >0, A € (0,1) and each £ € X,

{(m,n,k) ENXNXIN: s,  —o(e) <1- /\} € .

In this case, we write J%S -limy, ko Pmnk = §-
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Definition 2.3. Let (X, ¢,*) be a random metric space. A triple sequence of sets {©,x} is j;v{
convergent to g if there exits a set @3 € .#(.#3), this means B = IN XIN XN \ @4 € .%3 such that
Y-limy, , k @mnk = 9 and (m, n, k) € <. In this case we write J;&f—lim Pk = 9-

Theorem 2.4. Let (X, 1), *) be a random metric space. If a triple sequence of sets {©y,x} is f;\}lf—convergent,

St
then it is .#,, -convergent.

Proof. Suppose that f;\}f-limm,mk ©unk = 9. Then there exists a set @3 € .7 (#3) (i.e. N XIN XN \
/3 = B € #3) such that for each & € X, -limy, ,, x 9k = 9 and (m, n,k) € o3. Lete > 0,41 € (0,1),
then there exists 19 € IN such that for each & € X, ¢, .—o(e) > 1= A for all (m,n,k) € o4 and
m,n,k > ng. Then, for each ¢ > 0,1 € (0,1), and x € X, we have that

E(A,x) = {(mnk)e NXNXN:¢e, _o(e)<1-A}cBU(a4NK), where
K = ({1,2,-+- ,np—1}x NxN)U (N x{1,2,--- ,ng—1} x N)U (INx N x {1,2,--- ,n9—1}).

Since p U (o5 NK) € 73, we get E(A, x) € .43 and consequently, ,ﬂvlis-limm,nlk Ok = - [

Theorem 2.5. Let (X, ,*) be a random metric space. If the ideal .73 has the property (AP3), then
ﬂ#&f}—convergent implies ﬂ;\’,;p—convergence of triple sequences of sets.

Proof. Suppose that .#3 possesses property (AP3). Now, let fvlis-limm,nlk ©mnk = 9. Then, for each
e>0,Ae(0,1)and £ € X,

E(A,x) =Ex = {(mnk) e NXNXN:tps, _o(e)<1-A}e 7. Take
Eir = {(mnk)e NxINXIN:vg, _—o(e)<1}and

1 1
E,=E(n,x)={(mmnk) e NXxNxN:1- - <Yepu—pl€) <1-— n—}

forn > 2and n € IN. Itis clear that E;NE; = 1—-Afori # k and E; € .%3 for each i € IN. By the
property (AP3) there exits a sequence of sets {Ux}ren such that ExAUy is included in finite union of
rows and columns in IN X IN X IN for each k and G = |J;__; Ux € 3. Now, we shall prove that for
a3 = N xXIN XN \ G we have ¢-lim, , x 9k = @, where (m,n,k) € <.

Letn € (0,1), & > 0 be given. Take n € IN such that % < 1. Then

k
{(m,n,k) e NXNXN: g, o(e) <1-n) | JEs.
n=1

Since E; AU, k = 1,2, -+ areincluded in finite union of rows and columns, there exists 19 € IN such

that
k

k
(U Ek]m{(m,n,k) cm > ng,n>ng Ak >ngl = [U Uk]ﬂ{(m,n,k) tm = ng,n = ng Ak = ngl.
n=1 n=1

If m,n,k > ng and (m,n,k) ¢ G, then (m,n, k) ¢ Uﬁzl Uk and (m,n, k) ¢ Uﬁzl Ei. This implies that
Ve, —o(t) >1— % > 1 —1. Therefore, f;\}f-hmmln,k Omnk = ©- n
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Definition 2.6. Let (X, ¢, *) be a random metric space. A triple sequence of sets {Q;x} is /%3-
Cauchy if for every ¢ > 0,A € (0,1) and each & € X, there exits p = p(A),g = q(A) and r = r(A) in
N such that

{(mn,k) e NXINXN: e, () ST=A} € .55

Theorem 2.7. Let (X, y, *) be a random metric space. If a triple sequence of sets {Q k) is fvlés—convergent,
!
then it is .#,, -Cauchy.

