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Abstract. We discuss the partial bi-ideal of partial ternary semirings S. The partial bi-ideal is a new generalization of

the ideal. To determine the relationships between the three types of partial prime bi-ideals and their examples. We

constructed the partial right ideal, partial lateral ideal, partial left ideal, partial ideal, and partial bi-ideal generated by

a single element. We interact with the relationships between HQ, LQ and RQ, where Q is bi-ideal. Consequently, we

defined three distinct partial m-systems. The partial bi-ideal P of S is a partial 2-prime if and only if Z1Z2Z3 ⊆ P, where

Z1 is a partial right ideal, Z2 is a partial lateral ideal and Z3 is a partial left ideal of S implies either one of Z1 ⊆ P, Z2 ⊆ P

and Z3 ⊆ P. Also, we discuss HQ is a unique biggest two-sided partial prime ideal of S contained Q. Suppose that M

is a partial m3-system and partial bi-ideal Q of S with Q∩M is empty, there exists a partial 3-prime P of S containing

Qwhich includes P∩M = ∅. Finally, examples were provided to illustrate the results.

1. Introduction

Partially additive semantics is used in computer programming languages. In these cases, linear

algebra cannot be used because partial functions under disjoint-domain sums and functional

compositions do not fall under the field definition. As algebraic structures, they can be interpreted

as partial ternary semirings that can process both natural and partial ternary semirings, along with

infinite partial additions and ternary multiplications. Mathematical structures such as semirings

have been discussed as several types of ideals [8], ternary semirings, and rings. Introducing ideals
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for algebraic numbers and then extending them to associative rings is a concept developed by

Dedekind. Bi-ideals for semigroups were first introduced by Good and Hughes. Furthermore, this

is a special case of the (m, n)-ideal proposed by Lajos. With the help of bi-ideals, Lajos provides both

regular and intra-regular semigroups. In addition, Lajos could analyze semigroups both regularly

and intra-regularly, using quasi-ideals and generalized bi-ideals. Bi-ideals have often been used

in different types of semigroups. Lajos discussed the bi-ideals of the associative rings. Quasi-

ideals are generalizations of the left ideals and right ideals, which are special cases of bi-ideals.

The concept of semirings is a generalization of rings. Lehmer introduced a triplex as a ternary

algebraic system. He studied a class of ternary algebraic structures known as triplexes, which are

commutative ternary groups. Vandiver proposed the concept of a semiring. Hestenes examined

ternary algebra, using matrices and linear transformations as examples. Lister introduced the

ternary ring as an algebraic structure whose triple ring product two additive subgroups of rings.

Van der Walt discussed the prime bi-ideal and semiprime bi-ideal of rings. Van der Walt stated that

x1Sx2 ⊆ P implies either one of x1 ∈ P or x2 ∈ P, for prime bi-ideal P. Roux discussed the prime

bi-ideal and semiprime bi-ideal of rings. The prime bi-ideal and semiprime bi-ideal of Γ-so-rings

were examined by Srinivasa et al. [19].

Recently, Badmaev et al. [1–5] discussed various applications for Boolean functions generated by

maximal partial ultraclones. Prime ideals for rings and semirings can be found in [6]. Partial addi-

tion and ternary product-based so-semiring is discussed by Bhagyalakshmi et al. [9]. Palanikumar

et al. [15] discussed the concept of a novel method for generating the M-tri-basis of an ordered

Γ-semigroup. The theory of partial semirings of continuous valued functions is explained by Sha-

laginova et al. [18]. Various ideals of partial semirings and gamma partial semirings are discussed

by Rao et al. [?, 17]. Dutta et al. examined the prime ideals and radicals of ternary semirings [7].

Palanikumar et al. [11] covered the rings’ various prime and semiprime bi-ideals. Palanikumar

et al. [10, 12–14, 16] discussed the various ideals of semigroups, semirings and ternary semirings.

Research on partially additive semantics was conducted. Flowchart untying axiom is the reason

for the emphasis on “
∑

" in computer science. The semantics of programming languages and

integration theory are two examples of partially defined infinite operations. Using computer sci-

ence, we can improve our understanding of computer programs without changing their functions.

