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Abstract. This study explores the realm of metric spaces, advancing beyond conventional boundaries by introducing

two innovative types of metrics known as generalized Branciari-type metrics. Through exacting examination and

exemplification, we shed light on the intricacies of these newly defined metric spaces and their extended versions. By

drawing parallels with established theorems such as Banach and Kannan, we unveil corollaries that establish necessary

symmetric conditions for the existence and uniqueness of fixed points concerning self-operators within these spaces.

The inclusion of illustrative examples not only bolsters our theoretical framework but also underscores the practical

relevance of our findings. Furthermore, we utilize our research to address real-world applications, showcasing how

our results can be employed to determine the existence of unique solutions for algebraic systems of linear equations,

thereby bridging the theoretical and applied aspects of mathematical exploration. Through these interventions, our

study significantly contributes to the comprehensive understanding and utilization of all the properties in metric spaces

within diverse mathematical contexts.

1. Introduction

Despite its history dating back more than a century, fixed point theory remains a fascinating

area of study, particularly due to the role of straightness in its applications. The appeal of fixed

point results is seen in their wide range of applications, often leveraging symmetric properties.

The Banach contraction principle, discovered by Banach in 1922, is essentially the primary finding

on fixed points for mappings of contractive types. This outcome has been demonstrated to be
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an extremely helpful instrument for ensuring the existence and uniqueness of solutions to many

types of difficult problems that arise in a variety of fields, both inside and outside of mathematics.

The traditional Banach contraction concept has been expanded upon and developed in a variety

of ways, with recent advancements emphasizing the significance of straightness in enhancing the

robustness and applicability of these results (see [11–15, 17, 23, 25, 28–33]).

Abbreviations:

uCA unital C∗−algebra

avMS C∗−algebra valued metric space

bMS b−metric space

avbMS C∗−algebra valued b−metric space

ebMS extended b−metric space

avebMS C∗−algebra valued extended b−metric space

SMS S−metric space

avSMS C∗−algebra valued S−metric space

eSMS extended S−metric space

aveSMS C∗−algebra valued extended S−metric space

SbMS Sb−metric space

eSbMS extended Sb−metric space

aveSbMS C∗−algebra valued extended Sb−metric space

BSbMS Branciari Sb−metric space

avBSbMS C∗−algebra valued Branciari Sb−metric space

aveBSbMS C∗−algebra valued extended Branciari Sb−metric space

By swapping out the range set R for a uCA, Ma et al. [3] introduced a class of avMS, a more broad

class of metric spaces in 2014. He then used these classes to demonstrate various fixed point results,

emphasizing the role of symmetry in these spaces. There are many generalizations of the theory in

the context of Banach algebra (see, for more, [4–8]). To broaden the scope of applicability, Czerwik

[10] developed the idea of bMS as a notional advancement of metric spaces and demonstrated fixed

point findings as a balanced counterpart to the Banach contraction theorem. In fact, a sizeable

body of work has already been written about the theory of fixed points in bMS for single-valued

and multivalued mappings, showcasing the significance of the properties in these theoretical

advancements (see [3, 9, 10, 18, 19, 25, 27]).

Kamran [26], on the other hand, developed ebMS as a generalization of bMS, incorporating

symmetry into the structure. Many studies subsequently validated fixed point results in these

generalized metric spaces, including their existence and uniqueness. A year later, Ma et al. [16]

introduced another generalization of avMS, called avbMS, and demonstrated various fixed point

results, highlighting symmetric properties. Sedghi et al. in [18] defined a new metric dependent on

three variables and introduced SMS. Consequently, Ege et al. [20] introduced avSMS. Combining
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the definitions of bMS and SMS, Rohen et al. [21, 23] introduced more generalized SbMS and

proved many contraction-type theorems, emphasizing symmetry. In 2018, Kalaivani et al. [24]

proposed future work and defined avSbMS, further exploring symmetric aspects in metric space

theory.

Our research builds upon the foundations laid by Kalaivani et al. [24] and Roy [25], who

examined the fixed point problems in avSMS and BSbMS respectively, with a particular focus on the

extension of metric spaces. We extend these spaces by framing new postulates to derive avBSbMS

and aveBSbMS. Subsequently, we establish conditions that guarantee the existence and uniqueness

of a symmetric fixed point for self-operators. We substantiate our conclusions with illustrative

examples. We deduced some corollaries and proved two main theorems, which are analogous to

the very famous Banach and Kannan type theorems, incorporating symmetry. Further, we explore

a method to check the unique existence of solutions of systems of algebraic linear equations.

In conclusion, our work introduces innovative techniques for addressing fixed point problems,

challenging the traditional assumption of the range set in a generalized metric structure. Our

methodology has implications for enhancing effectiveness and enabling mathematical models to

better represent real-world scenarios, leading to more insightful decision-making across various

scientific domains.

2. Preliminaries

Let us denote C by a unital C∗-algebra (see [1, 2]) with linear involution ∗ and unit element 1

such that for all c1, c2 ∈ C, (c1c2)∗ = c∗1c∗2, and c∗∗ = c. An element c ∈ C is positive, if c � θ, where

θ is a zero element in C. Let c ∈ Ch = {c ∈ C : c = c∗}, then a partial ordering �, we can define on

Ch by c1 � c2 if and only if c2 − c1 � θ. We denote the set {c ∈ C : c � θ} by C+ and |c| = (c∗c)
1
2 , Cc

will denote the set {c1 ∈ C : c1c2 = c2c1, for all c2 ∈ C} and C1 = {c1 ∈ C : c1c2 = c2c1, for all c2 ∈

C and c1 � 1}.

Lemma 2.1. [1] In a unital C∗−algebra C with a zero element θ and a unit element 1, we have followings

(L1) c � 1 if and only if ||c|| ≤ 1, for all c ∈ C.
(L2) 1− c is invertible such that ||c(1− c)−1

|| < 1, for all c ∈ C+ with ||c|| ≤ 1
2 .

(L3) c1c2 � θ, for all c1, c2 ∈ C+ with c1c2 = c2c1.
(L4) for c1, c2 ∈ C+ with c1 � c2 implies c∗c1c � c∗c2c, for all c ∈ C.
(L5) for c ∈ Cc if 1− c ∈ C1 is invertible, then (1− c)−1c1 � (1− c)−1c2, for

all c1, c2 ∈ C with c1 � c2 � θ.

Now we recall the definitions of some previously known metric spaces.

Definition 2.1. [10] A pair (V, d) with non empty set V and d : V ×V −→ R satisfying
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(bM1) d(ϑ1,ϑ2) ≥ 0 and d(ϑ1,ϑ2) = 0 if and only if ϑ1 = ϑ2,
(bM2) d(ϑ1,ϑ2) = d(ϑ2,ϑ1),
(bM3) d(ϑ1,ϑ2) ≤ b[d(ϑ1, u) + d(u,ϑ2)],

for all ϑ1,ϑ2 ∈ V and for all u ∈ V \ {ϑ1,ϑ2} with b ≥ 1, is called a bMS.

Definition 2.2. [26] A pair (V, d) with non empty set V, e : V ×V −→ [1,+∞) and d : V ×V −→ R

satisfying

(ebM1) d(ϑ1,ϑ2) ≥ 0 and d(ϑ1,ϑ2) = 0 if and only if ϑ1 = ϑ2,
(ebM2) d(ϑ1,ϑ2) = d(ϑ2,ϑ1),
(ebM3) d(ϑ1,ϑ2) ≤ e(ϑ1,ϑ2)[d(ϑ1, u) + d(u,ϑ2)],

for all ϑ1,ϑ2 ∈ V and for all u ∈ V \ {ϑ1,ϑ2} with b ≥ 1, is called an ebMS.

Definition 2.3. [16] A triplet (V, C, d) with non empty set V and d : V ×V −→ C satisfying

(avbM1) d(ϑ1,ϑ2) � θ and d(ϑ1,ϑ2) = θ if and only if ϑ1 = ϑ2,
(avbM2) d(ϑ1,ϑ2) = d(ϑ2,ϑ1),
(avbM3) d(ϑ1,ϑ2) � b[d(ϑ1, u) + d(u,ϑ2)],

for all ϑ1,ϑ2 ∈ V and for all u ∈ V \ {ϑ1,ϑ2} with b ∈ C1, is called an avbMS.

