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Abstract. In this study, we consider a reaction-advection-diffusion partial differential equations (PDEs) in a plane domain

with missed boundary data. We applied both the KMF algorithm and the conjugate gradient method to reconstruct the

missed data by using the spectral element method. Several numerical examples were given illustrating the convergence

of the used algorithms.

1. Introduction

Reaction-advection-diffusion partial differential equations (PDEs) are are widely used to predict

several engineering phenomena such as population dynamics, nuclear reactors, and chemical

reaction processes. Introduced firstly in the twentieth century when modeling the dynamics of

population , they have been applied in several other phenomena such as climate change and

combustion by combining spreading, stirring, growth and decay. This work is a contribution

to the study of an inverse problem of reconstruction of boundary data from overdetermined

data on another part of the boundary of a domain, the underlying physical phenomenon being

governed by the reaction-advection-diffusion partial differential equation. The intuitive definition

of the inverse problem would consist of going back to the causes of a phenomenon based on its

effects in a given situation. More precisely, the prediction of the future state of a physical system,

knowing its current state, is the typical example of direct problem. There are a multitude of inverse

problems: for example, reconstructing the state past of the system knowing its current state (if

the corresponding physical phenomenon is irreversible), or the determination of parameters of

the system, knowing (part of) his evolution. This last problem is that of the identification of

parameters, frame in which enters our study. We consider a rectangular domain that it is filled
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by a fluid such that measurements are possible on the input boundary are possible, however, it

is not possible on the output one. Therefore, we aim to reproduce the unknown data on the out

boundary using the over data on the input boundary. Such process is called data completion. It is

not possible to resolve such problem trough direct methods since it is ill-posed, however, different

iterative methods were proposed to resolve this problem were proposed in the literature [1–5].

In this paper, we aim to reconstruct the missed data for reaction-advection-diffusion partial

differential equations (PDEs) in a two-dimensional domain. In the first step, we apply the KMF

(Kozlov, Maz’ya, Fomin) algorithm [3] that approximate the solution of our problem. In the second

step, we apply the conjugate gradient method to reconstruct that solution. Both algorithms were

illustrated using spectral element method and several numerical example were given.

2. Reaction-advection-diffusion partial differential equations

Consider an open bounded two-dimensional domain Ω such that ∂Ω = ∂Ω1 ∪ ∂Ω2 with ∂Ω1 ∩

∂Ω2 = ∅, mes(∂Ω1) , 0 and mes(∂Ω2) , 0. Assume that Ω is a rectangular conduct of a fluid such

that ∂Ω1 is a fixed wall (Figure 1).

~n~n
Ω

∂Ω1

∂Ω1

∂Ω2 ∂Ω2

Figure 1. Ω is rectangular conduct of a fluid with a fiwed wall ∂Ω1 containing all vertices.

We aim to identify the solution, y, of the following partial differential equation:
−∇ · (µ1∇y) + v · ∇y + µ2y = f in Ω,

y = g1 on ∂Ω1,

µ1
∂y
∂n

= ϕ on ∂Ω2.

(2.1)

f ∈ L2(Ω) describes the source function, µ1 describes the diffusion coefficient, µ2 describes the

reaction coefficient, and v = (v1, v2)T represents a vector field in L∞(Ω)2 describing the advection

coefficient. µ1 and µ2 assumed to be positive. Equation (2.1) is called reaction-advection-diffusion

partial differential equation (PDE). For more simplicity, we suppose that: div v = 0 and v · n = 0.

There are several approaches to regularizing poorly posed problems. Some of them transform this

ill-posed problem into a well-posed problem in adding a penalty term in order to avoid oscillating
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solutions. But generally effective regularization techniques consist of solving the poorly posed

problem by iterative methods and by choosing a suitable stopping criterion which determines an

optimal solution. The resolution of this problem relies on the duality technique; but to explain it

we need to recall the essential properties of the equation (2.1) with a homogeneous Dirichlet data.

This direct problem is well-posed, it has a unique solution and it can be solved by direct method.

The weak formulation of the system (2.1) is: find y in Y satisfying:

a(y, v) = l(v), ∀v ∈ V (2.2)

where Y and V are the spaces given as following

Y = {y ∈ H1(Ω) : y = g1 on ∂Ω1}, V = {ω ∈ H1(Ω) : ω = 0 on ∂Ω1}.

The bilinear form a(·, ·) is given by

a(y,ω) =

∫
Ω

(
µ1∇y · ∇ω + v · ∇yω+ µ2yω

)
dx,

and the linear form l(·) is given by

l(ω) =

∫
Ω

fω dx +

∫
∂Ω2

ϕω ds.

The aim of this section is to present the numerical resolution of system (2.1) by the spectral element

method (SEM) of a coercive variational boundary problem on a plane Ω regular domain. The

“exact” problem is only solvable between “natural” spaces for the data and the solutions: these

spaces are Sobolev spaces on the domain Ω and are of infinite dimension. As it is rare that

analytical solutions are accessible, to resolve a such a problem, we go through a discretization

which will bring back the resolution of the continuous problem to the resolution of a linear system.

Finite difference method, finite element method, spectral element method are all discretization

methods admissible for the problem considered. The numerical analysis of a method consists of

describing it, including its implementation, and also to evaluate to what extent the solution of the

discretized problem approaches the true solution. The mathematical goal of such an analysis is to

demonstrate the stability of the method and the convergence of the approximate solutions towards

the solution when the size of the system discretized tends towards infinity. The numerical goal

is to optimize the calculation time and the precision of the result. In the spectral element method

that we used here, the problem is discretized by “collocation” in points obtained from the Gauss-

Labatto points — which are the roots of polynomials derived from Legendre polynomials. This

discretization is equivalent to a Galerkin problem with numerical integration for a function space

of type polynomial in single domain or “piecewise polynomial” in multidomain. The parameter

natural of the discretization is the degree M of these polynomials.