A positive partial monoid satisfies “positivity" property: if
∑
(ςi|i ∈ X ) is zero, then each ςi is

zero. Considering an abelian monoid that meets the positivity condition of ς1 + ς2 = 0 implies

ς1 = 0 = ς2 is a partial monoid, where the partition associativity of summable families makes

abelian necessary, where the families have finite support and usual sum.

Let M be a fixed set. If X is a set, then the function z : X → M is a X -indexed family. Here,

ςi instead of ς(i). The co-domain is suppressed in the family notation instead of being explicitly

indicated in ς : X → M. Semantics describes "meaning" and computer language semantics,

among other technical terms. As a function, semantics uses a syntactically correct program as
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input and produces a description of the function that the program has calculated. Certain X -

indexed families in M will receive an element “
∑

i(ςi|i ∈X )" from the partial addition that will be

axiomatizing. We shall only deal with countable families because the semantic concepts we want

to represent do not involve uncountable sums. The failure to subdivide a sum can be appropriately

explained by one axiom. For an example ς1 + ς2 + ς3 + ς4 + ς5 + ς6 + ς7 + ς8 = ς3 + (ς1 + ς6 +

ς2) + (ς4 + ς5) + (ς7 + ς8). If X = 1, 2, ..., 8, Xy1 = {3}, Xy2 = {1, 6, 2}, Xy3 = {4, 5}, Xy4 = {7, 8}

and Y = {y1, y2, y3, y4}. Hence,
∑
(ςi|i ∈ X ) =

∑
(
∑
(ςi|i ∈ X j)| j ∈ Y ). Here (X j| j ∈ Y ) is a

partition of X . If j , k, then X j ∩Xk = ∅ and X = ∪(X j| j ∈ Y ). We make it clear that any

number of j (including an infinite number of j) is acceptable in our definition of a partition X j = ∅

as long as the previously mentioned partition qualities hold. Based on the results of this study, we

hope to:

(1) We discuss that partial 1-prime implies that partial 2-prime implies partial 3-prime, and its

reverse implications do not hold.

(2) Constructing a partial m1-system implies that a partial m2-system implies a partial m3-

system and its reverse implications do not hold.

(3) We discuss the notion of RQ, LQ and HQ and its relation with examples.

This study expands the concept of prime bi-ideals of ternary semiring into prime partial bi-ideals

of partial ternary semiring. Section 1 provides an introduction to this study. In Section 2, we briefly

describe ternary and partial ternary semirings. In Section 3, the concept of partial prime bi-ideals

is examined using numerical examples. The semiprime partial bi-ideals are discussed in Section 4

along with an illustration. The conclusions are provided in Section 5.

List of abbreviations
The following abbreviations are used in this manuscript:

Right ideal RI

Lateral ideal LATI

Left ideal LI

Ideal ID

Bi-ideal BI

Partial RI PRI
Partial lateral ideal PLATI
Partial LATI PLI
Partial ID PID

Partial BI PBI
Partial prime BI PPBI
Partial 1-prime P1P
Partial 2-prime P2P
Partial 3-prime P3P
Partial m1-system P-m1-system

Partial m2-system P-m2-system

Partial m3-system P-m3-system

2. Basic concepts

This study provides a short overview of the fundamental terms used in ternary semirings and

partial ternary semirings which will be useful for future research.

Definition 2.1. A partial monoid (M,
∑
),
∑

is a partial addition defined on some families (ςi|i ∈ X ) in
M, but not necessarily all of them.
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(i) X = { j}, and (ςi|i ∈X ) are one-element families in M,
∑
(ςi|i ∈X ) = ς j.

(ii) If a family in M is (ςi|i ∈X ) and a partition of X is (X j| j ∈ Y ), then (ςi|i ∈X ) is summable if and
only if (ςi|i ∈X j) is summable, (

∑
(ςi|i ∈X j)| j ∈ Y ) and

∑
(ςi|i ∈X ) =

∑
(
∑
(ςi|i ∈X j)| j ∈ Y ).

Definition 2.2. Suppose that (S,
∑
) is a partial monoid. The function S × S → S is called a partial

semiring if
(i) l(mn) = (lm)n,
(ii) The summability of (ςi|i ∈X ) in S denotes (l ςi|i ∈X ) in S and l[

∑
(ςi|i ∈X )] =

∑
(lςi|i ∈X ).