Proof. Suppose that fvlés—limm,n,k ©mnk = ¢- Then, for each ¢ > 0,4 € (0,1), and each & € X, we

have
G(x,A) ={(m,nk) e NXNXN: e, () <1-A}e A
This implies that
G(x,A) ={(m,nk) e NXINXIN: s, _o(e)>1-A} ¢ 7.
Choose 1 € (0,1) such that (1-1n)*(1-1n) > 1—A. Since .#;3 is a strongly admissible ideal, then
for all p,q,r € N such that (p,q,7) € G°(x, A),
¢5:Wmnk‘¥’pqr (26) 2 ¢ér&9rnnk_p(€) * Illjg);vqr_ﬁ)/x(‘g) > (1 - n) * (1 - T]) >1-A

Hence
{(n,mk) e NXxINxIN : V&= par (2¢) <1-Ale A

and so {©,uk} is ]Vlf;g-Cauchy. [ |

Definition 2.8. Let (X, ¢, *) be a random metric space. A triple sequence of sets {¢,,} is f;\’,lf-
Cauchy if there exits a set <3 € .%(.%3), this means that B = IN X IN x N \ @ € .3 such that for
each & € X and (m,n,k), (p,q,7) € @A, limy, , kp 0 r l,bglgomnk_ppqr(t) =1forallt>0.

Theorem 2.9. Let (X, y,*) be a random metric space. If a triple sequence of sets . is f;\}f-Cauchy,
then it is JVL\P, -Cauchy.
3

Proof. Let 9 be J;\’,f—Cauchy triple sequence, then by the definition, there exist a set <73 € .7 (.#3)
(ie, N xINXIN\ @4 € .#3) such that for each ¢ > 0,4 € (0,1) and for each & € X, Ys ¢, ~9, (€) >
1-A for all (m,n,k),(p,q,v) € o5, mnk,p,q,r >N = N(x,A) and N € IN. Then, for each
¢>0,A€(0,1) and for each £ € X, we have

G(A,x) ={(m,n k) e NxN XN : gbgrﬁonmk_ppqr(e) <1-A}cBU(wsNTs),
where

Ts = ({1,2,--- , N=1}xNxN)U (INx{1,2,--- , N=1} x N)U (NxINx{1,2,--- ,N—1}).

Since BU (3N T3) € %3, 50 we have G(A, x) € #3. Therefore, @,k is fxe'—Cauchy triple sequence.
| ]
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Theorem 2.10. Let (X, , *) be a random metric space. If a triple sequence of sets . is ,ﬂ;}f—convergent,
then it is Sw,-Cauchy.

Proof. Let J;\};P-limmlnlk ©mnk = ¢- So there exists a set @3 € F (.%3) (i.e., B=INXINXIN\ .o € .%43)
such that for each & € X, we have

Y- im @ = .
m,n,k— o0
(m,nk)edts
Let A € (0,1),¢ > 0 be given. Then there exists 19 € N such that foreach & € X, ¢, —o(e) >1-A

for all (m,n, k) € o3 and m,n, k > ng. Choose 1 € (0,1) such that (1-7)*(1-n) >1—-A. Then

2 —— (26) =Yg p,,4-0(€) * ‘Pé,sopqr—p(g) >(1-n)=*(1-n7)>1-A

Therefore, for each & € X and (m,n,k), (p,q,r) € o5, we have

lim wé/fpmnk_i{’pqr (8) =1
m,nk,p,q,r— 00

This implies that @,k is f;\’;f-Cauchy triple sequence and by the Theorem 2.9, @« is J&-Cauchy
triple sequence. [

From the proof of Theorem 2.10, we have

Corollary 2.11. Let (X, 1, *) bearandom metric space. Ifa triple sequence of sets {9k} is f;\}f-convergent,
then it is J;\’If—Cauchy.