We aim to use the spectral element method for the numerical resolution of the problem (2.1). Let

M to be the interpolation degree, xi
1 and xi

2, i = 1, · · · , M + 1 to be the Gauss-Lobatto Legendre
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points.

We define the weights for Legendre-Gauss-Lobatto numerical integration as:

wi =
2

M(M + 1)
1

L2
M(xi

1)
, i = 1, · · · , M + 1

Denote by yi j = y(xi
1, x j

2), and fi j = f (xi
1, x j

2), for i, j = 1, · · · , M + 1. Then y is expanded in terms

of the Lagrange interpolants based on the Legendre-Gauss-Lobatto points

yM(x1, x2) =
∑M+1

i, j=1 yi jηi(x1)η j(x2)

where ηi are the Lagrange interpolants.

The discrete weak formulation is as follows: Find yM ∈ Y
M satisfying

aM(yM,ωM) := DM(yM,ωM) + AM(yM,ωM) + RM(yM,ωM) = lM(ωM)

where the forms DM(yM,ωM) = (µ1 ∇yM,∇ωM)M, AM(yM,ωM) = (v · ∇yM,ωM)M, and

RM(yM,ωM) = (µ2 yM,ωM)M describe the diffusion, the advection and the reaction terms. The

discrete form of the inner product (·, ·)M is given as

(u, v)M =
M+1∑
i, j=1

wiw ju(xi
1, x j

2)v(x
i
1, x j

2).

For simplicity, we consider for all the rest that µ1 = µ2 = 1.

3. Inverse problem

Assume that the boundary ∂Ω2 = ∂Ωi
2 ∪ ∂Ωo

2 where ∂Ωi
2 ∩ ∂Ωo

2 = ∅, mes(∂Ω2)i , 0 and

mes(∂Ωo
2) , 0. Furthermore, assume that Ω is a channel where ∂Ω1 is a fixed wall, ∂Ωi

2 and ∂Ωo
2

are the input and output of Ω, respectively (Figure 2).

~n~n
Ω

∂Ω1

∂Ω1

∂Ωi
2 ∂Ωo

2

Figure 2. The domain Ω is rectangular such that∂Ω1 is a fixed wall, ∂Ωi
2 is accessible

for measurements however ∂Ωo
2 is not accessible. The outward unit normal vector

is denoted by ~n.
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Assume that we can obtain some exact data described by a Dirichlet condition (gi
2) and Neu-

mann condition (ϕi) on a part of the boundary (∂Ωi
2) and we aim to reconstruct the unknown data

on the other part of the boundary (∂Ωo
2).

Assume that for a given data ( f , g1,ϕi, gi
2) ∈ L2(Ω) ×H

1
2 (∂Ω1) × (H

1
2 (∂Ωi

2))
′
×H

1
2 (∂Ωi

2), we

have the incomplete problem:
−∆y + v.∇y + y = f in Ω

y = g1 on ∂Ω1
∂y
∂n

= ϕi, y = gi
2 on ∂Ωi

2

(3.1)

and assume that (ϕi, gi
2) are the trace and the normal derivative of a same solution y of the inverse

problem (3.1) (we say that (ϕi, gi
2) are compatible) that can be extended to ∂Ωo

2 obtaining the

reconstructed problem (3.1) defined as:

−∆y + v.∇y + y = f in Ω

y = g1 on ∂Ω1
∂y
∂n

= ϕi, y = gi
2 on ∂Ωi

2
∂y
∂n

= ϕo, y = go
2 on ∂Ωo

2

(3.2)

3.1. KMF algorithm. Several numerical methods were proposed to resolve ill-posed problems

similar to our problem (3.2). In our case, we reconsider in the first step the KMF (Kozlov, Maz’ya,

Fomin) algorithm [3] as used in several previous works [6–9]). This method consider two problems

and it resolve them by alternating them to approximate the unknown data on one part of the

boundary. Consider an arbitrary Dirichlet boundary condition ϑ0 ∈ H
1
2 (∂Ωo

2). Therefore, the KMF

algorithm is formulated as given in Figure 3.
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Initialisation of ϑ0

−∆y(0) + v.∇y(0) + y(0) = f in Ω

y(0) = g1 on ∂Ω1

∂y(0)

∂n
= ϕi on ∂Ωi

2

y(0) = ϑ0 on ∂Ωo
2

−∆y(2k−1) + v.∇y(2k−1) + y(2k−1) = f in Ω

y(2k−1) = g1 on ∂Ω1

y(2k−1) = gi
2 on ∂Ωi

2
∂y(2k−1)

∂n
= θ on ∂Ωo

2

−∆y(2k) + v.∇y(2k) + y(2k) = f in Ω

y(2k) = g1 on ∂Ω1

∂u(2k)

∂n
= ϕi on ∂Ωi

2

y(2k) = ϑ on ∂Ωo
2

Stop if ‖y(2k−1)
− y(2k)

‖ ≤ ε

ϑ
0

θ
=
∂

y(
0)

∂
n
| ∂

Ω
o 2

θ
=
∂

y(
2k
)