(iii) If a family (ςi|i ∈X ) is summable, then (ςi l|i ∈X ) is also summable and [
∑
(ςi|i ∈X ]l =

∑
(ςil|i ∈

X ).

Definition 2.3. [19] Let A ⊆ S. If A is said to be a PLI(PRI) of S. Then
(i) (ςi|i ∈X ) is a summable in S and ςi ∈ A for every i ∈X , hence conclude that

∑
i ςi ∈ A .

(ii) For each x ∈ S and y ∈ A imply xy ∈ A (yx ∈ A ).

Definition 2.4. [19] Complete rings can be summable if all the families in a partial ring can be summable.

Remark 2.1. [19] S is a complete partial ring. Then PRI (PLI, PID, PBI) generated by “ς" are
defined as
(i) < ς >r= {z ∈ S|z = nς+

∑
i

ςri, ri ∈ S, n ∈N}.

(ii) < ς >l= {z ∈ S|z = nς+
∑

i

riς, ri ∈ S, n ∈N}.

(iii) < ς >= {z ∈ S|z = nς+
∑

i

ςri +
∑

j

r jς+
∑

k

ςrkς, ri, r j, rk ∈ S, n ∈N}.

(iv) < ς >b= {z ∈ S|z = nς+ mς2 +
∑

i

ςriς, ri ∈ S, n, m ∈N}.

Definition 2.5. [7] S is a ternary semiring if
(i) (S,+) is a commutative semigroup.
(iia) (ς1ς2ς3)ς4ς5 = ς1(ς2ς3ς4)ς5 = ς1ς2(ς3ς4ς5).
(iib) (ς1 + ς2)ς3ς4 = ς1ς3ς4 + ς2ς3ς4.
(iic) ς1(ς2 + ς3)ς4 = ς1ς2ς4 + ς1ς3ς4.
(iid) ς1ς2(ς3 + ς4) = ς1ς2ς3 + ς1ς2ς4 ∀ ς1, ς2, ς3, ς4, ς5 ∈ S.

Definition 2.6. [7] Let X ⊆ S is represent a
(i) ternary subsemiring when X is a additive subsemigroup and ς1ς2ς3 ∈X ∀ ς1, ς2, ς3 ∈X .
(ii) RI(LATI,LI) if ςr1r2 ∈X (r1ςr2 ∈X , r1r2ς ∈X ) ∀ r1, r2 ∈ S and ς ∈X .

3. DifferentPPBIs

In the following, S refers to a partial ternary semiring unless otherwise specified. If we change

the ID P by BI P by Theorem 3.1 [7], all three conditions are different. In this section, we introduce

three different PPBIs for S.
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Theorem 3.1. [7] Let P be an ID of S. In this case, the statements are equivalent.
(i) P is a PID.
(ii) ς1Sς2Sς3 ⊆ P, ς1ST ς2ST ς3 ⊆ P, ς1ST ς2Sς3S ⊆ P,Sς1Sς2ST ς3 ⊆ P implies any one of ς1 ∈ P,
ς2 ∈ P and ς3 ∈ P.
(iii) < ς1 >< ς2 >< ς3 >⊆ P implies any one of ς1 ∈ P, ς2 ∈ P and ς3 ∈ P.

Definition 3.1. [7] M ⊆ S is called a m-system if ς1, ς2, ς3 ∈ S, there exist r1, r2 ∈M , that is associated
with ς1r1ς2r2ς3 ∈M .

Definition 3.2. Consider the partial ternary semiring with “
∑

" is defined as

∑
i

(ςi|i ∈X ) =



∑
i

ςi if ςi ∈X is finite

undefined elsewhere

and “·" is defined by the ternary multiplication.

Definition 3.3. Let (S,
∑
) be a partial monoid. A mapping S × S × S → S is called partial ternary

semiring if
(i) (l ·m · n) · o · p = l · (m · n · o) · p = l ·m · (n · o · p),
(ii) a family (ς j| j ∈ X ) is summable implies (ς jxy| j ∈ X ) is summable and [

∑
(ς j| j ∈ X )]xy =∑

(ς jxy| j ∈X ).
(iii) a family (ς j| j ∈ X ) is summable implies (x ς jy| j ∈ X ) is summable and x[

∑
(ς j| j ∈ X ]y =∑

(xς jy| j ∈X ).
(iv) a family (ς j| j ∈ X ) is summable implies (x y ς j| j ∈ X ) is summable and xy[

∑
(ς j| j ∈ X ] =∑

(xyς j| j ∈X ).