Theorem 2.12. Let {P;}ieN be a countable collection of subsets of IN X IN X IN such that {Pj}ien € % (-93)
for each i, where .F (.93) is a filter associate with a strongly admissible ideal .95 with the property (AP3).
Then there exists a set P € IN X N X IN such that P € . (.%3) and the set P \ P; is finite for all i.

Proof. Let @4 = NXIN XN\ Py, & = (NXNXIN\Py)\ (A UAHAU---Udyyq), (m=2,3,--).
Itis easy to see that </ € .3 for eachiand U &/; = 0, wheni # j. Then by (AP3) property of .73 we
conclude that there exists a countable family of sets {By, By, - - - } such that «/;AB; € .7, 0 ie., A;AB;
is included in finite union of rows and columns in IN X IN X IN for each jand B = U‘;’;l B € 7.
Put P = IN X IN X IN \ B. It is clear that P € .Z (.%3).

Now we prove that the set P\ P; is finite for each i. Assume that there exists a jo € IN such that
P\ Pj, has infinitely many elements. Since each «/;AB; (j = 1,2,3,---,jo) are included in finite

union of rows and columns, there exists myg, 1, kg € IN such that

Jo Jo
[U B]] N Cmo"oko = (U JZ{]J N Cmol’loko (2.1)

j=1 j=1
where Cpypok, = {(m,1,k) 1 m > mo,n > ng, k> ko}. If m > mg,n > ng,k > ko and (m,n,k) ¢ B, then
(m,n,k) ¢ U;f;l B; and so by (2.1), ‘(m, n,k) ¢ U;‘;l . |
Since 7}, = (IN xINxIN\ P]-O) \ U;‘O:1 of;and (m,,n,k) ¢ <, (m,n,k) ¢ U;L o/;wehave (m,n,k) €
Pj, for m > mo,n > ng and k > ko. Therefore, for all m > mo,n > ng and k > ko we get (m,n,k) € P
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and (m,n, k) € P jo- This shows that the set P\ P io has a finite number of elements. This contradicts
our assumption that the set P\ P} is an infinite set. [

Theorem 2.13. Let (X, 1, *) be a random metric space and %5 C 2N*N*N pe g strongly admissible ideal
with property (AP3). Then the concepts fvl’f;s—triple Cauchy sequence and J;\};’D—triple Cauchy sequence

coincide.

Proof. If {@ynk} is f; ’IP-triple Cauchy sequence of sets, then it is fvla—triple Cauchy sequence by
Theorem 2.9 (even if .3 does not have the (AP3) property).
So, we have to prove the converse. Let {¢,x} be an fvt-triple Cauchy sequence of sets. Then by

definition, there exists an my = mg(A),ng = ng(A), k = ko(A) such that
AA) = {(m,n, k) e NXN XN : e, 9,00 (6) 1= A} € .55

for every A € (0,1),¢ > 0 and for each & € X.

Let P; = {(m,n,k) ENXNXN: g 0., () >1- %}, i =12, where r;, = my (%),si =
Mo (%) = ko (%) It is clear that P; € .7 (.%3) fori = 1,2, - - -. Since .#3 has the property (AP3), then
by Theorem 2.12 there exists a set P € IN X IN X IN such that P € .%(I3), and P \ P; is finite for all i.

Now we prove that

h-m llbér@mnk_&orst(g) =1

m,n,k,r,s,t— o0
(m,nk),(rs,t)eP

To prove this, lete > 0,1 € (0,1) and w € ]Nsuchthat(l— %) ( - %) >1-AIf (m,n,k),(r,s,t) €
P, then P\ Py, is finite set, so there exists g = q( ) such that (m,n, k), (r,s ) € Pforallm,n,k,r,s,t>
q(w). Therefore, Yep, .~ (¢/2) >1-Land ¢, . . (¢/2) -1 forall m,n,k,r,s,t >
g(w). Hence it follows that

1 1
lpzr@rnnk_wrst(g) Z llbzr%)mnk_@rwswtw (8/2) * llbzzﬁ)rst_prwswtw (8/2) > (1 - 5) * (1 - E) > 1 - A

for all m,n, k,r,s,t > g(w).
Thus, for any ¢ > 0, A € (0,1) there exists g = q(w) such that m,n,k,r,s,t > q(w) and m, n,k,r,s,t €
F(A),

IPZernk_Wrst (8) >1-A

for every & € X. This shows that @, is an J;\}f-triple Cauchy sequence in X. [

The relationships discovered in this section are depicted in the diagram below.