∂
n
| ∂

Ω
o 2

ϑ
=

y(
2k
−

1)
| ∂

Ω
o 2

Te
st

Figure 3. KMF algorithm design for reaction-advection-diffusion partial differen-

tial equations (PDEs) in a two-dimensional domain. Note that (ϕi, gi
2) are compat-

ible if (θ,ϑ) = (ϕo, go
2). The controlling test is applied on the norm ‖y(2k−1)

− y(2k)
‖

on the hole domain Ω.
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3.2. Minimisation approach and conjugate gradient method. With the aim to resolve the system

(3.2), (ϕo, go
2) can be approached by minimising an energy functional as studied for other partial

differential equations in [1, 6, 8, 10]. Assume that we have a given data (θ,ϑ), let consider the

following mixed problems given hereafter:
−∆y1 + v.∇y1 + y1 = f in Ω

y1 = g1 on ∂Ω1

y1 = gi
2 on ∂Ωi

2
∂y1

∂n
= θ on ∂Ωo

2

(3.3)


−∆y2 + v.∇y2 + y2 = f in Ω

y2 = g1 on ∂Ω1
∂y2

∂n
= ϕi on ∂Ωi

2

y2 = ϑ on ∂Ωo
2

(3.4)

Note that the solution y1 and y2 coincide only if the data (θ,ϑ) coincide with the real data (ϕo, go
2)

on the inaccessible boundary ∂Ωo
2. A good way to approach the real data is to solve this problem

by minimising an energy functional as the following:


(ϕo, go

2) = arg min
θ,ϑ

F(θ,ϑ)

F(θ,ϑ) := ‖y1 − y2‖
2
H1(Ω)

=

∫
Ω
(∇y1 −∇y2)

2 +

∫
Ω
(y1 − y2)

2

where y1 and y2 are the solutions of problems (3.3) and (3.4), respectively

(3.5)

The functional F(θ,ϑ) is a convex quadratic positive functional admitting an absolute minimum

at y1 = y2.

For simplicity, we consider the case where v ≡ 0 and we reproduce the calculus given in [1]. As y1

and y2 are solutions of systems (3.3) and (3.4), we can derive a simple expression of the functional

F as follows:

F(θ,ϑ) = −

∫
Ω

∆(y1 − y2)(y1 − y2) +

∫
∂Ωo

2

(θ−
∂y2

∂n
)(y1 − ϑ)

+

∫
∂Ωi

2

(
∂y1

∂n
−ϕi)(gi

2 − y2) +

∫
Ω
(y1 − y2)

2

=

∫
∂Ωo

2

(θ−
∂y2

∂n
)(y1 − ϑ) +

∫
∂Ωi

2

(
∂y1

∂n
−ϕi)(gi

2 − y2)

For a given data (θ,ϑ), we obtain the partial derivatives of F as the following:

∂F(θ,ϑ)
∂θ

ψ =

∫
∂Ωo

2

[y1 − ϑ]ψ+

∫
∂Ωi

2

∂ξ1

∂n
[gi

2 − y2]

∂F(θ,ϑ)
∂ϑ

h =

∫
∂Ωo

2

[
∂y2

∂n
− θ]h +

∫
∂Ωi

2

[ϕi
−
∂y1

∂n
]ξ2

(3.6)

for all (h,ψ) ∈ H1/2
00 (∂Ωo

2)×H−1/2
00 (∂Ωo

2) with ξ1 and ξ2 are the solution of the following systems

that are depending on the directions ψ and h:
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−∆ξ1 + ξ1 = 0 on Ω

ξ1 = 0 on ∂Ω1

ξ1 = 0 on ∂Ωi
2

∂ξ1

∂n
= ψ on ∂Ωo

2

(3.7)


−∆ξ2 + ξ2 = 0 in Ω

ξ2 = 0 on ∂Ω1
∂ξ2

∂n
= 0 on ∂Ωi

2

ξ2 = h on ∂Ωo
2

(3.8)

The expressions (3.6) can be simplified by using adjoint states, denoted by ω1 and ω2 as in the

following Proposition.

Proposition 3.1.

∂F(θ,ϑ)
∂θ

ψ = −2
∫
∂Ωo

2

ω1ψ and
∂F(θ,ϑ)
∂ϑ

h = −2
∫
∂Ωo

2

∂ω2

∂n
h,

where ω1 and ω2 are the solutions of the following systems:
−∆ω1 +ω1 = 0 in Ω

ω1 = 0 on ∂Ω1

ω1 = 0 on ∂Ωi
2

∂ω1

∂n
=

∂y2

∂n
− θ on ∂Ωo

2


−∆ω2 +ω2 = 0 in Ω

ω2 = 0 on ∂Ω1
∂ω2

∂n
= 0 on ∂Ωi

2

ω2 = y1 − ϑ on ∂Ωo
2

Proof. A classical calculus conduct us to the following forms of the gradient components:

∂F(θ,ϑ)
∂θ

ψ = 2
∫

Ω
(∇y1 −∇y2)∇ξ1 + 2

∫
Ω
(y1 − y2)ξ1

= −2
∫

Ω
(∆y1 − ∆y2)ξ1 + 2

∫
∂Ωo

2

(
∂y1

∂n
−
∂y2

∂n
)ξ1 + 2

∫
Ω
(y1 − y2)ξ1

= 2
∫
∂Ωo

2

(
∂y1

∂n
−
∂y2

∂n
)ξ1 = 2

∫
∂Ωo

2

(θ−
∂y2

∂n
)ξ1 = −2

∫
∂Ωo

2

∂ω1

∂n
ξ1

= −2
∫

Ω
∇ω1∇ξ1 − 2

∫
Ω

∆ω1ξ1 = −2
∫

Ω
∇ω1∇ξ1 − 2

∫
Ω
ω1ξ1

= 2
∫

Ω
∆ξ1ω1 − 2

∫
∂Ωo

2

∂ξ1

∂n
ω1 − 2

∫
Ω
ξ1ω1 = −2

∫
∂Ωo

2

∂ξ1

∂n
ω1

= −2
∫
∂Ωo

2

ω1ψ,

and

∂F(θ,ϑ)
∂ϑ

h = −2
∫

Ω
(∇y1 −∇y2)∇ξ2 − 2

∫
Ω
(y1 − y2)ξ2

= 2
∫

Ω
∆ξ2(y1 − y2) − 2

∫
∂Ωo

2

∂ξ2

∂n
(y1 − y2) − 2

∫
Ω
(y1 − y2)ξ2

= −2
∫
∂Ωo

2

∂ξ2

∂n
(y1 − y2) = −2

∫
∂Ωo

2

∂ξ2

∂n
(y1 − ϑ) = −2

∫
∂Ωo

2

∂ξ2

∂n
ω2

= −2
∫

Ω
∆ξ2ω2 − 2

∫
Ω
∇ξ2∇ω2 = −2

∫
Ω
ξ2ω2 + 2

∫
Ω
ξ2∆ω2 − 2

∫
∂Ωo

2

∂ω2

∂n
ξ2

= −2
∫

Ω
ξ2ω2 + 2

∫
Ω
ξ2ω2 − 2

∫
∂Ωo

2

∂ω2

∂n
ξ2 = −2

∫
∂Ωo

2

∂ω2

∂n
ξ2 = −2

∫
∂Ωo

2

∂ω2

∂n
h.
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The conjugate gradient method is an iterative method for solving an equation Ax = b, with A a

positive definite symmetric matrix, or, equivalently, to find the minimum of the function Ψ(x):

Ψ(x) =
1
2

xtAx− btx.

The minimisation of Ψ is successfully reached if the gradient of Ψ given by ∇Ψ(x) = Ax− b is zero.

The approach is based on subdivision of the state into compartments as follows:

y1 = y0
1 + y∗1, y2 = y0

2 + y∗2

with y∗1, y∗2, y0
1 and y0

2 are solutions of the following partial differential equations



−∆y∗1 + y∗1 = 0 in Ω

y∗1 = 0 on ∂Ω1

y∗1 = 0 on ∂Ωi
2

∂y∗1
∂n

= θ on ∂Ωo
2

(3.9)



−∆y∗2 + y∗2 = 0 in Ω

y∗2 = 0 on ∂Ω1
∂y∗2
∂n

= 0 on ∂Ωi
2

y∗2 = ϑ on ∂Ωo
2

(3.10)



−∆y0
1 + y0

1 = f in Ω

y0
1 = g on ∂Ω1

y0
1 = gi

2 on ∂Ωi
2

∂y0
1

∂n
= 0 on ∂Ωo

2

(3.11)



−∆y0
2 + y0

2 = f in Ω

y0
2 = g on ∂Ω1

∂y0
2

∂n
= ϕi on ∂Ωi

2

y0
2 = 0 on ∂Ωo

2

(3.12)

Similarly, we divide the adjoint states as followss:

ω1 = ω0
1 +ω∗1, ω2 = ω0

2 +ω∗2

whith ω∗1,ω∗2,ω0
1 and ω0

2 in H1(Ω) are solutions of the following partial differential equations:



−∆ω∗1 +ω∗1 = 0 in Ω

ω∗1 = 0 on ∂Ω1

ω∗1 = 0 on ∂Ωi
2

∂ω∗1
∂n

=
∂y∗2
∂n
− θ on ∂Ωo

2

(3.13)



−∆ω∗2 +ω∗2 = 0 in Ω

ω∗2 = 0 on ∂Ω1
∂ω∗2
∂n

= 0 on ∂Ωi
2

ω∗2 = y∗1 − ϑ on ∂Ωo
2

(3.14)



−∆ω0
1 +ω0

1 = 0 in Ω

ω0
1 = 0 on ∂Ω1

ω0
1 = 0 on ∂Ωi

2
∂ω0

1

∂n
=

∂y0
2

∂n
on ∂Ωo

2

(3.15)



−∆ω0
2 +ω0

2 = 0 in Ω

ω0
2 = 0 on ∂Ω1

∂ω0
2

∂n
= 0 on ∂Ωi

2

ω0
2 = y0

1 on ∂Ωo
2.

(3.16)
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Let the linear operator A given by

∀(θ,ϑ) ∈ H−
1
2

00 (∂Ωo
2) ×H

1
2
00(∂Ωo

2), A(θ,ϑ)T = −
(
ω∗1(θ,ϑ)|∂Ωo

2
,
∂ω∗2(θ,ϑ)

∂n
|∂Ωo

2

)T
.

Proposition 3.2. (1) The functional, F, is expressed as follows

∀(θ,ϑ) ∈ H−
1
2

00 (∂Ωo
2) ×H

1
2
00(∂Ωo

2), F(θ,ϑ) = (θ,ϑ)A(θ,ϑ)T
− 2b(θ,ϑ)T + c

with b =
(
ω0

1|∂Ωo
2
,
∂ω0

2

∂n
|∂Ωo

2

)
, and c be a constant doesn’t depend on (θ,ϑ).

(2) The operator A is symmetric, positive, and definite.

Proof.