Definition 3.4. Let A ⊆ S, A is represent a PRI(PLATI, PLI) of S if
(i) (ςi|i ∈X ) is summable in S and ςi ∈ A ∀ i ∈X implies

∑
i

ςi ∈ A .

(ii) ∀y, ς ∈ S and x ∈ A implies xyς ∈ A (yxς ∈ A , yςx ∈ A ).

Here, we introduce various ideals generated by a single element. Let a ∈ S. The principle

(i) PRI generated by “ς” is < ς >r= {x ∈ S|x =
∑

n
ς+ ςSS|n ∈ Z+

},

(ii)PLATI generated by “ς” is < ς >lat= {x ∈ S|x =
∑

n
ς+SςS+SSςSS|n ∈ Z+

},

(iii) PLI generated by “ς” is < ς >l= {x ∈ S|x =
∑

n
ς+SSς|n ∈ Z+

},

(iv) two sided PID generated by “ς” is < ς >t= {x ∈ S|x =
∑

n
ς+SSς+ ςSS+SSςSS|n ∈ Z+

},

(v) PID generated by “ς” is < ς >= {x ∈ S|x =
∑

n
ς+ ςSS+SςS+SSςSS+SSς|n ∈ Z+

},
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(vi) PBI generated by “ς” is < ς >b= {x ∈ S|x =
∑

n
ς+
∑

m
ς3 + ςSςSς|n, m ∈ Z+

}, where
∑

n
ς

means that sum of “n" copies of “ς" and
∑

m
ς3 means that sum of “m" copies of “ς3".

Remark 3.1. Partial ternary semiring (S,
∑

, ·) is defined in Definition 3.2 and ternary semirings (S,+, ·)

are defined in Definition 2.5.

Example 3.1. Consider S = {a1,a2,a3,a4,a5,a6,a7,a8,a9} with “
∑

" and the ternary product is
defined as Definition 3.2.

+ a1 a2 a3 a4 a5 a6 a7 a8 a9

a1 a1 a2 a3 a4 a5 a6 a7 a8 a9

a2 a2 a2 a5 a4 a5 a9 a7 a8 a9

a3 a3 a5 a3 a8 a5 a6 a7 a8 a9

a4 a4 a4 a8 a4 a8 a7 a7 a8 a7

a5 a5 a5 a5 a8 a5 a9 a7 a8 a9

a6 a6 a9 a6 a7 a9 a6 a7 a7 a9

a7 a7 a7 a7 a7 a7 a7 a7 a7 a7

a8 a8 a8 a8 a8 a8 a7 a7 a8 a7

a9 a9 a9 a9 a7 a9 a9 a7 a7 a9

· a1 a2 a3 a4 a5 a6 a7 a8 a9

a1 a a a a a a a a a

a2 a b a d b a d d b

a3 a c a f c a f f c

a4 a b b d b d d d d

a5 a e a g e a g g e

a6 a c c f c f f f f

a7 a e e g e g g g g

a8 a e b g e d g g h

a9 a e c g e f g g i

· a1 a2 a3 a4 a5 a6 a7 a8 a9

a a1 a1 a1 a1 a1 a1 a1 a1 a1

b a1 a2 a1 a4 a2 a1 a4 a4 a2

c a1 a3 a1 a6 a3 a1 a6 a6 a3

d a1 a2 a2 a4 a2 a4 a4 a4 a4

e a1 a5 a1 a7 a5 a1 a7 a7 a5

f a1 a3 a3 a6 a3 a6 a6 a6 a6

g a1 a5 a5 a7 a5 a7 a7 a7 a7

h a1 a5 a2 a7 a5 a4 a7 a7 a8

i a1 a5 a3 a7 a5 a6 a7 a7 a9

Clearly, (S,
∑

, ·) and (S,+, ·) are partial ternary semiring and ternary semiring, respectively.

Every RI (LATI, LI, ID, BI) is a PRI (PLATI, PLI, PID, PBI). However, the reverse does not

hold for this example.