* Thm 2.4 Thm2.5
S ’w-convergent — Iy v ,-convergent —— B -convergent
e (AP3)

l Cor2.11 l/ Thm2.7

Thm2.9 Thm2.13
%

f;v;’b -Cauchy JVI’[\;B -Cauchy 54 11b-Cauchy

Diagram I
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3. WIJSMAN RANDOMLY .#3-CONVERGENCE OF TRIPLE SEQUENCES
In this part, we present and investigate the concepts of randomly (,ﬂxh, ,ﬂvl‘\b,)-convergence and

randomly (,ﬂ;\}f, ﬂ;\}lp)-convergence, as well as their relationships.

Theorem 3.1. Let (X, 1), *) be a random metric space and let {Q,,x} be a triple sequence of sets. Then, for
each& € Xandt >0,

llm llbér@mnk (t) = lzbé,W(t) Zmplles jB - m ]!llll’r—]-)oo Ilbgz&/)mnk(t> = lzbéz&’)(t)

m,n,k— oo

Proof. Suppose that lim,,; , k—e0 Y, (f) = Yep(t) for all £ > 0. Then, for every ¢ > 0,A € (0,1)
and each x € X there exists g = ng(A,x) € N such that ¢z, _o(e) > 1—A for all m,n,k > ng.

Hence, for each & € X we have
K(A) ={(m,nk) e NXxINXIN : ¢g  _o(e) <1-A} CMse g,
where
Ms;=({1,2,++ ,no} x NXxIN)U (N x{1,2,--- ,np} x N) U (N XN x{1,2,--- ,n9})
and then, we have that K(A) € .7;. [ ]

Definition 3.2. Let (X,1,*) be a random metric space. A triple sequence {@,,} is said to be
Wijsman randomly convergent (Z¥ (#4, # )-convergent) if it is convergent in Pringsheim’s sense
with respect to probabilistic metric ¢ and fore each & € X and ¢ > 0 the limits limy 0 Y5, (£) =
Yep(t),nk € N, imyse e, (1) = Pep(t),mk € N and imie ep,,, (f) = Pep(t), mn € N
exist .

We can see that if {,,,x} is Wijsman randomly convergent to H, the limits

i, i i Ve () = Wew(t)
Jim kh_)leo ]}H{{}o Ve () = VPep(t)
Jim fim, Bon Yo () = o)
lim lim Hm gep,, () = ¢ep(t)
lim lim Lim c0,,,(1) = geo(t
lim lim lim ¢g, (1) = tgo(t)

kk— 00 N—00 M—00

exist for all t > 0. In this case we write ZY (#5, # )-litty, 1 k00 V0,5 (1) = Yo (t) OF Py ————
H.

Definition 3.3. Let (X, 1, *) be a random metric space. A triple sequence {,,,} is said to be ran-

domly (ﬂ;’\z, f‘f/)-convergent (%Y (fvlf;S, J%)-Convergent) if itis f;@ -convergent in Pringsheim’s
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sense with respect to probabilistic metric i and for every ¢ > 0, A € (0,1) and each & € X, the
following hold:

{k eEN: gy —o(e) <1- A} € ., for some %, € X and eachn € IN,
{n eN: e —B,.(e) <1- /\} € .#, for some By, € X and each m € N,
{m eEN:¢ey —c(e)<1- /\} € .7, for some Cy € X and each k € N.

If {@n) is %’#’(,ﬂ;’\z, Jx,)—convergent to H, then we write %‘P(,ﬂ&, Jvlf,)-limmln,k_m Ve (t) =
R (S T)
¢5,p(t) OT ©mnk > .