Definition 2.4. [27] A triplet (V, C, d) with non empty set V, e : V ×V −→ C1 and d : V ×V −→ C
satisfying

(avebM1) d(ϑ1,ϑ2) � θ and d(ϑ1,ϑ2) = θ if and only if ϑ1 = ϑ2,
(avebM2) d(ϑ1,ϑ2) = d(ϑ2,ϑ1),
(avebM3) d(ϑ1,ϑ2) � e(ϑ1,ϑ2)[d(ϑ1, u) + d(u,ϑ2)],

for all ϑ1,ϑ2 ∈ V and for all u ∈ V \ {ϑ1,ϑ2}, is called an avebMS.

Definition 2.5. [18] A pair (V, d) with non empty set V and d : V ×V ×V −→ R satisfying

(SM1) d(ϑ1,ϑ2,ϑ3) ≥ 0,
(SM2) d(ϑ1,ϑ2,ϑ3) = 0 if and only if ϑ1 = ϑ2 = ϑ3,
(SM3) d(ϑ1,ϑ2,ϑ3) ≤ d(ϑ1,ϑ1, u) + d(ϑ2,ϑ2, u) + d(ϑ3,ϑ3, u),

for all ϑ1,ϑ2,ϑ3, u ∈ V, is called a SMS.

Definition 2.6. [20] A triplet (V, C, d) with non empty set V and d : V ×V ×V −→ C satisfying

(avSM1) d(ϑ1,ϑ2,ϑ3) � θ,
(avSM2) d(ϑ1,ϑ2,ϑ3) = θ if and only if ϑ1 = ϑ2 = ϑ3,
(avSM3) d(ϑ1,ϑ2,ϑ3) � d(ϑ1,ϑ1, u) + d(ϑ2,ϑ2, u) + d(ϑ3,ϑ3, u),

for all ϑ1,ϑ2,ϑ3, u ∈ V, is called an avSMS.
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Definition 2.7. [21, 23] A pair (V, d) with non empty set V and d : V ×V ×V −→ R satisfying

(SbM1) d(ϑ1,ϑ2,ϑ3) ≥ 0 and d(ϑ1,ϑ2,ϑ3) = 0 if and only if ϑ1 = ϑ2 = ϑ3,
(SbM2) d(ϑ1,ϑ1,ϑ2) = d(ϑ2,ϑ2,ϑ1),
(SbM3) d(ϑ1,ϑ2,ϑ3) ≤ sb[d(ϑ1,ϑ1, u) + d(ϑ2,ϑ2, u) + d(ϑ3,ϑ3, u)],

for all ϑ1,ϑ2,ϑ3, u ∈ V and sb ≥ 1, is called a SbMS.

Definition 2.8. [28] A pair (V, d)with non empty set V, e : V×V×V −→ [1,+∞) and d : V×V×V −→
R satisfying

(eSbM1) d(ϑ1,ϑ2,ϑ3) ≥ 0,
(eSbM2) d(ϑ1,ϑ2,ϑ3) = 0 if and only if ϑ1 = ϑ2 = ϑ3,
(eSbM3) d(ϑ1,ϑ2,ϑ3) ≤ e(ϑ1,ϑ2,ϑ3)[d(ϑ1,ϑ1, u) + d(ϑ2,ϑ2, u) + d(ϑ3,ϑ3, u)],

for all ϑ1,ϑ2,ϑ3, u ∈ V, is called an eSbMS.

Definition 2.9. [24] A triplet (V, C, d) with non empty set V and d : V ×V ×V −→ C satisfying

(avSbM1) d(ϑ1,ϑ2,ϑ3) � θ,
(avSbM2) d(ϑ1,ϑ2,ϑ3) = θ if and only if ϑ1 = ϑ2 = ϑ3,
(avSbM3) d(ϑ1,ϑ2,ϑ3) � sb[d(ϑ1,ϑ1, u) + d(ϑ2,ϑ2, u) + d(ϑ3,ϑ3, u)],

for all ϑ1,ϑ2,ϑ3, u ∈ V and sb ∈ C1, is called an avSbMS.

Definition 2.10. [25] A pair (V, d) with non empty set V and d : V ×V ×V −→ R satisfying

(BSbM1) d(ϑ1,ϑ2,ϑ3) ≥ 0,
(BSbM2) d(ϑ1,ϑ2,ϑ3) = 0 if and only if ϑ1 = ϑ2 = ϑ3,
(BSbM3) d(ϑ1,ϑ2,ϑ2) ≤ sb[d(ϑ1,ϑ1, u) + d(ϑ2,ϑ2, u) + d(ϑ3,ϑ3, w) + d(u, u, w)],

for all ϑ1,ϑ2,ϑ3 ∈ V and for all u, w ∈ V \ {ϑ1,ϑ2,ϑ3} with u , w and sb ≥ 1, is called a BSbMS.

3. Main Result

In response to the findings made previously, we extend the classes of metric spaces by intro-

ducing new classes of metric spaces, namely aveBSbMS and a particular case, avBSbMS. Also, we

make use of them to demonstrate some fixed point results. We also provide a few instances that

highlight the usefulness of our main finding.

Definition 3.1. A triplet (V, C, d) with non empty set V and d : V ×V ×V −→ C satisfying

(avBSbM1) d(ϑ1,ϑ2,ϑ3) � θ,
(avBSbM2) d(ϑ1,ϑ2,ϑ3) = θ if and only if ϑ1 = ϑ2 = ϑ3,
(avBSbM3) d(ϑ1,ϑ2,ϑ2) � Sb[d(ϑ1,ϑ1, u) + d(ϑ2,ϑ2, u) + d(ϑ3,ϑ3, w) + d(u, u, w)],

for all ϑ1,ϑ2,ϑ3 ∈ V and for all u, w ∈ V \ {ϑ1,ϑ2,ϑ3} with u , w and Sb ∈ C1, is called an avBSbMS.
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Definition 3.2. A triplet (V, C, d) with non empty set V, E : V ×V ×V −→ C1 and d : V ×V ×V −→ C
satisfying

(aveBSbM1) d(ϑ1,ϑ2,ϑ3) � θ,
(aveBSbM2) d(ϑ1,ϑ2,ϑ3) = θ if and only if ϑ1 = ϑ2 = ϑ3,
(aveBSbM3) d(ϑ1,ϑ2,ϑ2) � E(ϑ1,ϑ2,ϑ2)[d(ϑ1,ϑ1, u) + d(ϑ2,ϑ2, u) + d(ϑ3,ϑ3, w)

+d(u, u, w)],

for all ϑ1,ϑ2,ϑ3 ∈ V and for all u, w ∈ V \ {ϑ1,ϑ2,ϑ3} with u , w, is called an aveBSbMS.

Definition 3.3. An avBSbMS (or aveBSbMS) (V, C, d) is called symmetric if

d(ϑ1,ϑ1,ϑ2) = d(ϑ2,ϑ2,ϑ1), for all ϑ1,ϑ2 ∈ V.

The following remarks give us relations between an aveBSbMS, an avBSbMS, and an avSbMS.

Remark 3.1. Note that, if E(ϑ1,ϑ2,ϑ2) = Sb � 1, then an aveBSbMS will become an avBSbMS.

Remark 3.2. From Definition 2.9 of an avSbMS (V, C, d), we have

d(ϑ1,ϑ2,ϑ3) � sb[d(ϑ1,ϑ1, u) + d(ϑ2,ϑ2, u) + d(ϑ3,ϑ3, u)]

� sb[d(ϑ1,ϑ1, u) + d(ϑ2,ϑ2, u) + sb[2d(ϑ3,ϑ3, w) + d(u, u, w)]]

� 2s2
b[d(ϑ1,ϑ1, u) + d(ϑ2,ϑ2, u) + d(ϑ3,ϑ3, w) + d(u, u, w)].

So, for Sb = 2s2
b, (V, C, d) become an avBSbMS.

Remark 3.3. For E(ϑ1,ϑ2,ϑ3) = 2e(ϑ1,ϑ2,ϑ3)2, an aveSbMS is an aveBSbMS.

Now we give some topological notions in our generalized metric structures.