F(θ,ϑ) =
∫

Ω
(∇y1 −∇y2)

2 +

∫
Ω
(y1 − y2)

2

= −

∫
Ω
(∆y1 − ∆y2)(y1 − y2) +

∫
∂Ωi

2∪∂Ωo
2

(
∂y1

∂n
−
∂y2

∂n
)(y1 − y2) +

∫
Ω
(y1 − y2)

2

=

∫
∂Ωi

2

(
∂y1

∂n
−
∂y2

∂n
)(y1 − y2) +

∫
∂Ωo

2

(
∂y1

∂n
−
∂y2

∂n
)(y1 − y2)

=

∫
∂Ωi

2

(
∂y1

∂n
−ϕi)(gi

2 − y2) +

∫
∂Ωo

2

(θ−
∂y2

∂n
)(y1 − ϑ)

=

∫
∂Ωi

2

(
∂y1

∂n
gi

2 −ϕ
igi

2 + ϕiy2 −
∂y1

∂n
y2) +

∫
∂Ωo

2

(θ−
∂y2

∂n
)(y1 − ϑ)

By using Green formula for the expression
∂y1

∂n
y2, we deduce that

∫
∂Ωi

2

∂y1

∂n
y2 =

∫
Ω

∆y1y2 +

∫
Ω
∇y1∇y2 −

∫
∂Ωo

2

∂y1

∂n
y2 −

∫
∂Ω1

∂y1

∂n
y2

=

∫
Ω
(y1 − f )y2 −

∫
Ω

y1∆y2 +

∫
∂Ωi

2

∂y2

∂n
y1 +

∫
∂Ωo

2

∂y2

∂n
y1 +

∫
∂Ω1

∂y2

∂n
y1

−

∫
∂Ωo

2

θϑ−

∫
∂Ω1

∂y1

∂n
g

=

∫
Ω
(y1 − f )y2 −

∫
Ω

y1(y2 − f ) +
∫
∂Ωi

2

∂y2

∂n
y1 +

∫
∂Ωo

2

∂y2

∂n
y1

+

∫
∂Ω1

∂y2

∂n
y1 −

∫
∂Ωo

2

θϑ−

∫
∂Ω1

∂y1

∂n
g

=

∫
Ω

f (y1 − y2) +

∫
∂Ωi

2

ϕigi
2 +

∫
∂Ωo

2

(
∂y2

∂n
y1 − θϑ) +

∫
∂Ω1

(
∂y2

∂n
−
∂y1

∂n
)g.

Therefore, the functional, F, becomes

F(θ,ϑ) =

∫
∂Ωi

2

(
∂y1

∂n
gi

2 −ϕ
igi

2 + ϕiy2 −
∂y1

∂n
y2) +

∫
∂Ωo

2

(θ−
∂y2

∂n
)(y1 − ϑ)

= −

∫
Ω

f (y1 − y2) +

∫
∂Ω1

(
∂y1

∂n
−
∂y2

∂n
)g +

∫
∂Ωi

2

(
∂y1

∂n
gi

2 − 2ϕigi
2 + ϕiy2)

+

∫
∂Ωo

2

(θ−
∂y2

∂n
)(y1 − ϑ) +

∫
∂Ωo

2

(θϑ−
∂y2

∂n
y1)
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= −

∫
Ω

f (y1 − y2) +

∫
∂Ω1

(
∂y1

∂n
−
∂y2

∂n
)g +

∫
∂Ω2

(
∂y1

∂n
y0

1 − 2ϕigi
2 +

∂y0
2

∂n
y2)

+

∫
∂Ωo

2

(θ−
∂y2

∂n
)(y1 − ϑ) +

∫
∂Ωo

2

(θϑ−
∂y2

∂n
y1).

Again, by using Green formula for the terms
∂y1

∂n
y0

1 and
∂y0

2

∂n
y2, we deduce that

∫
∂Ω2

∂y1

∂n
y0

1 =

∫
Ω

f (y1 − y0
1) +

∫
∂Ωi

2

∂y0
1

∂n
gi

2 +

∫
∂Ω1

(
∂y0

1

∂n
−
∂y1

∂n
)g−

∫
∂Ωo

2

θy0
1,

and ∫
∂Ωi

2

∂y0
2

∂n
y2 =

∫
Ω

f (y0
2 − y2) +

∫
∂Ωi

2

ϕiy0
2 +

∫
∂Ω1

(
∂y2

∂n
−
∂y0

2

∂n
)g1 −

∫
∂Ωo

2

ϑ
∂y0

2

∂n
.

Therefore, the expression of the functional F can reduced as follows:

F(θ,ϑ) =

∫
Ω

f (y0
2 − y0

1) +

∫
∂Ωi

2

(
∂y0

1

∂n
gi

2 − 2ϕigi
2 + ϕiy0

2)

+
∫
∂Ω1

(
∂y1

∂n
−
∂y2

∂n
+
∂y2

∂n
−
∂y0

2

∂n
+
∂y0

1

∂n
−
∂y1

∂n
)g1

+

∫
∂Ωo

2

[
(θ−

∂y2

∂n
)(y1 − ϑ) + (θϑ−

∂y2

∂n
y1) − θy0

1 − ϑ
∂y0

2

∂n

]
=

∫
Ω

f (y0
2 − y0

1) +

∫
∂Ωi

2

(
∂y0

1

∂n
gi

2 − 2ϕigi
2 + ϕiy0

2) +

∫
∂Ω1

(
∂y0

1

∂n
−
∂y0

2

∂n
)g1

+

∫
∂Ωo

2

[
θ(y1 − y0

1) + ϑ(
∂y2

∂n
−
∂y0

2

∂n
) − 2

∂y2

∂n
y1

]

