International Journal of Analysis and Applications

Slightly $(\tau_1, \tau_2)p$ -Continuous Multifunctions

Nongluk Viriyapong¹, Supannee Sompong², Chawalit Boonpok^{1,*}

¹Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

²Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand

*Corresponding author: chawalit.b@msu.ac.th

Abstract. Our main purpose is to introduce the concepts of upper and lower slightly $(\tau_1, \tau_2)p$ -continuous multifunctions. Moreover, several characterizations of upper and lower slightly $(\tau_1, \tau_2)p$ -continuous multifunctions are investigated.

1. INTRODUCTION

The concept of slightly continuous functions was introduced by Jain [35]. Nour [46] defined slightly semi-continuous functions as a weak form of slight continuity and investigated some characterizations of slightly semi-continuous functions. Noiri and Chae [45] have further investigated slightly semi-continuous functions. Pal and P. Bhattacharyya [47] introduced and studied the concept of faintly precontinuous functions. Slight continuity implies both slight semi-continuity and faint precontinuity. Duangphui et al. [32] introduced and investigated the notion of $(\mu, \mu')^{(m,n)}$ -continuous functions. Dungthaisong et al. [33] introduced and studied the notion of $g_{(m,n)}$ -continuous functions. Viriyapong and Boonpok [61] investigated some characterizations of (Λ, sp) -continuous functions by utilizing the notions of (Λ, sp) -open sets and (Λ, sp) -closed sets due to Boonpok and Khampakdee [19]. Moreover, some characterizations of almost (Λ, p) -continuous functions, strongly $\theta(\Lambda, p)$ -continuous functions, almost strongly $\theta(\Lambda, p)$ -continuous functions, $\theta(\star, p)$ -continuous functions, weakly (Λ, b) -continuous functions, $\theta(\star)$ -precontinuous functions, μ - \mathscr{I} -continuous functions, almost (τ_1, τ_2) -continuous functions, and weakly (τ_1, τ_2) -continuous functions, almost quasi (τ_1, τ_2) -continuous functions and weakly

Received: Jun. 24, 2024.

²⁰²⁰ Mathematics Subject Classification. 54C08, 54C60, 54E55.

Key words and phrases. $\tau_1\tau_2$ -open set; $(\tau_1, \tau_2)p$ -open set; upper slightly $(\tau_1, \tau_2)p$ -continuous multifunction; lower slightly $(\tau_1, \tau_2)p$ -continuous multifunction.

quasi (τ_1, τ_2) -continuous functions were presented in [52], [54], [7], [49], [9], [10], [8], [23], [29], [28], [3], [4], [5], [40] and [31], respectively. Noiri [44] introduced the notion of slightly β -continuous functions and studied the relationships between slight β -continuity, contra- β -continuity [30] and β -continuity [1]. Sangviset et al. [51] introduced the concept of slightly (m, μ) -continuous functions as functions from an *m*-space into a generalized topological space and investigated some characterizations of slightly (m, μ) -continuous functions.