Definition 3.4. For any sequence {ϑn} in an aveBSbMS (or avBSbMS) (V, C, d), we say

(i) {ϑn} converges to ϑ ∈ V, if for all ε � θ there exist nε ∈N with d(ϑn,ϑn,ϑ) � ε, for all n ≥ nε.
(ii) if {ϑn} is convergent to ϑ ∈ V, then we write lim

n→+∞
d(ϑn,ϑn,ϑ) = θ or lim

n→+∞
ϑn = ϑ.

(iii) {ϑn} is Cauchy, if for all ε � θ, there exist nε ∈ N with d(ϑm,ϑm,ϑn) � ε, for all n > m ≥ nε.
That is if lim

n,m→+∞
d(ϑm,ϑm,ϑn) = θ.

Definition 3.5. If every Cauchy sequence in an aveBSbMS (or avBSbMS) (V, C, d) is convergent, then we
say (V, C, d) is complete.

Lemma 3.1. If a convergent sequence {ϑn} in a symmetric complete aveBSbMS (V, C, d) is Cauchy. Then,
{ϑn} will converge uniquely.

Proof. Let ε � θ and {ϑn} converges to both ϑ′ and ϑ′′. Since {ϑn} is a Cauchy, there exist n1 ∈ N

such that d(ϑm,ϑm,ϑn) �
ε

3E(ϑ′,ϑ′,ϑ′′) , for all n > m ≥ n1. Again, {ϑn} converges to both ϑ′,ϑ′′ ∈ V,
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then there exists n2, n3 ∈ N such that d(ϑn,ϑn,ϑ′) � ε
6E(ϑ′,ϑ′,ϑ′′) , for all n ≥ n2 and d(ϑn,ϑn,ϑ′′) �

ε
6E(ϑ′,ϑ′,ϑ′′) , for all n ≥ n3. Let n0 = max{n1, n2, n3}. Then,

d(ϑ′,ϑ′,ϑ′′) � E(ϑ′,ϑ′,ϑ′′)[2d(ϑ′,ϑ′,ϑm) + d(ϑ′′,ϑ′′,ϑn) + d(ϑm,ϑm,ϑn)]

� E(ϑ′,ϑ′,ϑ′′)
[

2ε
6E(ϑ′,ϑ′,ϑ′′)

+
ε

6E(ϑ′,ϑ′,ϑ′′)
+

ε

3E(ϑ′,ϑ′,ϑ′′)

]
=

5
6
ε

≺ ε, for all n ≥ n0.

As ε is arbitrary, d(ϑ′,ϑ′,ϑ′′) = θ implies ϑ′ = ϑ′′. Hence, {ϑn} converges uniquely. �

Lemma 3.2. If a convergent sequence {ϑn} in a symmetric complete avBSbMS (V, C, d) is Cauchy. Then,
{ϑn} will converge uniquely.

Proof. Letting E(ϑ1,ϑ2,ϑ3) = Sb, for all ϑ1,ϑ2,ϑ3 ∈ V, Lemma 3.2 is a particular case of Lemma

3.1. �

Lemma 3.3. Let {ϑn} be a Cauchy sequence in a symmetric complete aveBSbMS (V, C, d) converging to
unique ϑ ∈ V. Then,

1
m

d(ϑ,ϑ,ϑ′) � lim inf
n

d(ϑn,ϑn,ϑ′) � lim sup
n

d(ϑn,ϑn,ϑ′) �Md(ϑ,ϑ,ϑ′), for all ϑ′ ∈ V. (3.1)

Where m = inf
s1,s2,s3∈{ϑn}

E(s1, s2, s3) and M = sup
s1,s2,s3∈{ϑn}

E(s1, s2, s3).

Proof. Let ϑ , ϑ′, otherwise, we will get the equality. Now for ϑn, where n ∈ N so that ϑ,ϑ′ <

{ϑn,ϑn+1, . . .}, we have

d(ϑ,ϑ,ϑ′) � E(ϑ,ϑ,ϑ′) [2d(ϑ,ϑ,ϑn+1) + d(ϑ′,ϑ′,ϑn) + d(ϑn+1,ϑn+1,ϑn)]

� inf
s1,s2,s3∈{ϑn}

E(s1, s2, s3) lim inf
n

d(ϑ′,ϑ′,ϑn)

= m lim inf
n

d(ϑn,ϑn,ϑ′) (3.2)

and

d(ϑn,ϑn,ϑ′) � E(ϑn,ϑn,ϑ′) [2d(ϑn,ϑn,ϑn+1) + d(ϑ′,ϑ′,ϑ) + d(ϑn+1,ϑn+1,ϑ)]

⇒ lim sup
n

d(ϑn,ϑn,ϑ′) � sup
s1,s2,s3∈{ϑn}

E(s1, s2, s3)d(ϑ′,ϑ′,ϑ)

= Md(ϑ,ϑ,ϑ′). (3.3)

Combining (3.2) and (3.3), we have our inequality (3.1). �

Definition 3.6. For any V1, V2 ⊂ V in an aveBSbMS (V, C, d), we define

i) d(V1, V1, V2) = inf{d(ϑ1,ϑ1,ϑ2) : ϑ1 ∈ V1,ϑ2 ∈ V2} by distance between V1 and V2.
ii) d(ϑ1,ϑ1, V2) = inf{d(ϑ1,ϑ1,ϑ2) : ϑ2 ∈ V2} by distance between ϑ1 ∈ V1 and V2.
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iii) δ(V1) = sup{d(ϑ1,ϑ1,ϑ2) : ϑ1,ϑ2 ∈ V1} by diameter of V1 and δ(V1) ≺ +∞ by V1 is bounded if
there is some ε(� θ) ∈ C such that d(ϑ1,ϑ1,ϑ2) ≺ ε, for all ϑ1,ϑ2 ∈ V1.

iv) OC
∗

d (ϑ1, ε) = {ϑ2 ∈ V : d(ϑ2,ϑ2,ϑ1) ≺ ε} by an open ball of radius ε(� θ) ∈ C centred at ϑ1 ∈ V.
v) BC

∗

d [ϑ1, ε] = {ϑ2 ∈ V : d(ϑ2,ϑ2,ϑ1) � ε} by a closed ball of radius ε(� θ) ∈ C centred at ϑ1 ∈ V.
vi) τC

∗

d = {∅} ∪ {V′ ⊂ V : OC
∗

d (ϑ1, ε) ⊂ V′, for some ε(� θ) ∈ C and ϑ1 ∈ V′}.

Then, τC
∗

d is a topology on (V, C, d).

The following is a numerical example of an aveBSbMS but not an avBSbMS and not an aveSMS.

Example 3.1. Let V = {0, 1, 2, 3, . . .}, C = M2(R) and d : V ×V ×V −→ C, E : V ×V ×V −→ C1 be
given by

d(ϑ1,ϑ2,ϑ3) =

M′ 0

0 M′

 , for all ϑ1,ϑ2,ϑ3 ∈ V, where M′ = |ϑ1 − ϑ2|+ |ϑ3|

and

E(ϑ1,ϑ2,ϑ3) =

M′ + 1 0

0 M′ + 1

 , for all ϑ1,ϑ2,ϑ3 ∈ V.

Then (V, C, d) is an aveBSbMS.

Remark 3.4. Since

d(ϑ1,ϑ1, u) + d(ϑ2,ϑ2, u) + d(ϑ3,ϑ3, w) + d(u, u, w) =

2(|u|+ |w|) 0

0 2(|u|+ |w|)

 ,

there does not exist any fixed Sb � I2 in C1 = {c1 ∈ M2(R) : c1c2 = c2c1, for all c2 ∈ M2(R) and c1 � I2}

so that

d(ϑ1,ϑ2,ϑ3) � Sb[d(ϑ1,ϑ1, u) + d(ϑ2,ϑ2, u) + d(ϑ3,ϑ3, w) + d(u, u, w)].

Hence, in the Example 3.1, (V, M2(R), d) is not an avBSbMS. Consequently not an avSbMS and not an
avSMS. Also note that (V, M2(R), d) is not an aveSbMS and not an aveSMS.

The following is a numerical example of avBSbMS but not an avSbMS and not an avSMS.