Theorem 3.4. Let (X, 1), *) be arandom metric space. Ifa triple sequence (@i} is ZY (W5, W )-convergent,
then { Qi) is t%”l’(/vli, ﬂ;\/})—convergent.

Proof. Let {,ux} be #Y (#5, W )-convergent to 9. Then, {¢,x} is convergent to H in Pringsheim’s
sense with respect to probabilistic metric i and for each & € X the limits limy—e0 Yep,,, (f) =
Yep(t),nk € N, limyse g, (t) = Pep(t),mk € N and limi o e, (1) = Pep(t),mn € N
exist. By the Theorem 3.1, we get that {g,,x} is ﬂvlis—convergent. Besides, for each ¢ > 0,4 € (0,1)
and each £ € X, there existm = mg(A, x),n = no(A,x),k = ko(A,x) such that g, () >1—Afor
eachm,n € Nand k > ko, e .—o(e) >1—Aforeachn,k € Nandm >mpand s, —o(e) >1-A
for each m, k € IN and n > ny. Now, since .# is an admissible ideal, for every ¢ > 0,A € (0,1) and
eaché e Xwehave (n e N : ¢gy o(e) <1-A}C{l,2,---,no} € I, {meN: g, o)<
1-Ac{1,2,--- ,mpye Land (ke IN: ¢gy  —o(e) <1-A}C{1,2,--- ,ko} € .#. Therefore, {9}
is #Y (JV%,S, Jvli)—convergent. n

Definition 3.5. Let (X,1,*) be a random metric space. A triple sequence {g,,} is said to
be randomly (f;\}f,f;\}?)—convergent (%IP(J];\}f,f;\}w)—convergent) if there exist the sets A €
F (), o, ch, s € F(F) (e, NxNXN\A € 55, N\ . € .7,i =1,2,3) limy, o0 Pe . (£),
where m,n,k € A, limyc s, (t), Wwhere m € o, lim,c0Psgp, (), where n € @ and
limy e Vg0, (t), Where k € 73 exist for fixed m € IN,n € IN and k € IN, respectively.

If #% (f;\’,f, f;\}w)-convergent to H, then for each £ € X the limits

Jim,fim Jim V() = o)
Jim lim lim g, (8 = eot)
oo o, i Ve () = Wew(t)
nh_r}olo ]}Lf?o ’%E)r(}o Ve o (t) = VYep(t)
kh_}rg Jim Lim e g, (1) = Yep(t)
lim lim lim $g, () = Yeo(t)

k— 00 N—00 M—00



10 Int. ]. Anal. Appl. (2024), 22:154

exist for all # > 0 and are equal to H. In this case, we write ZY (f;\};/}, f;\}lp)-limmln,k_m Yeo, () =
B It I

Ve o(t) forall t > 0 or @y —— H.

Theorem 3.6. Let (X, y,*) be a random metric space. If a triple sequence {Q i} is %‘P(J;\}Z’, ,ﬂ;\’]w)-

convergent, then { i} is %‘P(fﬂ‘:’\z, J%)—convergent.

Proof. Suppose that {g,,,x} is Z#Y (ﬂ;\};/), ﬂ;\}w)-convergen’c. Then, itis f;\}f-convergent and it follows
then by Theorem 2.4 that {@;,} is fxa—convergent. In addition, there exist @4, 2%, o3 € F (7 )
such that for every ¢ > 0,1 € (0,1) and each & € X, there exists kg € IN such that for all k > ko,
ke gy —B,(e) >1—A for some By, € X and each m € N, also there exists my € IN such
that for all m > mg, m € a5, tpgownk_cj(s) > 1-A for some C; € X for all j € IN, moreover, there
exists 1y € IN such that for all n > ng, n € @4, Pe o —p,(€) >1—A for some D, € X for all n € IN.