In 2005, Ekici [34] introduced and studied the concepts of upper and lower slightly α -continuous multifunctions as a generalization of upper and lower α -continuous multifunctions, respectively, due to Neubrunn [42]. Viriyapong and Boonpok [62] introduced and investigated the concept of $(\tau_1, \tau_2)\alpha$ -continuous multifunctions. Laprom et al. [41] introduced and studied the notions of upper and lower $\beta(\tau_1, \tau_2)$ -continuous multifunctions. Furthermore, some characterizations of $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, almost weakly (τ_1, τ_2) -continuous multifunctions, \star continuous multifunctions, $\beta(\star)$ -continuous multifunctions, weakly quasi (Λ , *sp*)-continuous multifunctions, α -*-continuous multifunctions, almost α -*-continuous multifunctions, almost quasi *-continuous multifunctions, weakly α -*-continuous multifunctions, $s\beta(\star)$ -continuous multifunctions, weakly $s\beta(\star)$ -continuous multifunctions, $\theta(\star)$ -quasi continuous multifunctions, almost ι^* -continuous multifunctions, weakly (Λ, sp) -continuous multifunctions, $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\beta(\Lambda, sp)$ -continuous multifunctions, slightly (Λ , *sp*)-continuous multifunctions, (τ_1 , τ_2)-continuous multifunctions, almost (τ_1 , τ_2)continuous multifunctions, weakly (τ_1, τ_2) -continuous multifunctions, weakly quasi (τ_1, τ_2) continuous multifunctions, $s(\tau_1, \tau_2)p$ -continuous multifunctions and $c(\tau_1, \tau_2)$ -continuous multifunctions were investigated in [24], [20], [26], [21], [60], [6], [12], [25], [13], [15], [14], [18], [22], [11], [38], [17], [55], [16], [50], [39], [53], [48], [57] and [37], respectively. Noiri and Popa [43] introduced the notion of slightly *m*-continuous multifunctions and studied the relationships among *m*-continuity, almost *m*-continuity, weak *m*-continuity and slight *m*-continuity for multifunctions. Viriyapong et al. [58] introduced and investigated the concepts of upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions. Khampakdee et al. [36] introduced and studied the notions of upper and lower slightly (τ_1, τ_2) s-continuous multifunctions. Viriyapong et al. [56] introduced and investigated the concepts of upper and lower slightly $\alpha(\tau_1, \tau_2)$ -continuous multifunctions. In this paper, we introduce the notions of upper and lower slightly $(\tau_1, \tau_2)p$ -continuous multifunctions. In particular, several characterizations of upper and lower slightly $(\tau_1, \tau_2)p$ -continuous multifunctions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let *A* be a subset of a bitopological space (X, τ_1, τ_2) . The closure of *A* and the interior of *A* with respect to τ_i are denoted by τ_i -Cl(*A*) and τ_i -Int(*A*), respectively, for i = 1, 2. A subset *A* of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -*closed* [27] if $A = \tau_1$ -Cl $(\tau_2$ -Cl(A)). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -*open*. A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -*clopen* [27] if A is both $\tau_1\tau_2$ -open and $\tau_1\tau_2$ -closed. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -*closure* [27] of A and is denoted by $\tau_1\tau_2$ -Cl(A). The union of all $\tau_1\tau_2$ -open sets of X contained in A is called the $\tau_1\tau_2$ -*interior* [27] of A and is denoted by $\tau_1\tau_2$ -Int(A).

Lemma 2.1. [27] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ - $Cl(A) \subseteq \tau_1 \tau_2$ -Cl(B).
- (3) $\tau_1 \tau_2$ -*Cl*(*A*) *is* $\tau_1 \tau_2$ -*closed*.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1\tau_2$ - $Cl(X A) = X \tau_1\tau_2$ -Int(A).

A subset *A* of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [62] (resp. $(\tau_1, \tau_2)s$ -open [24], $(\tau_1, \tau_2)\beta$ -open [24]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)\beta$ -open, $(\tau_1, \tau_2)\beta$ -open) set is said to be $(\tau_1, \tau_2)r$ -closed, $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)\beta$ -closed. A subset *A* of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open set is called $\alpha(\tau_1, \tau_2)$ -closed. Let *A* be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $(\tau_1, \tau_2)p$ -closed sets of *X* containing *A* is called the $(\tau_1, \tau_2)p$ -closure of *A* and is denoted by (τ_1, τ_2) -pCl(A). The union of all $(\tau_1, \tau_2)p$ -open sets of *X* contained in *A* is called the $(\tau_1, \tau_2)p$ -interior of *A* and is denoted by (τ_1, τ_2) -pInt(A).

Lemma 2.2. For subsets A and B of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $A \subseteq (\tau_1, \tau_2)$ -*pCl*(*A*) and (τ_1, τ_2) -*pCl*((τ_1, τ_2) -*pCl*(*A*)) = (τ_1, τ_2) -*pCl*(*A*).
- (2) If $A \subseteq B$, then (τ_1, τ_2) - $pCl(A) \subseteq (\tau_1, \tau_2)$ -pCl(B).
- (3) (τ_1, τ_2) -*pCl*(*A*) is (τ_1, τ_2) *p*-closed.
- (4) A is (τ_1, τ_2) p-closed if and only if $A = (\tau_1, \tau_2)$ -pCl(A).
- (5) (τ_1, τ_2) -*pCl*(*X A*) = *X* (τ_1, τ_2) -*pInt*(*A*).
- (6) $x \in (\tau_1, \tau_2)$ -pCl(A) if and only if $A \cap U \neq \emptyset$ for every (τ_1, τ_2) p-open set U of X containing x.