Example 3.2. Let V = {1, 2, 3, . . .}, C = M2(R) and d : V ×V ×V −→ C is given by

d(ϑ1,ϑ2,ϑ3) =

M 0

0 M

 , for all ϑ1,ϑ2,ϑ3 ∈ V,

where M =


10 i f ϑ1 = ϑ2 = 1 and ϑ3 = 2,

1
2(ϑ3+1) i f ϑ1 = ϑ2 = 1 and ϑ3 ≥ 3,

1
ϑ3+2 i f ϑ1 = ϑ2 = 2 and ϑ3 ≥ 3,

5 otherwise.
Then, (V, C, d) is an avBSbMS for Sb = 4I2 but not an avSbMS. Consequently not an avSMS.

Now we are ready to present our main theorem analogous to Banach in the context of avBSbMS.
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Theorem 3.1. In a symmetric complete avBSbMS (V, C, d), suppose H : V −→ V satisfies

d(Hϑ1, Hϑ1, Hϑ2) � c∗d(ϑ1,ϑ1,ϑ2)c ; for all ϑ1,ϑ2,ϑ3 ∈ V, (3.4)

where c ∈ C with ||c|| < 1. Then H possesses a unique ϑ ∈ V such that Hϑ = ϑ.

Proof. If c = θ, then H is a constant map. So, we can assume c , θ. For ϑ0 ∈ V define a sequence

{ϑn} ⊆ V by ϑn = Hϑn−1, for all n ∈ N. If ϑn+1 = ϑn, for some n ∈ N, then ϑn is a fixed point. So,

we can assume ϑn+1 , ϑn, for all n ∈N. Now from (3.4), we have

d(ϑn,ϑn,ϑn+1) = d(Hϑn−1, Hϑn−1, Hϑn) � c∗d(ϑn−1,ϑn−1,ϑn)c

= c∗d(Hϑn−2, Hϑn−2, Hϑn−1)c

� (c∗)2d(ϑn−2,ϑn−2,ϑn−1)(c)2, by (L4) of 2.1
...

� (c∗)nd(ϑ0,ϑ0,ϑ1)(c)n, for any n ∈N.

Again, as (V, C, d) is an avBSbMS there exists Sb(� 1) ∈ C. So, for any n, m ∈N with m ≥ 2

d(ϑn,ϑn,ϑn+m)

� Sb[2d(ϑn,ϑn,ϑn+1) + d(ϑn+mϑn+m,ϑn+2) + d(ϑn+1,ϑn+1,ϑn+2)]

= 2Sbd(ϑn,ϑn,ϑn+1) + Sbd(ϑn+1,ϑn+1,ϑn+2) + Sbd(ϑn+2,ϑn+2,ϑn+m)

� 2Sbd(ϑn,ϑn,ϑn+1) + Sbd(ϑn+1,ϑn+1,ϑn+2) + (Sb)
2[2d(ϑn+2,ϑn+2,ϑn+3)

+d(ϑn+m,ϑn+m,ϑn+4) + d(ϑn+3,ϑn+3,ϑn+4)]

= 2Sbd(ϑn,ϑn,ϑn+1) + Sbd(ϑn+1,ϑn+1,ϑn+2) + 2(Sb)
2d(ϑn+2,ϑn+2,ϑn+3)

+(Sb)
2d(ϑn+3,ϑn+3,ϑn+4) + (Sb)

2d(ϑn+4,ϑn+4,ϑn+m)

� 2Sb[d(ϑn,ϑn,ϑn+1) + d(ϑn+1,ϑn+1,ϑn+2)] + 2(Sb)
2[d(ϑn+2,ϑn+2,ϑn+3)

+d(ϑn+3,ϑn+3,ϑn+4)] + (Sb)
2d(ϑn+4,ϑn+4,ϑn+m)

� 2Sb[d(ϑn,ϑn,ϑn+1) + d(ϑn+1,ϑn+1,ϑn+2)] + 2(Sb)
2[d(ϑn+2,ϑn+2,ϑn+3)

+d(ϑn+3,ϑn+3,ϑn+4)] + 2(Sb)
3[d(ϑn+4,ϑn+4,ϑn+5) + d(ϑn+5,ϑn+5,ϑn+6)]

+(Sb)
3d(ϑn+6,ϑn+6,ϑn+m)

� 2Sb[d(ϑn,ϑn,ϑn+1) + d(ϑn+1,ϑn+1,ϑn+2)] + 2(Sb)
2[d(ϑn+2,ϑn+2,ϑn+3)

+d(ϑn+3,ϑn+3,ϑn+4)] + 2(Sb)
3[d(ϑn+4,ϑn+4,ϑn+5) + d(ϑn+5,ϑn+5,ϑn+6)]

+2(Sb)
4[d(ϑn+6,ϑn+6,ϑn+7) + d(ϑn+7,ϑn+7,ϑn+8)] + (Sb)

4d(ϑn+8,ϑn+8,ϑn+m)

...

� 2Sb[d(ϑn,ϑn,ϑn+1) + d(ϑn+1,ϑn+1,ϑn+2)] + 2(Sb)
2[d(ϑn+2,ϑn+2,ϑn+3)

+d(ϑn+3,ϑn+3,ϑn+4)] + 2(Sb)
3[d(ϑn+4,ϑn+4,ϑn+5) + d(ϑn+5,ϑn+5,ϑn+6)]
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+2(Sb)
4[d(ϑn+6,ϑn+6,ϑn+7) + d(ϑn+7,ϑn+7,ϑn+8)] + · · ·

+2(Sb)
m−1

2 [d(ϑn+m−3,ϑn+m−3,ϑn+m−2) + d(ϑn+m−2,ϑn+m−2,ϑn+m−1)]

+(Sb)
m−1

2 d(ϑn+m−1,ϑn+m−1,ϑn+m)

= 2

m−3
2∑

j=0

(Sb)
j+1[d(ϑn+2 j,ϑn+2 j,ϑn+2 j+1) + d(ϑn+2 j+1,ϑn+2 j+1,ϑn+2 j+2)]

+(Sb)
m−1

2 d(ϑn+m−1,ϑn+m−1,ϑn+m)

� 2

m−3
2∑

j=0

(Sb)
j+1(c∗)n+2 j[d(ϑ0,ϑ0,ϑ1) + (c∗)d(ϑ0,ϑ0,ϑ1)(c)](c)n+2 j

+(Sb)
m−1

2 (c∗)n+m−1d(ϑ0,ϑ0,ϑ1)(c)n+m−1.

Let d(ϑ0,ϑ0,ϑ1) = c′ ∈ C, then

d(ϑn,ϑn,ϑn+m)

� 2

m−3
2∑

j=0

(Sb)
j+1(c∗)n+2 j[c′ + (c∗)c′(c)](c)n+2 j + (Sb)

m−1
2 (c∗)n+m−1c′(c)n+m−1

= 2

m−3
2∑

j=0

(
(Sb)

j+1
2 c′

1
2 (c)n+2 j

)∗ (
(Sb)

j+1
2 c′

1
2 (c)n+2 j

)

+2

m−3
2∑

j=0

(
(Sb)

j+1
2 c′

1
2 (c)n+2 j+1

)∗ (
(Sb)

j+1
2 c′

1
2 (c)n+2 j+1

)
+

(
(Sb)

m−1
4 c′

1
2 (c)n+m−1

)∗ (
(Sb)

m−1
4 c′

1
2 (c)n+m−1

)
= 2

m−3
2∑

j=0

∣∣∣∣(Sb)
j+1

2 c′
1
2 (c)n+2 j

∣∣∣∣2 + 2

m−3
2∑

j=0

∣∣∣∣(Sb)
j+1

2 c′
1
2 (c)n+2 j+1

∣∣∣∣2
+

∣∣∣∣(Sb)
m−1

4 c′
1
2 (c)n+m−1

∣∣∣∣2
� 2||c′||

m−3
2∑

j=0

||Sb||
j+1
||c||2n+4 j1+ 2||c′||

m−3
2∑

j=0

||Sb||
j+1
||c||2n+4 j+21

+||c′||||Sb||
m−1

2 ||c||2n+2m−21

= 2||c′||||Sb||
m−1

2


m−3

2∑
j=0

||c||2n+4 j

||Sb||
m−2 j−3

2

1+

m−3
2∑

j=0

||c||2n+4 j+2

||Sb||
m−2 j−3

2

1+
1
2
||c||2n+2m−21


= 2||c′||||Sb||

m−1
2

 ||c||2n

||Sb||
m−3

2

(
1− ||c||

4

||Sb||

)1+ ||c||2n+2

||Sb||
m−3

2

(
1− ||c||

4

||Sb||

)1 +
1
2
||c||2n+2m−21

)
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= 2||c′||||Sb||
2
(
||c||2n

||Sb|| − ||c||4
1+

||c||2n+2

||Sb|| − ||c||4
1+

1
2
||c||2n+2m−21

)
.