Let c =
∫

Ω
f (y0

2 − y0
1) +

∫
∂Ωi

2

(
∂y0

1

∂n
gi

2 − 2ϕigi
2 +ϕ

iy0
2) +

∫
∂Ω1

(
∂y0

1

∂n
−
∂y0

2

∂n
)g− 2

∫
∂Ωo

2

∂y0
2

∂n
y0

1, and since

y1 = y∗1 + y0
1 and y2 = y∗2 + y0

2, then we deduce the new form of the functional F as follows

F(θ,ϑ) =

∫
Ω

f (y0
2 − y0

1) +

∫
∂Ωi

2

(
∂y0

1

∂n
gi

2 − 2ϕigi
2 + ϕiy0

2) +

∫
∂Ω1

(
∂y0

1

∂n
−
∂y0

2

∂n
)g

+

∫
∂Ωo

2

[
θy∗1 + ϑ

∂y∗2
∂n
− 2(

∂y∗2
∂n

+
∂y0

2

∂n
)(y∗1 + y0

1)
]

=

∫
Ω

f (y0
2 − y0

1) +

∫
∂Ωi

2

(
∂y0

1

∂n
gi

2 − 2ϕigi
2 + ϕiy0

2) +

∫
∂Ω1

(
∂y0

1

∂n
−
∂y0

2

∂n
)g

−2
∫
∂Ωo

2

∂y0
2

∂n
y0

1 − 2
∫
∂Ωo

2

(
∂y∗2
∂n

y0
1 +

∂y0
2

∂n
y∗1) +

∫
∂Ωo

2

[
θy∗1 + ϑ

∂y∗2
∂n
− 2

∂y∗2
∂n

y∗1

]
= c− 2

∫
∂Ωo

2

(
∂y∗2
∂n

y0
1 +

∂y0
2

∂n
y∗1) +

∫
∂Ωo

2

[
θy∗1 + ϑ

∂y∗2
∂n
− 2

∂y∗2
∂n

y∗1

]
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= c− 2
∫
∂Ωo

2

(
∂y∗2
∂n

ω0
2 +

∂ω0
1

∂n
y∗1) +

∫
∂Ωo

2

[
(θ−

∂y∗2
∂n

)y∗1 + (ϑ− y∗1)
∂y∗2
∂n

]
= c− 2

∫
∂Ωo

2

(
∂y∗2
∂n

ω0
2 +

∂ω0
1

∂n
y∗1) −

∫
∂Ωo

2

[∂ω∗1
∂n

y∗1 +ω∗2
∂y∗2
∂n

]
.

Again, by using Green formula for the expressions
∂y∗2
∂n

ω0
2,
∂ω0

1

∂n
y∗1,

∂ω∗1
∂n

y∗1 and ω∗2
∂y∗2
∂n

, we obtain∫
∂Ωo

2

∂y∗2
∂n

ω0
2 =

∫
Ω

∆y∗2ω
0
2 +

∫
Ω
∇y∗2∇ω

0
2 =

∫
Ω

y∗2ω
0
2 −

∫
Ω

y∗2∆ω0
2 +

∫
∂Ωo

2

∂ω0
2

∂n
y∗2 =

∫
∂Ωo

2

∂ω0
2

∂n
ϑ,

∫
∂Ωo

2

∂ω0
1

∂n
y∗1 =

∫
Ω

∆ω0
1y∗1 +

∫
Ω
∇ω0

1∇y∗1 =

∫
Ω
ω0

1y∗1 −
∫

Ω
ω0

1∆y∗1 +
∫
∂Ωo

2

∂y∗1
∂n

ω0
1 =

∫
∂Ωo

2

θω0
1,

∫
∂Ωo

2

∂ω∗1
∂n

y∗1 =

∫
Ω

∆ω∗1y∗1 +
∫

Ω
∇ω∗1∇y∗1 =

∫
Ω
ω∗1y∗1 −

∫
Ω
ω∗1∆y∗1 +

∫
∂Ωo

2

∂y∗1
∂n

ω∗1 =

∫
∂Ωo

2

θω∗1,

and∫
∂Ωo

2

∂y∗2
∂n

ω∗2 =

∫
Ω

∆y∗2ω
∗

2 +

∫
Ω
∇y∗2∇ω

∗

2 =

∫
Ω

y∗2ω
∗

2 −

∫
Ω

y∗2∆ω∗2 +
∫
∂Ωo

2

∂ω∗2
∂n

y∗2 =

∫
∂Ωo

2

ϑ
∂ω∗2
∂n

.

Therefore, the expression of the functional, F, reduces to

F(θ,ϑ) = c− 2
∫
∂Ωo

2

(θω0
1 + ϑ

∂ω0
2

∂n
) −

∫
∂Ωo

2

(θω∗1 + ϑ
∂ω∗2
∂n

) = c− 2b(θ,ϑ)T + (θ,ϑ)A(θ,ϑ)T.

In order to prove that A is symmetric, let (θ,ϑ), (ψ, h) ∈ H−
1
2

00 (∂Ωo
2) ×H

1
2
00(∂Ωo

2). Therefore,(
A(θ,ϑ)T, (ψ, h)T

)
=

∫
Ω
(∇y∗1(θ,ϑ) −∇y∗2(θ,ϑ))(∇y∗1(ψ, h) −∇y∗2(ψ, h))

+

∫
Ω
(y∗1(θ,ϑ) − y∗2(θ,ϑ))(y∗1(ψ, h) − y∗2(ψ, h))

=

∫
Ω
(∇y∗1(ψ, h) −∇y∗2(ψ, h))(∇y∗1(θ,ϑ) −∇y∗2(θ,ϑ))

+

∫
Ω
(y∗1(ψ, h) − y∗2(ψ, h))(y∗1(θ,ϑ) − y∗2(θ,ϑ))

=
(
(θ,ϑ)T, A(ψ, h)T

)
.