By a multifunction $F : X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F : X \to Y$, following [2] we shall denote the upper and lower inverse of a set *B* of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$.

In particular, $F^{-}(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3. Upper and lower slightly $(\tau_1, \tau_2)p$ -continuous multifunctions

In this section, we introduce the notions of upper and lower slightly $(\tau_1, \tau_2)p$ -continuous multifunctions. Moreover, we investigate some characterizations of upper and lower slightly $(\tau_1, \tau_2)p$ continuous multifunctions.

Definition 3.1. A multifunction $F : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be:

- (i) upper slightly $(\tau_1, \tau_2)p$ -continuous at a point $x \in X$ if for each $\sigma_1\sigma_2$ -clopen set V of Y containing F(x), there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $F(U) \subseteq V$;
- (ii) upper slightly (τ_1, τ_2) *p*-continuous if *F* has this property at each point of *X*.

Theorem 3.1. For a multifunction $F : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F* is upper slightly (τ_1, τ_2) *p*-continuous;
- (2) $F^+(V)$ is (τ_1, τ_2) p-open in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (3) $F^{-}(V)$ is (τ_1, τ_2) p-closed in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (4) for each $x \in X$ and for each $\sigma_1 \sigma_2$ -clopen set V of Y such that $x \in F^+(V)$, there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $U \subseteq F^+(V)$;
- (5) for each $x \in X$ and for each $\sigma_1 \sigma_2$ -clopen set V of Y such that $x \in F^+(Y V)$, there exists a $(\tau_1, \tau_2)p$ -closed set H of X such that $x \in X H$ and $F^-(V) \subseteq H$;
- (6) $F^{-}(Y V)$ is (τ_1, τ_2) p-closed in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (7) $F^+(Y V)$ is (τ_1, τ_2) p-open in X for every $\sigma_1 \sigma_2$ -clopen set V of Y.

Proof. (1) \Rightarrow (2): Let *V* be any $\sigma_1\sigma_2$ -clopen set *V* of *Y* and $x \in F^+(V)$. Then, $F(x) \subseteq V$. Since *F* is upper slightly $(\tau_1, \tau_2)p$ -continuous, there exists a $(\tau_1, \tau_2)p$ -open set *U* of *X* containing *x* such that $F(U) \subseteq V$. Thus, $x \in U \subseteq F^+(V)$ and hence $x \in (\tau_1, \tau_2)$ -pInt $(F^+(V))$. Therefore, we have $F^+(V) \subseteq (\tau_1, \tau_2)$ -pInt $(F^+(V))$ and so $F^+(V)$ is $(\tau_1, \tau_2)p$ -open in *X*.

- (2) \Leftrightarrow (3): This follows from the fact that $F^{-}(Y B) = X F^{+}(B)$ for every subset *B* of *Y*.
- $(3) \Leftrightarrow (6) \Leftrightarrow (7)$: Obvious.

(2) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -clopen set V of Y containing F(x). Then, $x \in F^+(V) = (\tau_1, \tau_2)$ -pInt $(F^+(V))$. There exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $U \subseteq F^+(V)$. Thus, $F(U) \subseteq V$ and hence F is upper slightly $(\tau_1, \tau_2)p$ -continuous at x. This shows that F is upper slightly $(\tau_1, \tau_2)p$ -continuous.

 $(1) \Leftrightarrow (4) \Leftrightarrow (5)$: Obvious.

Definition 3.2. A multifunction $F : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be:

- (i) lower slightly (τ_1, τ_2) p-continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -clopen set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a (τ_1, τ_2) p-open set U of X containing x such that $F(z) \cap V \neq \emptyset$ for each $z \in U$;
- (ii) lower slightly (τ_1, τ_2) *p*-continuous if *F* has this property at each point of *X*.