Since ||c|| < 1,

lim
n,m→+∞

d(ϑn,ϑn,ϑn+m) = θ.

This shows that {ϑn} is a Cauchy sequence in a symmetric complete avBSbMS (V, C, d). By

Lemma 3.1, ϑ ∈ V exists uniquely such that lim
n→+∞

d(ϑn,n ,ϑ) = θ.

Again, d(ϑ,ϑ, Hϑ) = lim
n→+∞

d(ϑn+1,ϑn+1, Hϑ) � lim
n→+∞

c∗d(ϑn,ϑn,ϑ)c = θ implies Hϑ = ϑ, conse-

quently ϑ is a unique fixed point of H. �

The following remark gives us a method to deal with the operator Hn.

Remark 3.5. If H satisfies inequality (3.4) for some c ∈ C with ||c|| < 1, then Hn also satisfies inequality
(3.4) for cn

∈ C with ||cn
|| < 1. In this case, by Theorem 3.1, Hn has a unique fixed point. Consequently, H

has a unique fixed point.

Now we have an illustration of Theorem 3.1.

Example 3.3. Let (V, C, d) be same as in Example 3.2. Define H : V −→ V by

Hϑ =

4, ϑ = 1

5, otherwise.

Then, for any c ∈ C with ||c|| < 1, H2 satisfies inequality (3.4) of Theorem 3.1. By, Remark 3.5, 5 is a unique
point in V such that H5 = 5.

The result below is analogous to Kannan in the context of an avBSbMS.

Theorem 3.2. In a symmetric complete avBSbMS (V, C, d), suppose H : V −→ V satisfies

d(Hϑ1, Hϑ1, Hϑ2) � c[d(ϑ1,ϑ1, Hϑ1) + d(ϑ2,ϑ2, Hϑ2)] ; for all ϑ1,ϑ2,ϑ3 ∈ V, (3.5)

where c ∈ C with ||c|| < 1
2 . Then, H possesses a unique ϑ ∈ V such that Hϑ = ϑ.

Proof. If c = θ, then H is a constant map. So, we can assume c , θ. For ϑ0 ∈ V, define a sequence

{ϑn} ⊆ V by ϑn = Hϑn−1, for all n ∈ N. If ϑn+1 = ϑn, for some n ∈ N, then ϑn is a fixed point. So,

we can assume ϑn+1 , ϑn, for all n ∈N. Now from (3.5), we have

d(ϑn,ϑn,ϑn+1) = d(Hϑn−1, Hϑn−1, Hϑn) � c[d(ϑn−1,ϑn−1, Hϑn−1) + d(ϑn,ϑn, Hϑn)]

= c[d(ϑn−1,ϑn−1,ϑn) + d(ϑn,ϑn,ϑn+1)]

⇒ (1− c)d(ϑn,ϑn,ϑn+1) � cd(ϑn−1,ϑn−1,ϑn)

⇒ d(ϑn,ϑn,ϑn+1) � (1− c)−1cd(ϑn−1,ϑn−1,ϑn)

�

(
(1− c)−1c

)2
d(ϑn−2,ϑn−2,ϑn−1), by (L5) of 2.1

...

�

(
(1− c)−1c

)n
d(ϑ0,ϑ0,ϑ1), for any n ∈N.
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Let (1− c)−1c = ĉ, d(ϑ0,ϑ0,ϑ1) = c′ ∈ C. By (L2) of Lemma 3.1, we have ||ĉ|| < 1 and

d(ϑn,ϑn,ϑn+1) � (ĉ)nd(ϑ0,ϑ0,ϑ1), for any n ∈N.

Similarly, proceeding as of Theorem 3.1, for any n, m ∈N with m ≥ 2, we have

d(ϑn,ϑn,ϑn+m)

� 2

m−3
2∑

j=0

(Sb)
j+1[(ĉ)n+2 jc′ + (ĉ)n+2 j+1c′] + (Sb)

m−1
2 (ĉ)n+m−1c′

= 2(Sb)
m−1

2


m−3

2∑
j=0

 (ĉ)n+2 j

(Sb)
m−2 j−3

2

+
(ĉ)n+2 j+1

(Sb)
m−2 j−3

2

+ 1
2
(ĉ)n+m−1

 c′

� 2||c′||||Sb||
m−1

2


m−3

2∑
j=0

 ||ĉ||n+2 j

||Sb||
m−2 j−3

2

+
||ĉ||n+2 j+1

||Sb||
m−2 j−3

2

+ 1
2
||ĉ||n+m−1

 (1)
= 2||c′||||Sb||

m−1
2

 ||ĉ||n

||Sb||
m−3

2

(
1− ||ĉ||

2

||Sb||

) + ||ĉ||n+1

||Sb||
m−3

2

(
1− ||ĉ||

2

||Sb||

) + 1
2
||ĉ||n+m−1

 1
= 2||c′||

||Sb||
2

||Sb|| − ||ĉ||2

[
||ĉ||n + ||ĉ||n+1 +

1
2
||ĉ||n+m−1

]
1.

Which implies lim
n,m→+∞

d(ϑn,ϑn,ϑn+m) = θ, since ||ĉ|| < 1.

This shows that {ϑn} is a Cauchy sequence in a symmetric complete avBSbMS (V, C, d). By

Lemma 3.1, ϑ ∈ V exists uniquely so that lim
n→+∞

d(ϑn,ϑn,ϑ) = θ.

Again, d(ϑ,ϑ, Hϑ) = lim
n→+∞

d(ϑn+1,ϑn+1, Hϑ) � lim
n→+∞

ĉd(ϑn,ϑn,ϑ) = θ implies Hϑ = ϑ, conse-

quently ϑ is a unique fixed point of H. �

We now present some consequent results in the context of an aveBSbMS.

Theorem 3.3. In a symmetric complete aveBSbMS (V, C, d), suppose H : V −→ V, E : V ×V ×V −→ C1
satisfies

d(Hϑ1, Hϑ1, Hϑ2) � c∗d(ϑ1,ϑ1,ϑ2)c, (3.6)

where c ∈ C with ||c|| < 1. Also, for an arbitrary ϑ0 ∈ V with ϑn = Hϑn−1, for all n ∈N,

lim
n,m→+∞

cE(ϑn,ϑn,ϑm) = lim
n,m→+∞

cEn,n,m � 1.

Then, H possesses a unique ϑ ∈ V such that Hϑ = ϑ.

Proof. Proceeding similar to Theorem 3.1, from (3.6), we have

d(ϑn,ϑn,ϑn+1) � (c∗)nd(ϑ0,ϑ0,ϑ1)(c)n, for any n ∈N.