Consequently, for every ¢ > 0,1 € (0,1) and each £ € X, we have
QA)={meN:¢g, —p,(e)>1-A}cW3U(1,2,--- ,my—1}(n,k € N)
SA)=meN:¢e, —c,(e)>1=A}CcWrU(1,2,--- ,n9—1}(m, k € N)
V(A) ={keN:¢sp, D (e) >1=A} CW3U(1,2,--- kg —1}(n,m € N)

for Wy, W, W3 € #. Since .# is an admissible ideal, we W7 U{1,2,--- ,mg—1} € ., W U
{1,2,--- ,np—1} € # and W3 U {1,2,--- ko — 1} € .#. Hence, we get Q(A) € .#,5(1) € .# and
V(A) € .# Consequently, this proves that {,,,} is %"P(,ﬂ&, Jvli)-convergent. |

Theorem 3.7. Let (X, ), *) be a random metric space. Let % C 2N be an admissible ideal with the property
(AP) and .73 c 2NXNXN pe g strongly admissible ideal with the property (AP3). If a triple sequence { )
is BY (fvlf,s, f%)—convergent, then { Qi) is #Y (ﬂ;\}f, f;\}w)—convergent.

Proof. Let {9} be ZY (fvlﬁs, ,ﬂx)-convergent. Then {¢,,,.c} is fv"\b,{convergent and hence it follows
by Theorem 2.5 that, {¢,x} is /;\’,;p-convergent. Besides, for each ¢ > 0,4 € (0,1) and each £ € X

we have
QA) ={keN:¢sy, .-p,(e) >1—-A} e .7, for some B, € X and each m € N,
S(A)={meN:¢¢y .—c,(e)>1-A}e .7, forsome C, € Xand eachn € N,
V(A)={neN:¢s, p(e)>1-A}€.#, for some Dy € X and each k € N.

Now, for each & € X take E; = {n,k € IN : g, g (¢) < 1} and E; = {k € N : 1—% <
Ve onm—Bn(€) < 1= j%l} for some B;, € X and for each m € IN. Clearly, E;NE; = 0 for [ # i and
E; € . for each j € N. By the property (AP), there is a countable family of sets Py, P,--- in .%
such that P;AE; is a finite set for each j € N and P = (Jjen Pj € /. We will show that for some
B, € X and each m € IN, limy_, 5, (f) = Yy, (t), where k € A, forsome A =N\ P € Z(.5)
for each t > 0 and each & € X. To do this, Let n € (0,1). Take i € N such that > 1. Then,
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for each £ € X we have {n,k € N : ¢¢, g, () <1-n}C U 1 Er for some By, € X and each
m € IN. Since each E,AP, is a finite set for r € {1,2,---,i — 1}, there exists sy € IN such that
U 1Prni{s e N : s>so}:Ui_1E N{s €N :s > sg}. Ifs>soands¢P thenseéU 1 Py and
s¢ U L Er. Therefore, foreacht > 0,17 € (0,1) andeach & € Xwehave ¢, 5, (¢) >1-1>1-7
for some B,, € X and each m € IN. This implies that limy_,. Y¢,, . (f) = Y, (f) for some k € A.
Hence, for each £ € X we have ﬂ;\}w—limk_,m Vg () = Yy, (f) for some B,, € X and each m € IN.
By the similar argument, we have the same results for the sets S(A) and V(A). Hence, {9k} is
RY (/;\}Z), ,ﬂ;\}lp)-convergent. [ ]

The diagram below depicts the relationships discovered in this section.

RV (ﬂ v 7 lp) convergent mid RV (W5, W )-convergent
Thm3.6 T

o * Thm3.7
%w(fwf,fwlP)-convergent ey Z4dl ‘ﬂvd\;y A

v )-convergent

Diagram II

4. CONCLUSION

Wijsman J;P—Convergence for triple sequences and Wijsman randomly ff—Convergence for
triple sequences (see Diagrams I and II) have been defined and examined in this study. Fur-
thermore, some intriguing outcomes and relationships between these notions were demonstrated.
Future work will provide definitions of ‘@w(‘fxy f%)-Cauchy and %‘l’(f;\’,;p, f;\}w)-Cauchy and
then investigate some relationships with the ideas discussed in this paper. On the other hand,

these ideas can be applied to the lacunary sequence.
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