Theorem 3.2. For a multifunction $F : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F* is lower slightly (τ_1, τ_2) *p*-continuous;
- (2) $F^{-}(V)$ is $(\tau_1, \tau_2)p$ -open in X for every $\sigma_1\sigma_2$ -clopen set V of Y;
- (3) $F^+(V)$ is (τ_1, τ_2) p-closed in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (4) for each $x \in X$ and for each $\sigma_1 \sigma_2$ -clopen set V of Y such that $x \in F^-(V)$, there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $U \subseteq F^-(V)$;
- (5) for each $x \in X$ and for each $\sigma_1 \sigma_2$ -clopen set V of Y such that $x \in F^-(Y V)$, there exists a $(\tau_1, \tau_2)p$ -closed set H of X such that $x \in X H$ and $F^+(V) \subseteq H$;
- (6) $F^+(Y V)$ is (τ_1, τ_2) p-closed in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (7) $F^{-}(Y V)$ is $(\tau_1, \tau_2)p$ -open in X for every $\sigma_1\sigma_2$ -clopen set V of Y.

Proof. (1) \Rightarrow (2): Let *V* be any $\sigma_1\sigma_2$ -clopen set *V* of *Y* and $x \in F^-(V)$. Then, $F(x) \cap V \neq \emptyset$. Since *F* is lower slightly $(\tau_1, \tau_2)p$ -continuous, there exists a $(\tau_1, \tau_2)p$ -open set *U* of *X* containing *x* such that $F(z) \cap V \neq \emptyset$ for each $z \in U$. Therefore, we have $U \subseteq F^-(V)$ and hence $x \in U \subseteq (\tau_1, \tau_2)$ -pInt $(F^-(V))$. Thus, $F^-(V) \subseteq (\tau_1, \tau_2)$ -pInt $(F^-(V))$ and so $F^-(V)$ is $(\tau_1, \tau_2)p$ -open in *X*.

- (2) \Leftrightarrow (3): This follows from the fact that $F^{-}(Y B) = X F^{+}(B)$ for every subset *B* of *Y*.
- $(3) \Leftrightarrow (6) \Leftrightarrow (7)$: Obvious.

(2) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -clopen set V of Y such that $F(x) \cap V \neq \emptyset$. Then, $x \in F^-(V)$ and $x \notin X - F^-(V) = F^+(Y - V)$. By (3), we have $x \notin (\tau_1, \tau_2)$ -pCl $(F^+(Y - V))$ and there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $U \cap F^+(Y - V) = \emptyset$; hence $U \subseteq F^-(V)$. Therefore, $F(z) \cap V \neq \emptyset$ for each $z \in U$ and so F is lower slightly $(\tau_1, \tau_2)p$ -continuous at x. This shows that Fis lower slightly $(\tau_1, \tau_2)p$ -continuous.

 $(1) \Leftrightarrow (4) \Leftrightarrow (5)$: Obvious.

Definition 3.3. A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called slightly $(\tau_1, \tau_2)p$ -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -clopen set V of Y containing f(x), there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq V$. A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called slightly $(\tau_1, \tau_2)p$ -continuous if f has this property at each point of X.

Corollary 3.1. For a function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *f* is slightly (τ_1, τ_2) *p*-continuous;
- (2) $f^{-1}(V)$ is (τ_1, τ_2) p-open in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (3) $f^{-1}(V)$ is (τ_1, τ_2) p-closed in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (4) for each $x \in X$ and for each $\sigma_1 \sigma_2$ -clopen set V of Y containing f(x), there exists a $(\tau_1, \tau_2)p$ -open set U of X containing x such that $f(U) \subseteq V$.