Again, as (V, C, d) is an aveBSbMS there exists E : V ×V ×V −→ C1. So, for any n, m ∈ N with

m ≥ 2
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d(ϑn,ϑn,ϑn+m)

� E(ϑn,ϑn,ϑn+m)[2d(ϑn,ϑn,ϑn+1) + d(ϑn+m,ϑn+m,ϑn+2) + d(ϑn+1,ϑn+1,ϑn+2)]

= En,n,n+m[2d(ϑn,ϑn,ϑn+1) + d(ϑn+1,ϑn+1,ϑn+2)] + En,n,n+md(ϑn+2,ϑn+2,ϑn+m)

� 2En,n,n+m[d(ϑn,ϑn,ϑn+1) + d(ϑn+1,ϑn+1,ϑn+2)]

+En,n,n+mEn+2,n+2,n+m[2d(ϑn+2,ϑn+2,ϑn+3) + d(ϑn+m,ϑn+m,ϑn+4) + d(ϑn+3,ϑn+3,ϑn+4)]

= 2En,n,n+m[d(ϑn,ϑn,ϑn+1) + d(ϑn+1,ϑn+1,ϑn+2)] +
1∏

k=0

En+2k,n+2k,n+m[2d(ϑn+2,ϑn+2,ϑn+3)

+d(ϑn+3,ϑn+3,ϑn+4)] + En,n,n+mEn+2,n+2,n+md(ϑn+4,ϑn+4,ϑn+m)

� 2En,n,n+m[d(ϑn,ϑn,ϑn+1) + d(ϑn+1,ϑn+1,ϑn+2)] + 2
1∏

k=0

En+2k,n+2k,n+m[d(ϑn+2,ϑn+2,ϑn+3)

+d(ϑn+3,ϑn+3,ϑn+4)] + En,n,n+mEn+2,n+2,n+mEn+4,n+4,n+m[2d(ϑn+4,ϑn+4,ϑn+5)

+d(ϑn+m,ϑn+m,ϑn+6) + d(ϑn+5,ϑn+5,ϑn+6)]

= 2
0∏

k=0

En+2k,n+2k,n+m[d(ϑn,ϑn,ϑn+1) + d(ϑn+1,ϑn+1,ϑn+2)]

+2
1∏

k=0

En+2k,n+2k,n+m[d(ϑn+2,ϑn+2,ϑn+3) + d(ϑn+3,ϑn+3,ϑn+4)]

+
2∏

k=0

En+2k,n+2k,n+m[2d(ϑn+4,ϑn+4,ϑn+5) + d(ϑn+5,ϑn+5,ϑn+6)]

+
2∏

k=0

En+2k,n+2k,n+md(ϑn+6,ϑn+6,ϑn+m)]

...

� 2
0∏

k=0

En+2k,n+2k,n+m[d(ϑn,ϑn,ϑn+1) + d(ϑn+1,ϑn+1,ϑn+2)]

+2
1∏

k=0

En+2k,n+2k,n+m[d(ϑn+2,ϑn+2,ϑn+3) + d(ϑn+3,ϑn+3,ϑn+4)]

+2
2∏

k=0

En+2k,n+2k,n+m[d(ϑn+4,ϑn+4,ϑn+5) + d(ϑn+5,ϑn+5,ϑn+6)]

+2
3∏

k=0

En+2k,n+2k,n+m[d(ϑn+6,ϑn+6,ϑn+7) + d(ϑn+7,ϑn+7,ϑn+8)] + · · ·

+

m−3
2∏

k=0

En+2k,n+2k,n+m[d(ϑn+m−3,ϑn+m−3,ϑn+m−2) + d(ϑn+m−2,ϑn+m−2,ϑn+m−1)]
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+

m−3
2∏

k=0

En+2k,n+2k,n+md(ϑn+m−1,ϑn+m−1,ϑn+m)]

= 2

m−3
2∑

j=0

j∏
k=0

En+2k,n+2k,n+m[d(ϑn+2 j,ϑn+2 j,ϑn+2 j+1) + d(ϑn+2 j+1,ϑn+2 j+1,ϑn+2 j+2)]

+

m−3
2∏

k=0

En+2k,n+2k,n+md(ϑn+m−1,ϑn+m−1,ϑn+m)]

� 2

m−3
2∑

j=0

j∏
k=0

En+2k,n+2k,n+m(c∗)n+2 j[d(ϑ0,ϑ0,ϑ1) + (c∗)d(ϑ0,ϑ0,ϑ1)(c)](c)n+2 j

+

m−3
2∏

k=0

En+2k,n+2k,n+m(c∗)n+m−1d(ϑ0,ϑ0,ϑ1)(c)n+m−1].

Let d(ϑ0,ϑ0,ϑ1) = c′ ∈ C, then

d(ϑn,ϑn,ϑn+m)

� 2

m−3
2∑

j=0

j∏
k=0

En+2k,n+2k,n+m(c∗)n+2 j[c′ + (c∗)c′(c)](c)n+2 j

+

m−3
2∏

k=0

En+2k,n+2k,n+m(c∗)n+m−1c′(c)n+m−1

= 2

m−3
2∑

j=0




j∏
k=0

En+2k,n+2k,n+m


1
2

c′
1
2 (c)n+2 j


∗ 


j∏

k=0

En+2k,n+2k,n+m


1
2

c′
1
2 (c)n+2 j


+2

m−3
2∑

j=0




j∏
k=0

En+2k,n+2k,n+m


1
2

c′
1
2 (c)n+2 j+1


∗ 


j∏

k=0

En+2k,n+2k,n+m


1
2

c′
1
2 (c)n+2 j+1


+




m−3
2∏

k=0

En+2k,n+2k,n+m


1
2

c′
1
2 (c)n+m−1


∗ 


m−3

2∏
k=0

En+2k,n+2k,n+m


1
2

c′
1
2 (c)n+m−1


= 2

m−3
2∑

j=0

∣∣∣∣∣∣∣∣∣


j∏
k=0

En+2k,n+2k,n+m


1
2

c′
1
2 (c)n+2 j

∣∣∣∣∣∣∣∣∣
2

+ 2

m−3
2∑

j=0

∣∣∣∣∣∣∣∣∣


j∏
k=0

En+2k,n+2k,n+m


1
2

c′
1
2 (c)n+2 j+1

∣∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣∣∣


m−3
2∏

k=0

En+2k,n+2k,n+m


1
2

c′
1
2 (c)n+m−1

∣∣∣∣∣∣∣∣∣∣
2
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� 2

m−3
2∑

j=0

j∏
k=0

||En+2k,n+2k,n+m|| ||c′|| ||c||2n+4 j1+ 2

m−3
2∑

j=0

||

j∏
k=0

||En+2k,n+2k,n+m|| ||c′|| ||c||2n+4 j+21

+

m−3
2∏

k=0

||En+2k,n+2k,n+m|| ||c′|| ||c||2n+2m−21.

Since lim
n,m→+∞

cE(ϑn,ϑn,ϑm) = lim
n,m→+∞

cEn,n,m � 1, for large m, n ∈N, we have

j∏
k=0

||En+2k,n+2k,n+m|| ≤
1

||c|| j+1
(3.7)

and

d(ϑn,ϑn,ϑn+m) � 2||c′||

m−3
2∑

j=0

||c||2n+3 j−11+ 2||c′||

m−3
2∑

j=0

||c||2n+3 j+11+ ||c′|| ||c||
4n+3m−3

2 1

= 2||c′||
[
||c||2n−1

1− ||c||3
+
||c||2n+1

1− ||c||3
+

1
2
||c||

4n+3m−3
2

]
1.

Again, as ||c|| < 1, we get

lim
n,m→+∞

d(ϑn,ϑn,ϑn+m) = θ.

This shows that {ϑn} is a Cauchy sequence in a symmetric complete aveBSbMS (V, C, d). By

Lemma 3.1, ϑ ∈ V exists uniquely such that lim
n→+∞

d(ϑn,ϑn,ϑ) = θ. Again, d(ϑ,ϑ, Hϑ) =

lim
n→+∞

d(ϑn+1,ϑn+1, Hϑ) � lim
n→+∞

c∗d(ϑn,ϑn,ϑ)c = θ implies Hϑ = ϑ, consequently ϑ is a unique

fixed point of H. �

The remark below gives us a method to deal with operator Hn.

Remark 3.6. If H satisfies Theorem 3.3, for some c ∈ C with ||c|| < 1, then Hn also satisfies Theorem 3.3 for
cn
∈ C with ||cn

|| < 1. In this case, Hn has a unique fixed point. Consequently, H has a unique fixed point.

Now we have an illustration of Theorem 3.3.

Example 3.4. Let (V, C, d) be same as in Example 3.1. Define H : V −→ V by

Hϑ =
[
ϑ
3

]
, for all ϑ ∈ V.

Where [ϑ] is the greatest integer function.

Then for c =

 1
√

3
0

0 1
√

3

 ∈ C, H satisfies the inequality (3.6) of Theorem 3.3. Again, for any r0 ∈

V, r1 = Hr0 =
[

r0
3

]
, r2 = Hr1 =

[
[ r0

3 ]
3

]
=

[
r0
32

]
, . . . , rn =

[
r

3n

]
; for all n ∈ N gives cE(ϑn,ϑn,ϑm) = 1

√
3

[
r0

3m−1

]
+ 1
√

3
0

0 1
√

3

[
r0

3m−1

]
+ 1
√

3

→
 1
√

3
0

0 1
√

3


� 1 0

0 1

 as n, m→ +∞. So, H satisfies Theorem 3.3

and 0 is a unique in V such that H0 = 0.
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The following is a consequent result of Theorem 3.2.