Example 3.2. By Example 3.1, Let Q = {a1,a2,a3} and index set X = {1, 2, 3, ....}.
Since,

∑
(ςi|i ∈X ) =

∑
(
∑
(ςi|i ∈X j)| j ∈ Y ) and (X j| j ∈ Y ) is a partition of X .

If j , k then X j ∩Xk = ∅ and X = ∪(X j| j ∈ Y ).
Suppose that ςi = (a1, 0, 0, 0, 0, 0, ....), we have

∑
(ςi|i ∈X ) = a1 ∈ Q.

Suppose that ςi = (0, 0, 0,a2, 0, 0, ....), we have
∑
(ςi|i ∈X ) = a2 ∈ Q.

Suppose that ςi = (0, 0, 0, 0, 0, 0, 0, 0,a3, 0, 0, 0, ....), we have
∑
(ςi|i ∈ X ) = a3 ∈ Q. Hence, Q is

a partial addition of S. Also ternary multiplication “·" using in the Example 3.1, Q · Q · Q ⊆ Q and
QSQSQ ⊆ Q impliesQ is a PBI ofS, butQ+Q = {a1,a2,a3,a5} * Q. Thus,Q is not a BI of (S,+, ·).
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Similarly, {a1,a3,a5,a6,a7} is a PRI, but not a RI of S.
Similarly, {a1,a2,a3,a4,a5,a6,a7} is a PID, but not an ID of S.

Definition 3.5. A PBI P of S is called a P1P if
(i) Q1Q2Q3 ⊆ P implies any one of Q1 ⊆ P, Q2 ⊆ P and Q3 ⊆ P, for any PBIs Q1,Q2 and Q3 of S.
(ii) P2P if a

′

Sa
′′

Sa
′′′

⊆ P implies any one of a
′

∈ P or a
′′

∈ P or a
′′′

∈ P.
(iii) P3P if I1I2I3 ⊆ P implies any one of I1 ⊆ P, I2 ⊆ P and I3 ⊆ P, for any PIDs I1, I2 and I3

of S.

Theorem 3.2. The PBI P of S is a P2P if and only if Z1Z2Z3 ⊆ P, where Z1 is a PRI, Z2 is a PLATI
and Z3 is a PLI of S implying any one of Z1 ⊆ P, Z2 ⊆ P and Z3 ⊆ P.

Proof. Suppose that Z1Z2Z3 ⊆ P. To prove that Z1 ⊆ P or Z2 ⊆ P or Z3 ⊆ P. Suppose that Z1 * P
and Z2 * P implies that ς

′

∈ Z1 but ς
′

< P and ς
′′

∈ Z2 but ς
′′

< P. To prove that Z3 ⊆ P. For

ς
′′′

∈ Z3, ς
′

Sς
′′

Sς
′′′

⊆ Z1Z2Z3 ⊆ P. Since P is a P2P of S and ς
′

< P and ς
′′

< P implies that ς
′′′

∈ P.

Thus, Z3 ⊆ P.

Conversely, suppose that ς
′

Sς
′′

Sς
′′′

⊆ P. Now (ς
′

ST )(Sς
′′

S)(ST ς
′′′

) ⊆ ς
′

Sς
′′

Sς
′′′

⊆ P
implies ς

′

ST ⊆ P or Sς
′′

S ⊆ P or ST ς
′′′

⊆ P. If ς
′

ST ⊆ P, then

< ς
′

>r · < ς
′′

>lat · < ς
′′′

>l =

[{∑
n
ς
′

|n ∈ Z+

}
+ ς

′

ST

]
·

[{∑
m
ς
′′

|m ∈ Z+

}
+

[
Sς

′′

S+ST ς
′′

ST
]]
·

[{∑
m′
ς
′′′

|m
′

∈ Z+

}
+ST ς

′′′

]

⊆

[ ∑
nmm′

ς
′

ς
′′

ς
′′′

]
+ ς

′

Sς
′′

Sς
′′′

⊆ ς
′

ST ⊆ P.

Thus, ς
′

∈ P or ς
′′

∈ P or ς
′′′

∈ P.

Similarly, Sς
′′

S ⊆ P. Let us demonstrate that, < ς
′

>r · < ς
′′

>lat · < ς
′′′

>l⊆ [Sς
′′

S∪ST ς
′′

ST ] ⊆

P.