It remains to prove that the operator A is a positive and definite. Let (θ,ϑ) , (0, 0) thus(
A(θ,ϑ)T, (θ,ϑ)T

)
=

∫
Ω
(∇y∗1 −∇y∗2)

2 +

∫
Ω
(y∗1 − y∗2)

2
≥ 0.

Assume that
(
A(θ,ϑ)T, (θ,ϑ)T

)
= 0 then y∗1 = y∗2 thus

(
y∗1(θ,ϑ)|∂Ωi

2
,
∂y∗1(θ,ϑ)

∂n
|∂Ωi

2

)
= (0, 0) there-

fore, by applying Holmgren’s uniqueness theorem, we obtain y∗1 = y∗2 = 0 which is impossible

since
(
y∗1(θ,ϑ)|∂Ωo

2
,
∂y∗2(θ,ϑ)

∂n
|∂Ωo

2

)
, (0, 0). Therefore,

(
A(θ,ϑ), (θ,ϑ)T

)
> 0. �

The Conjugate Gradient (CG) will be applied as follows:
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(1) Solve dynamics (3.11)-(3.12)-(3.15)-(3.16).

(2) Choose an arbitrary initial data z0 = (θ0,ϑ0). Solve the dynamics (3.9)-(3.10)-(3.13)-(3.14)

and calculate p0 = Az0 − b.

(3) Set q0 = −p0.

(4) For i = 0, 1, 2, ..., calculate



λi =
pT

i pi

qT
i Aqi

zi+1 = zi + λiqi

pi+1 = pi + λiAqi

βi+1 =
pT

i+1pi+1

pT
i pi

qi+1 = −pi+1 + βi+1qi

(5) Solve the dynamics (3.9)-(3.10)-(3.13)-(3.14) and calculate Aqi+1.

(6) Stop if pi ≈ 0.

4. Numerical simulations

Recall that our goal is to reconstruct the missed data on the boundary for reaction-advection-

diffusion partial differential equations (PDEs). In this section, we aim to give several numerical

examples that perform the numerical method discussed previously using the spectral element

method (SEM) to resolve the direct problem and then the data completion problem. The algorithm

is based on an energy error functional minimization by applying the conjugate gradient method.

We shall resolve four systems (3.11)-(3.12)-(3.15)-(3.16) and then four other systems (3.9)-(3.10)-

(3.13)-(3.14) for every iteration. Note that the KMF’s algorithm resolve only two systems and thus

it is not expensive compared to the energy error functional minimization. The necessary itera-

tion’s number of the KMF algorithm to converge will be smaller that the one used by the conjugate

gradient method. The number of nodes(Polynomial degree) was fixed to M = 18 and the maximal

number of iterations for both algorithms is fixed to Nt = 3000.

In the first example, we consider the exact solution given by y(x1, x2) = (x2
1 + 2x1 − 8)(x2

2 − 4)

defined on a rectangular domain Ω = [−2, 3] × [−4, 5] with µ1 = 1, µ2 = 2, v1 = 2 and v2 = 2.

Therefore, the source function is given by f (x1, x2) = −2µ1(x2
1 + 2x1 − 8) − 2µ1(x2

2 − 4) + µ2(x2
1 +

2x1 − 8)(x2
2 − 4) + 2v1(x1 + 1)(x2

2 − 4) + 2v2x2(x2
1 + 2x1 − 8) with the boundary conditions gi

2(x2) =

7(x2
2 − 4) and ϕi(x2) = 8(x2

2 − 4).
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Figure 4. loglog plot of the L2-relative errors on the missed boundary of the

reconstructed solutions (left) using KMF algorithm. Solution on the missed

boundary (right) for the first example where the exact solution is given by

y(x1, x2) = (x2
1 + 2x1 − 8)(x2

2 − 4) on the rectangular domain Ω = [−2, 3] × [−4, 5]

with µ1 = 1, µ2 = 2, v1 = 2 and v2 = 2. Therefore, the source function is given by

f (x1, x2) = −2µ1(x2
1 + 2x1 − 8) − 2µ1(x2

2 − 4) + µ2(x2
1 + 2x1 − 8)(x2

2 − 4) + 2v1(x1 +

1)(x2
2 − 4) + 2v2x2(x2

1 + 2x1 − 8) with the boundary conditions gi
2(x2) = 7(x2

2 − 4)

and ϕi(x2) = 8(x2
2 − 4).

Figure 4 (left) presents the L2-error between exact solution and the approximated one using

the KMF algorithm. Figure 4 (right) presents the reconstructed data trough the KMF algorithm

on the missed boundary, ∂Ωo
2. One can seen that the recovered data is close to the exact one.

Figure 5 presents the gap between exact and recovered solution using the KMF algorithm. Figure

5 (left) presents the gap between the exact and the odd iterative solution. Figure 5 (right) presents

the gap between the exact and the even iterative solution. In the second example, the domain

is the square Ω = [0, 1]2 and we considered v = (v1, v2), where v1 = −x1(x1 − 1)(2x2 − 1) and

v2 = x2(x2 − 1)(2x1 − 1)) and v verifies the assumptions div v = 0 in Ω and v · n = 0 on ∂Ω.