Theorem 3.4. In a symmetric complete aveBSbMS (V, C, d), suppose H : V −→ V satisfies

d(Hϑ1, Hϑ1, Hϑ2) � c[d(ϑ1,ϑ1, Hϑ1) + d(ϑ2,ϑ2, Hϑ2)] ; for all ϑ1,ϑ2,ϑ3 ∈ V, (3.8)

where c ∈ C with ||c|| < 1
2 . Also, for arbitrary ϑ0 ∈ V with ϑn = Hϑn−1, for all n ∈ N, lim

n,m→+∞
(1 −

c)−1cE(ϑn,ϑn,ϑm) = lim
n,m→+∞

(1− c)−1cEn,n,m � 1. Then, H possesses a unique ϑ ∈ V such that Hϑ = ϑ.

Proof. Proceeding similar to Theorem 3.2, from (3.8), we have

d(ϑn,ϑn,ϑn+1) �
(
(1− c)−1c

)n
d(ϑ0,ϑ0,ϑ1), for any n ∈N.

Let (1− c)−1c = ĉ, d(ϑ0,ϑ0,ϑ1) = c′ ∈ C. By (L2) of Lemma 3.1, we have ||ĉ|| < 1 and

d(ϑn,ϑn,ϑn+1) � (ĉ)nd(ϑ0,ϑ0,ϑ1), for any n ∈N.

Again, proceeding as Theorem 3.3, for any n, m ∈N with m ≥ 2, we have

d(ϑn,ϑn,ϑn+m) � 2

m−3
2∑

j=0

j∏
k=0

En+2k,n+2k,n+m[(ĉ)n+2 jc′ + (ĉ)n+2 j+1c′]

+

m−3
2∏

k=0

En+2k,n+2k,n+m(ĉ)n+m−1c′

� 2

m−3
2∑

j=0

j∏
k=0

||En+2k,n+2k,n+m||[||ĉ||n+2 j
||c′||+ ||ĉ||n+2 j+1

||c′||]1

+

m−3
2∏

k=0

||En+2k,n+2k,n+m|| ||ĉ||n+m−1
||c′||1.

Since lim
n,m→+∞

(1− c)−1cE(ϑn,ϑn,ϑm) = lim
n,m→+∞

ĉEn,n,m � 1, for large m, n ∈N, we have

j∏
k=0

||En+2k,n+2k,n+m|| ≤
1

||ĉ|| j+1
(3.9)

and

d(ϑn,ϑn,ϑn+m) � 2

m−3
2∑

j=0

[||ĉ||n+ j−1
||c′||+ ||ĉ||n+ j

||c′||]1+ ||ĉ||
2n+m−1

2 ||c′||1

= 2||c′||


m−3

2∑
j=0

[||ĉ||n+ j−1 + ||ĉ||n+ j] +
1
2
||ĉ||

2n+m−1
2

 1
= 2||c′||

[
||ĉ||n−1

1− ||ĉ||
+
||ĉ||n

1− ||ĉ||
+

1
2
||ĉ||

2n+m−1
2

]
1.

Which implies lim
n,m→+∞

d(ϑn,ϑn,ϑn+m) = θ, since ||ĉ|| < 1.
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This shows that {ϑn} is a Cauchy sequence in a symmetric complete aveBSbMS (V, C, d). By

Lemma 3.1, ϑ ∈ V exists uniquely such that lim
n→+∞

d(ϑn,ϑn,ϑ) = θ. Again, d(ϑ,ϑ, Hϑ) =

lim
n→+∞

d(ϑn+1,ϑn+1, Hϑ) � lim
n→+∞

ĉd(ϑn,ϑn,ϑ) = θ implies Hϑ = ϑ, consequently ϑ is a unique

fixed point of H. �

4. Application

The presence of a unique solution in a system of algebraic linear equations carries significant im-

plications across various domains due to its practical applicability and theoretical importance. This

paper delves into the benefits and consequences of knowing that such a solution exists. Firstly, the

certainty offered by a unique solution streamlines decision-making processes. This is particularly

crucial in fields where precision is paramount, such as engineering design, financial modeling, and

scientific simulations. By eliminating ambiguity, unique solutions enable practitioners to focus

their efforts on refining the solution rather than navigating alternative scenarios. Secondly, the

efficiency gained from working with unique solutions cannot be overstated. Computational algo-

rithms tailored for unique solutions can be optimized to deliver faster and more resource-efficient

results. This optimization is especially relevant in large-scale systems and real-time applications,

where computational speed directly impacts operational effectiveness.

Moreover, the mathematical rigor associated with unique solutions enhances the reliability and

interpretability of results. A unique solution signifies a well-posed problem with a well-defined

solution space, contributing to the robustness and stability of mathematical models. This robust-

ness translates into practical advantages, such as reduced sensitivity to small perturbations and

improved system resilience. The practical applications of unique solutions extend beyond com-

putational efficiency and robustness. In fields like economics, where decision-making hinges on

mathematical models, the existence of a unique solution provides a solid foundation for making

accurate predictions and informed policy decisions. Similarly, in engineering and physics, unique

solutions facilitate the design and analysis of complex systems, ensuring their functionality and

performance meet specified criteria.

To show the usefulness of our theorems, we investigate the subsequent system of algebraic linear

equations. For this we consider the symmetric complete avBSbMS (Rm, M2(R), d) for Sb = 4I2.

Where the metric d : Rm
×Rm

×Rm
−→ C is given by

d(uT, vT, wT) =


sup

i
[(ui − vi)

2 + (v1 −wi)
2] 0

0 sup
i
[(ui − vi)

2 + (v1 −wi)
2]

 ,

where u = (ui), v = (vi), w = (wi) ∈ Rm.

Any system of m linear equations in m unknown variables u1, u2, . . . , um can be put in a matrix
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form as follows:
a11u1 + a12u2 + · · ·+ a1mum + v1 =

a21u1 + a22u2 + · · ·+ a2mum + v2 =
...

am1u1 + am2u2 + · · ·+ ammum + vm =

0

0
...

0

; ai j, vi ∈ R, for all 1 ≤ i, j ≤ m. (4.1)

This can be represented as AuT + vT = oT, where A = (ai j), uT = (u1, u2, . . . , um), vT =

(v1, v2, . . . , vm) and oT = (0, 0, . . . , 0).

Let H : Rm
−→ Rm be given by

HuT = H


u1

u2
...

um

 =

(a11 + 1)u1 + a12u2 + · · ·+ a1mum + v1

a21u1 + (a22 + 1)u2 + · · ·+ a2mum + v2
...

am1u1 + am2u2 + · · ·+ (amm + 1)um + vm

 = (A + Im)uT + vT

Then to find a solution uT
∈ Rm of (4.1) is equivalent to find a solution uT

∈ Rm such that HuT = uT.

Now we present a theorem consisting of the requirements for the existence of solution of (4.1).

Theorem 4.1. Any system of m linear equations in m unknown variables given by (4.1) will exhibit a
unique solution, if

sup
i

m∑
j=1

|bi j| < 1,

where bi j = ai j, for all i , j and bi j = ai j + 1, for all i = j.

Proof. For arbitrary uT = (u1, u2, . . . , um), vT = (v1, v2, . . . , vm) ∈ Rm, we have

d(HuT, HuT, HvT)

=


sup

i

 m∑
j=1

bi j(u j − v j)

2

0

0 sup
i

 m∑
j=1

bi j(u j − v j)

2


=


sup

i

∣∣∣∣∣∣ m∑
j=1

bi j(u j − v j)

∣∣∣∣∣∣
2

0

0

sup
i

∣∣∣∣∣∣ m∑
j=1

bi j(u j − v j)

∣∣∣∣∣∣
2


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

sup
i

m∑
j=1
|bi j|

2

sup
j

[
(u j − v j)

]2
0

0

sup
i

m∑
j=1
|bi j|

2

sup
j

[
(u j − v j)

]2


= c∗


sup

i
[(ui − vi)

2] 0

0 sup
i
[(ui − vi)

2]

 c.