Suppose ST ς
′′′

⊆ P then < ς
′

>r · < ς
′′

>lat · < ς
′′′

>l⊆ ST ς
′′′

⊆ P. This implies that ς
′

∈ P or

ς
′′

∈ P or ς
′′′

∈ P. �

The following implications hold for P1P implies P2P implies P3P. However, these examples

do not support the reverse implications.

Example 3.3. In Example 3.1, Clearly P = {a1,a2,a4} is a P2P. Now, {a1,a3,a5} · {a1,a3,a6} ·

{a1,a4,a6} = {a1} ⊆ P, but {a1,a3,a5} * P and {a1,a3,a6} * P and {a1,a4,a6} * P. This implies
that P is not a P1P.

Example 3.4. Consider S = {f1,f2,f3,f4,f5,f6} with the following compositions:
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+ f1 f2 f3 f4 f5 f6

f1 f1 f2 f3 f4 f5 f6

f2 f2 f2 f3 f4 f5 f6

f3 f3 f3 f3 f6 f5 f6

f4 f4 f4 f6 f4 f5 f6

f5 f5 f5 f5 f5 f5 f5

f6 f6 f6 f6 f6 f5 f6

· f1 f2 f3 f4 f5 f6

f1 a a a a a a

f2 a b c b c c

f3 a b c b c c

f4 a d e d e e

f5 a d e d e e

f6 a d e d e e

· f1 f2 f3 f4 f5 f6

a f1 f1 f1 f1 f1 f1

b f1 f2 f3 f2 f3 f3

c f1 f2 f3 f2 f3 f3

d f1 f4 f5 f4 f5 f5

e f1 f4 f5 f4 f5 f5

f f1 f4 f5 f4 f5 f5

Clearly P = {f1,f3} is a P3P. Now, f2Sf5Sf6 = {f1,f3} ⊆ P but f2 < P,f5 < P and f6 < P,
implies P is not a P2P of S.

Definition 3.6. (i) A subset M of S is represent a P-m1-system if for any ς
′

, ς
′′

, ς
′′′

∈M , ∃ ς
′

1 ∈< ς
′

>b

, ς
′′

1 ∈< ς
′′

>b and ς
′′′

1 ∈< ς
′′′

>b such that ς
′

1 · ς
′′

1 · ς
′′′

1 ∈M .

(ii) A subset M of S is represent a P-m2-system if for any ς
′

, ς
′′

, ς
′′′

∈M , ∃ ς
′

1 ∈< ς
′

>r , ς
′′

1 ∈< ς
′′

>lat

and ς
′′′

1 ∈< ς
′′′

>l such that ς
′

1 · ς
′′

1 · ς
′′′

1 ∈M .

(iii) A subset M of S is represent a P-m3-system if for any ς
′

, ς
′′

, ς
′′′

∈ M , ∃ ς
′

1 ∈< ς
′

> , ς
′′

1 ∈< ς
′′

>

and ς
′′′

1 ∈< ς
′′′

> such that ς
′

1 · ς
′′

1 · ς
′′′

1 ∈M .

Lemma 3.1. Let P be a PBI of S. Then, P is a P1P (P2P, P3P) if and only if S \ P is a P-m1-system
(P-m2-system, P-m3-system) of S.

Proof. Let P be the P1P of S and let ς
′

, ς
′′

, ς
′′′

∈ S \ P. Hence, < ς
′

>b · < ς
′′

>b · < ς
′′′

>b* P. Then

there exist ς
′

1 ∈< ς
′

>b, ς
′′

1 ∈< ς
′′

>b and ς
′′′

1 ∈< ς
′′′

>b such that ς
′

1 · ς
′′

1 · ς
′′′

1 =

{∑
n1
ς
′

+
∑

n2
(ς
′

)3 +

f1

}
·

{∑
n′1
ς
′′

+
∑

n′2
(ς
′′

)3 + f2

}
·

{∑
n′′1
ς
′′′

+
∑

n′′2
(ς
′′′

)3 + f3

}
, where f1 =

∑
(i, j) ς

′

riς
′

r jς
′

and

f2 =
∑

(i, j) ς
′′

r
′

iς
′′

r
′

jς
′′

andf3 =
∑

(i, j) ς
′′′

r
′′

i ς
′′′

r
′′

j ς
′′′

for n1, n2, n
′

1, n
′

2, n
′′

1 , n
′′

2 ∈N and ri, r j, r
′

i , r
′

j, r
′′

i , r
′′

j ∈

S. Now, f1 ·f2 ·f3 ∈< ς
′

>b · < ς
′′

>b · < ς
′′′

>b* P. Thus, ς
′

1 · ς
′′

1 · ς
′′′

1 < P. Hence, S \ P is a

P-m1-system.