One can easily verify that y(x1, x2) := 4πe(x1+x2) is solution of system (2.1) where f (x1, x2) =

(µ1 + v1 + v2 + µ2)y(x1, x2) with µ1 = 1 and µ2 = 2. The boundary conditions are given by

gi
2(x2) = 4πex2 and ϕi(x2) = −4πex2 .
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Figure 5. Gap between exact and recovered solution using KMF algorithm for the

first example where the exact solution is given by y(x1, x2) = (x2
1 + 2x1 − 8)(x2

2 − 4)

on the rectangular domain Ω = [−2, 3] × [−4, 5] with µ1 = 1, µ2 = 2, v1 = 2 and

v2 = 2. Therefore, the source function is given by f (x1, x2) = −2µ1(x2
1 + 2x1 − 8) −

2µ1(x2
2 − 4) + µ2(x2

1 + 2x1 − 8)(x2
2 − 4) + 2v1(x1 + 1)(x2

2 − 4) + 2v2x2(x2
1 + 2x1 − 8)

with the boundary conditions gi
2(x2) = 7(x2

2 − 4) and ϕi(x2) = 8(x2
2 − 4).

Figure 8. loglog plot of the L2-relative errors on the missed boundary of the recon-

structed solutions (left). Solution on the missed boundary (right) for the second

example where the exact solution is given by y(x1, x2) = 4πe(x1+x2) on the rectangu-

lar domain Ω = [0, 1]2 with v1 = −x1(x1 − 1)(2x2 − 1) and v2 = x2(x2 − 1)(2x1 − 1)).

Therefore, the source function is given by f (x1, x2) = (µ1 + v1 + v2 + µ2)y(x1, x2)

with the boundary conditions given by gi
2(x2) = 4πex2 and ϕi(x2) = −4πex2 .
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Figure 6. loglog plot of the L2-relative errors on the missed boundary of the re-

constructed solutions (left) using conjugate gradient method. Solution on the

missed boundary (right) for the first example where the exact solution is given

by y(x1, x2) = (x2
1 + 2x1 − 8)(x2

2 − 4) on the rectangular domain Ω = [−2, 3]× [−4, 5]

with µ1 = 1, µ2 = 2, v1 = 2 and v2 = 2. Therefore, the source function is given by

f (x1, x2) = −2µ1(x2
1 + 2x1 − 8) − 2µ1(x2

2 − 4) + µ2(x2
1 + 2x1 − 8)(x2

2 − 4) + 2v1(x1 +

1)(x2
2 − 4) + 2v2x2(x2

1 + 2x1 − 8) with the boundary conditions gi
2(x2) = 7(x2

2 − 4)

and ϕi(x2) = 8(x2
2 − 4).

Figure 9. Gap between exact and recovered solution using KMF algorithm for

the second example where the exact solution is given by y(x1, x2) = 4πe(x1+x2)

on the rectangular domain Ω = [0, 1]2 with v1 = −x1(x1 − 1)(2x2 − 1) and v2 =

x2(x2 − 1)(2x1 − 1)). Therefore, the source function is given by f (x1, x2) = (µ1 +

v1 + v2 + µ2)y(x1, x2) with the boundary conditions given by gi
2(x2) = 4πex2 and

ϕi(x2) = −4πex2 .
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Figure 7. Gap between exact and recovered solution using conjugate gradient

method for the first example where the exact solution is given by y(x1, x2) =

(x2
1 + 2x1 − 8)(x2

2 − 4) on the rectangular domain Ω = [−2, 3] × [−4, 5] with µ1 = 1,

µ2 = 2, v1 = 2 and v2 = 2. Therefore, the source function is given by

f (x1, x2) = −2µ1(x2
1 + 2x1 − 8) − 2µ1(x2

2 − 4) + µ2(x2
1 + 2x1 − 8)(x2

2 − 4) + 2v1(x1 +

1)(x2
2 − 4) + 2v2x2(x2

1 + 2x1 − 8) with the boundary conditions gi
2(x2) = 7(x2

2 − 4)

and ϕi(x2) = 8(x2
2 − 4).

Figure 10. loglog plot of the L2-relative errors on the missed boundary of the

reconstructed solutions (left) using conjugate gradient method. Solution on the

missed boundary (right) for the second example where the exact solution is given

by y(x1, x2) = 4πe(x1+x2) on the rectangular domain Ω = [0, 1]2 with v1 = −x1(x1 −

1)(2x2 − 1) and v2 = x2(x2 − 1)(2x1 − 1)). Therefore, the source function is given

by f (x1, x2) = (µ1 + v1 + v2 + µ2)y(x1, x2) with the boundary conditions given by

gi
2(x2) = 4πex2 and ϕi(x2) = −4πex2 .
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Figure 11. Gap between exact and recovered solution using conjugate gradient

method for the second example where the exact solution is given by y(x1, x2) =

4πe(x1+x2) on the rectangular domain Ω = [0, 1]2 with v1 = −x1(x1 − 1)(2x2 − 1) and

v2 = x2(x2 − 1)(2x1 − 1)). Therefore, the source function is given by f (x1, x2) =

(µ1 + v1 + v2 + µ2)y(x1, x2) with the boundary conditions given by gi
2(x2) = 4πex2

and ϕi(x2) = −4πex2 .

5. Conclusion

In this article, we considered a reaction-advection-diffusion partial differential equations (PDEs)

in a two-dimensional domain with missed boundary data. We applied both the KMF algorithm

and the conjugate gradient method trough the minimisation of an energy functional to reconstruct

the missed data by using the spectral element method. We presented several numerical examples

describing the convergence of both used algorithms by reconstructing both, traces and normal

traces on the inaccessible boundary.

We aim in future works to resolve inverse problems applied to biological processes as described

in [11–16].
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