This implies d(HuT, HuT, HvT) � c∗d(uT, uT, vT)c,

where c∗ = c =


sup

i

m∑
j=1
|bi j|

 0

0

sup
i

m∑
j=1
|bi j|


 with c ≺ I2. By Theorem 3.1, the system (4.1) has a

unique solution. �

The following is a numerical illustration of Theorem 4.1.

Example 4.1. Consider a system of linear equations in 4 variables as
0.8u1 + 0.1u2 + 0.3u3 + 0.2u4 = 6

0.4u1 + u2 + 0.3u3 + 0.2u4 = 1

0.2u1 + 0.1u2 + 0.9u3 + 0.5u4 = 2

0.1u1 + 0.2u2 + 0.3u3 + 0.7u4 = 7

(4.2)

Comparing (4.2) with (4.1) for Theorem 4.1, we have b11 = −0.8 + 1 = 0.2, b12 = −0.1, b13 = −0.3, b14 =

−0.2, b21 = −0.4, b22 = −1 + 1 = 0, b23 = −0.3, b24 = −0.2, b31 = −0.2, b32 = −0.1, b33 = −0.9 + 1 =

0.1, b34 = −0.5, b41 = −0.1, b42 = −0.2, b43 = −0.3, b44 = −0.7 + 1 = 0.3 such that sup
1≤i≤4

4∑
j=1
|bi j| =

0.9 < 1. So, the system (4.2) has a unique solution and which is given by u1 u −6.942, u2 u 2.470, u3 u

5.831, u4 u −12.213.

We know that linear dependence in a system of equations reduces the effective number of

constraints imposed by the system, allowing for a broader range of solutions and ultimately

leading to an infinite number of possible solutions. But, checking for linear dependence in a

system of equations can indeed be challenging at times, especially for larger systems or when

the relationships between equations are not immediately apparent. To address these challenges,

computational tools and algorithms are often employed. These tools use mathematical methods

such as Gaussian elimination, matrix row reduction, or singular value decomposition to analyze

the system and determine linear dependence. While these methods provide accurate results, they

may still require expertise and careful interpretation, particularly in more complex scenarios. The

example below explains the easiness of our result to check the nonunique existence of solutions.
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Example 4.2. Consider a system of linear equations in 4 variables as
0.8u1 + 0.1u2 + 0.3u3 + 0.2u4 = 6

0.4u1 + u2 + 0.3u3 + 0.2u4 = 1

0.2u1 + 0.1u2 + 0.9u3 + 0.5u4 = 2

0.1u1 + 0.05u2 + 0.45u3 + 0.25u4 = 1

(4.3)

This system has infinitely many solutions because the third equation is a constant multiple of the fourth
equation, indicating a linear dependency among the equations.

Now calculating sup
1≤i≤4

4∑
j=1
|bi j|, we see the supremum value is 1.35. So, the system (4.3) violates the criteria

of Theorem 4.1.

5. Conclusions and FutureWork

In this study, we began by defining novel concepts such as C∗−algebra valued Branciari

Sb−metric space and C∗−algebra valued extended Branciari Sb−metric space, emphasizing the

role of symmetry. Through a detailed exposition, we demonstrated that the latter serves as a com-

prehensive generalization encompassing all previously known C∗−algebra valued metric spaces,

integrating symmetric properties. Utilizing an illustrative example, we elucidated the broader ap-

plicability and scope of C∗−algebra valued extended Branciari Sb−metric spaces. Our exploration

extended beyond mere definitions, culminating in the derivation of consequential corollaries and

the establishment of two pivotal theorems. These theorems bear resemblance to renowned results

like Banach and Kannan theorems, further underlining the significance and relevance of our gen-

eralized metric spaces in mathematical discourse, with a special focus on symmetry. Moreover,

we delved into practical implications by demonstrating how our theoretical framework can be

effectively applied. Specifically, we showcased the utility of our results in verifying the unique ex-

istence of solutions within algebraic systems of linear equations, highlighting the tangible impact

and applicability of our research in real-world problem-solving contexts.

In future work authors can try to generalize our results which are analogous to the very famous

Chatterjea, Ćirić, Reich, Hardy-Roger, etc. type theorems in our generalized symmetric metric

spaces.

Open Problem. A variety of fixed point solutions using rational and product terms, such as inter-

polative contraction, integral type contraction, (α, β, F∗) and (α, β, F∗∗)−weak Geraghty contraction,

etc. (for more contractions, see [11]) can be studied because avBSbMS and aveBSbMS are relatively

new spaces.
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[23] Y. Rohen, T. Došenović, S. Radenović, A Note on the Paper "A Fixed point Theorems in Sb−Metric Space", Filomat,

31 (2017), 3335–3346. https://www.jstor.org/stable/26195059.

[24] C. Kalaivani, G. Kalpana, Fixed Point Theorems in C∗−Algebra Valued S-Metric Spaces with Some Applications,

U.P.B. Sci. Bull. Ser. A, 80 (2018), 93–102.

[25] K. Roy, M. Saha, Branciari Sb−Metric Space and Related Fixed Point Theorems with an Application, Appl. Math.

E-Notes, 22 (2022), 8–17.

[26] T. Kamran, M. Samreen, Q. UL Ain, A Generalization of b-Metric Space and Some Fixed Point Theorems, Mathe-

matics. 5 (2017), 19. https://doi.org/10.3390/math5020019.

[27] M. Asim, M. Imdad, C∗−Algebra Valued Extended b−Metric Spaces and Fixed Point Results with an Application,

U.P.B. Sci. Bull. Ser. A, 82 (2020), 207–218.

[28] N. Mlaiki, Extended Sb−Metric Spaces, J. Math. Anal. 9 (2018), 124–135.

[29] A. Büyükkaya, A. Fulga, M. Öztürk, On Generalized Suzuki-Proinov Type (α, Z∗E)−Contractions in Modular

b-Metric Spaces, Filomat 37 (2023), 1207–1222. https://doi.org/10.2298/fil2304207b.

[30] K.H. Alam, Y. Rohen, A. Tomar, On Fixed Point and Its Application to the Spread of Infectious Diseases Model in

Mb
v−Metric Space, Math Meth. Appl. Sci. 47 (2024), 6489–6503. https://doi.org/10.1002/mma.9933.

[31] M.P. Singh, Y. Rohen, K.H. Alam, J. Ahmad, W. Emam, On Fixed Point and an Application of C∗−Algebra Valued

(α, β)−Bianchini-Grandolfi Gauge Contractions, AIMS Math. 9 (2024), 15172–15189. https://doi.org/10.3934/math.

2024736.

[32] K.H. Alam, Y. Rohen, An Efficient Iterative Procedure in Hyperbolic Space and Application to Non-Linear Delay

Integral Equation, J. Appl. Math. Comput. (2024). https://doi.org/10.1007/s12190-024-02134-z.

[33] K.H. Alam, Y. Rohen, N. Saleem, M. Aphane, A. Rzzaque, Convergence of Fibonacci-Ishikawa Iteration Procedure

for Monotone Asymptotically Nonexpansive Mappings, J Inequal Appl 2024 (2024), 81. https://doi.org/10.1186/

s13660-024-03156-8.

https://doi.org/10.1186/s13663-015-0471-6
https://doi.org/10.1515/math-2022-0461
https://doi.org/10.3390/math11244882
https://doi.org/10.3390/math11244882
https://doi.org/10.1501/commua1_0000000871
https://www.jstor.org/stable/26195059
https://doi.org/10.3390/math5020019
https://doi.org/10.2298/fil2304207b
https://doi.org/10.1002/mma.9933
https://doi.org/10.3934/math.2024736
https://doi.org/10.3934/math.2024736
https://doi.org/10.1007/s12190-024-02134-z
https://doi.org/10.1186/s13660-024-03156-8
https://doi.org/10.1186/s13660-024-03156-8

	1. Introduction
	2. Preliminaries
	3. Main Result
	4. Application
	5. Conclusions and Future Work
	Acknowledgments:
	Author Contributions:
	Data Availability:
	 Conflicts of Interest:

	References