Acknowledgements

This research project was financially supported by Mahasarakham University.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, β-Open Sets and β-Continuous Mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.
- [2] C. Berge, Espaces Topologiques Fonctions Multivoques, Dunod, Paris, 1959.
- [3] C. Boonpok, N. Srisarakham, (τ_1, τ_2) -Continuity for Functions, Asia Pac. J. Math. 11 (2024), 21.
- [4] C. Boonpok, P. Pue-on, Characterizations of Almost (τ₁, τ₂)-Continuous Functions, Int. J. Anal. Appl. 22 (2024), 33. https://doi.org/10.28924/2291-8639-22-2024-33.
- [5] C. Boonpok, C. Klanarong, On Weakly (τ₁, τ₂)-Continuous Functions, Eur. J. Pure Appl. Math. 17 (2024), 416–425. https://doi.org/10.29020/nybg.ejpam.v17i1.4976.
- [6] C. Boonpok, J. Khampakdee, Upper and Lower α-*-Continuity, Eur. J. Pure Appl. Math. 17 (2024), 201–211. https://doi.org/10.29020/nybg.ejpam.v17i1.4858.
- [7] C. Boonpok, J. Khampakdee, Almost Strong θ(Λ, p)-Continuity for Functions, Eur. J. Pure Appl. Math. 17 (2024), 300–309. https://doi.org/10.29020/nybg.ejpam.v17i1.4975.
- [8] C. Boonpok, On Some Spaces via Topological Ideals, Open Math. 21 (2023), 20230118. https://doi.org/10.1515/ math-2023-0118.
- [9] C. Boonpok, N. Srisarakham, Weak Forms of (Λ, b)-Open Sets and Weak (Λ, b)-Continuity, Eur. J. Pure Appl. Math. 16 (2023), 29–43. https://doi.org/10.29020/nybg.ejpam.v16i1.4571.
- [10] C. Boonpok, $\theta(\star)$ -Precontinuity, Mathematica, 65 (2023), 31–42. https://doi.org/10.24193/mathcluj.2023.1.04.
- [11] C. Boonpok, P. Pue-on, Upper and Lower Weakly (Λ, *sp*)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 16 (2023), 1047–1058. https://doi.org/10.29020/nybg.ejpam.v16i2.4573.
- [12] C. Boonpok, N. Srisarakham, Almost α-*-Continuity for Multifunctions, Int. J. Anal. Appl. 21 (2023), 107. https: //doi.org/10.28924/2291-8639-21-2023-107.
- [13] C. Boonpok, P. Pue-on, Upper and Lower Weakly α-*-Continuous Multifunctions, Int. J. Anal. Appl. 21 (2023), 90. https://doi.org/10.28924/2291-8639-21-2023-90.
- [14] C. Boonpok, J. Khampakdee, Upper and Lower Weak sβ(*)-Continuity, Eur. J. Pure Appl. Math. 16 (2023), 2544– 2556. https://doi.org/10.29020/nybg.ejpam.v16i4.4734.
- [15] C. Boonpok, P. Pue-on, Upper and Lower sβ(*)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 16 (2023), 1634–1646. https://doi.org/10.29020/nybg.ejpam.v16i3.4732.
- [16] C. Boonpok, J. Khampakdee, Slight (Λ, *sp*)-Continuity and Λ_{sp}-Extremally Disconnectedness, Eur. J. Pure Appl. Math. 15 (2022), 1180–1188. https://doi.org/10.29020/nybg.ejpam.v15i3.4369.
- [17] C. Boonpok, J. Khampakdee, On Almost α(Λ, *sp*)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 15 (2022), 626–634. https://doi.org/10.29020/nybg.ejpam.v15i2.4277.
- [18] C. Boobpok, $\theta(\star)$ -Quasi Continuity for Multifunctions, WSEAS Trans. Math. 21 (2022), 245–251.
- [19] C. Boonpok, J. Khampakdee, (Λ, *sp*)-Open Sets in Topological Spaces, Eur. J. Pure Appl. Math. 15 (2022), 572–588. https://doi.org/10.29020/nybg.ejpam.v15i2.4276.
- [20] C. Boonpok, C. Viriyapong, Upper and Lower Almost Weak (τ₁, τ₂)-Continuity, Eur. J. Pure Appl. Math. 14 (2021), 1212–1225. https://doi.org/10.29020/nybg.ejpam.v14i4.4072.
- [21] C. Boonpok, Upper and Lower $\beta(\star)$ -Continuity, Heliyon, 7 (2021), e05986. https://doi.org/10.1016/j.heliyon.2021. e05986.
- [22] C. Boonpok, P. Pue-on, Continuity for Multifunctions in Ideal Topological Spaces, WSEAS Trans. Math. 19 (2020), 624–631.
- [23] C. Boonpok, On Characterizations of ★-Hyperconnected Ideal Topological Spaces, J. Math. 2020 (2020), 9387601. https://doi.org/10.1155/2020/9387601.
- [24] C. Boonpok, $(\tau_1, \tau_2)\delta$ -Semicontinuous Multifunctions, Heliyon, 6 (2020), e05367. https://doi.org/10.1016/j.heliyon. 2020.e05367.

- [25] C. Boonpok, Weak Quasi Continuity for Multifunctions in Ideal Topological Spaces, Adv. Math., Sci. J. 9 (2020), 339–355. https://doi.org/10.37418/amsj.9.1.28.
- [26] C. Boonpok, On Continuous Multifunctions in Ideal Topological Spaces, Lobachevskii J. Math. 40 (2019), 24–35. https://doi.org/10.1134/s1995080219010049.
- [27] C. Boonpok, C. Viriyapong and M. Thongmoon, On upper and lower (τ₁, τ₂)-precontinuous multifunctions, J. Math. Computer Sci. 18 (2018), 282–293. https://doi.org/10.22436/jmcs.018.03.04.
- [28] C. Boonpok, M-Continuous Functions in Biminimal Structure Spaces, Far East J. Math. Sci. 43 (2010), 41–58.
- [29] C. Boonpok, Almost (g, m)-Continuous Functions, Int. J. Math. Anal. 4 (2010), 1957–1964.
- [30] M. Caldas, S. Jafari, Some Properties of Contra-β-Continuous Functions, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 22 (2001), 19–28.
- [31] M. Chiangpradit, S. Sompong, C. Boonpok, Weakly Quasi (τ₁, τ₂)-Continuous Functions, Int. J. Anal. Appl. 22 (2024), 125. https://doi.org/10.28924/2291-8639-22-2024-125.
- [32] T. Duangphui, C. Boonpok, C. Viriyapong, Continuous Functions on Bigeneralized Topological Spaces, Int. J. Math. Anal. 5 (2011), 1165–1174.
- [33] W. Dungthaisong, C. Boonpok, C. Viriyapong, Generalized Closed Sets in Bigeneralized Topological Spaces, Int. J. Math. Anal. 5 (2011), 1175–1184.
- [34] E. Ekici, Upper and Lower Slightly α-Continuous Multifunctions, Miskolc Math. Notes, 6 (2005), 31–41. https: //doi.org/10.18514/mmn.2005.90.
- [35] R.C. Jain, The Role of Regularly Open Sets in General Topology, Ph.D. Thesis, Meerut University, Meerut, 1980.
- [36] J. Khampakdee, S. Sompong, C. Boonpok, Slight (τ₁, τ₂)s-Continuity for Multifunctions, Int. J. Math. Comput. Sci. 20 (2025), 89–93. https://doi.org/10.69793/ijmcs/01.2025/khampakdee.
- [37] J. Khampakdee, S. Sompong, C. Boonpok, *c*-(τ₁, τ₂)-Continuity for Multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 2288–2298. https://doi.org/10.29020/nybg.ejpam.v17i3.5320.
- [38] J. Khampakdee, C. Boonpok, Upper and Lower $\alpha(\Lambda, sp)$ -Continuous Multifunctions, WSEAS Trans. Math. 21 (2022), 684–690.
- [39] C. Klanarong, S. Sompong, C. Boonpok, Upper and Lower Almost (τ₁, τ₂)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 1244–1253. https://doi.org/10.29020/nybg.ejpam.v17i2.5192.
- [40] B. Kong-ied, S. Sompong, C. Boonpok, Almost Quasi (τ₁, τ₂)-Continuous Functions, Asia Pac. J. Math. 11 (2024), 64. https://doi.org/10.28924/APJM/11-64.
- [41] K. Laprom, C. Boonpok, C. Viriyapong, $\beta(\tau_1, \tau_2)$ -Continuous Multifunctions on Bitopological Spaces, J. Math. 2020 (2020), 4020971. https://doi.org/10.1155/2020/4020971.
- [42] T. Neubrunn, Strongly Quasi-Continuous Multivalued Mappings, In: General Topology and its Relations to Modern Analysis and Algebra VI (Prague 1986), Heldermann, Berlin, pp. 351–359, 1988.
- [43] T. Noiri, V. Popa, Slightly m-Continuous Multifunctions, Bull. Inst. Math. Acad. Sinica (New Ser.) 1 (2006), 485–501.
- [44] T. Noiri, Slightly β-Continuous Functions, Int. J. Math. Math. Sci. 28 (2001), 469–478. https://doi.org/10.1155/ s0161171201006640.
- [45] T. Noiri, G.I. Chae, A Note on Slightly Semi-Continuous Functions, Bull. Calcutta Math. Soc. 92 (2000), 87–92.
- [46] T.M. Nour, Slightly Semi-Continuous Functions, Bull. Calcutta Math. Soc. 87 (1995), 187–190.
- [47] M.C. Pal, P. Bhattacharyya, Faint Precontinuous Functions, Soochow J. Math. 21 (1995), 273–289.
- [48] P. Pue-on, S. Sompong, C. Boonpok, Weakly Quasi (τ_1 , τ_2)-Continuous Multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 1553–1564. https://doi.org/10.29020/nybg.ejpam.v17i3.5191.
- [49] P. Pue-on, C. Boonpok, θ(Λ, p)-Continuity for Functions, Int. J. Math. Comput. Sci. 19 (2024), 491–495. https://doi.org/10.29020/nybg.ejpam.v17i1.4975.
- [50] P. Pue-on, S. Sompong, C. Boonpok, Upper and Lower (τ₁, τ₂)-Continuous Mulfunctions, Int. J. Math. Comput. Sci. 19 (2024), 1305–1310.

- [51] P. Sangviset, C. Boonpok, C. Viriyapong, Slightly (*m*, μ)-Continuous Functions, Far East J. Math. Sci. 85 (2014), 165–176.
- [52] N. Srisarakham, C. Boonpok, Almost (Λ, p) -Continuous Functions, Int. J. Math. Comput. Sci. 18 (2023), 255–259.
- [53] M. Thongmoon, S. Sompong, C. Boonpok, Upper and Lower Weak (τ₁, τ₂)-continuity, Eur. J. Pure Appl. Math. 17 (2024), 1705–1716. https://doi.org/10.29020/nybg.ejpam.v17i3.5238.
- [54] M. Thongmoon, C. Boonpok, Strongly $\theta(\Lambda, p)$ -Continuous Functions, Int. J. Math. Comput. Sci. 19 (2024), 475–479.
- [55] M. Thongmoon and C. Boonpok, Upper and Lower Almost $\beta(\Lambda, sp)$ -Continuous Multifunctions, WSEAS Trans. Math. 21 (2022), 844–853.
- [56] C. Viriyapong, S. Sompong, C. Boonpok, Upper and Lower Slight $\alpha(\tau_1, \tau_2)$ -continuity, Eur. J. Pure Appl. Math. 17 (2024), 2142–2154. https://doi.org/10.29020/nybg.ejpam.v17i3.5321.
- [57] N. Viriyapong, S. Sompong, C. Boonpok, Upper and Lower s-(τ₁, τ₂)p-Continuous Multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 2210–2220. https://doi.org/10.29020/nybg.ejpam.v17i3.5322.
- [58] C. Viriyapong, S. Sompong, C. Boonpok, Upper and Lower Slightly (τ₁, τ₂)β-Continuous Multifunctions, Asia Pac. J. Math. 11 (2024), 75. https://doi.org/10.28924/APJM/11-75.
- [59] N. Viriyapong, S. Sompong, C. Boonpok, (τ₁, τ₂)-Extremal Disconnectedness in Bitopological Spaces, Int. J. Math. Comput. Sci. 19 (2024), 855–860.
- [60] C. Viriyapong, C. Boonpok, Weak Quasi (Λ, sp)-Continuity for Multifunctions, Int. J. Math. Comput. Sci. 17 (2022), 1201–1209.
- [61] C. Viriyapong, C. Boonpok, (Λ, sp)-Continuous Functions, WSEAS Trans. Math. 21 (2022), 380–385.
- [62] C. Viriyapong, C. Boonpok, (τ₁, τ₂)α-Continuity for Multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/ 10.1155/2020/6285763.