Conversely, Let S \ P be a P-m1-system. Suppose that Q1 · Q2 · Q3 ⊆ P for the PBIs Q1,Q2 and

Q3 of S. Let us arrive at a contradiction. Let ς
′′

1 ∈ Q1 \ P, ς
′′

2 ∈ Q2 \ P and ς
′′

3 ∈ Q3 \ P. Hence,

ς
′′

1 , ς
′′

2 , ς
′′

3 ∈ S \ P implies < ς
′′

1 >b · < ς
′′

2 >b · < ς
′′

3 >b* P, which is a contradiction. Thus, Q1 ⊆ P or

Q2 ⊆ P or Q3 ⊆ P. Therefore, P is a P1P of S. Similarly, we can prove the other cases. �
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The following implications hold for P-m1-system implying that the P-m2-system implies P-

m3-system. It is clear that this example does not support the reverse implications.

Example 3.5. By Example 3.1, M = {a4,a5,a6,a7,a8,a9} is a P-m2-system, but not a P-m1-system.
Fora5,a6,a7 ∈M , but there is no x1 ∈< a5 >b, y1 ∈< a6 >b and ς1 ∈< a7 >b such that x1 · y1 ·ς1 ∈M .
Since < a5 >b · < a6 >b · < a7 >b= {a1,a3,a5} · {a1,a3,a6} · {a1,a6,a7} = {a1} <M .

Example 3.6. By Example 3.4, M = {f2,f4,f5,f6} is a P-m3-system, but not a P-m2-system by
f2Sf4Sf6 = {f1,f3} <M .

Lemma 3.2. Every P-m2-system is a P-m-system and vice versa.

Proof. Let a, b, c ∈M , ∃ x
′

∈< a >r, y
′

∈< b >lat and z
′

∈< c >l such that x
′

· y
′

· z
′

∈M . Now,

x
′

· y
′

· z
′

=

[∑
n1

a + ar1r2

]
·

[∑
n2

b + r3br4 + r5r6br7r8

]
·

[∑
n3

c + r9r10c
]

=

[∑
n1n2

ab + (
∑
n1

a)r3br4 + (
∑
n1

a)r5r6br7r8 + ar1r2a(
∑
n2

b) +

ar1r2r3br4 + ar1r2r5r6br7r8

]
·

[∑
n3

c + r9r10c
]

=

[ ∑
n1n2n3

abc + (
∑
n1

a)r3br4(
∑
n3

c) + (
∑
n1

a)r5r6br7r8(
∑
n3

c) + ar1r2a(
∑
n2n3

bc)

+ar1r2r3br4(
∑
n3

c) + ar1r2r5r6br7r8(
∑
n3

c) + (
∑
n1n2

ab)r9r10c+

(
∑
n1

a)r3br4r9r10c + (
∑
n1

a)r5r6br7r8r9r10c + ar1r2a(
∑
n2

b)r9r10c +

ar1r2r3br4r9r10c + ar1r2r5r6br7r8r9r10c
]

=
∑

n1n2n3

abc + ar
′

br
′′

c ∈M .

Again a, b,
∑

n1n2n3
abc + ar

′

br
′′

c ∈ M , ∃ x
′′

∈< a >r, y
′′

∈< b >lat and z
′′

∈<
∑

n1n2n3
abc + ar

′

br
′′

c >l

such that x
′′

· y
′′

· z
′′

∈M . Since, x
′′

· y
′′

· z
′′

= ar11br12c ∈ aSbSc. Therefore, ar11br12c = x
′′

· y
′′

· z
′′

∈

M . Hence, M is a P-m-system.

Conversely, let a, b, c ∈ M , ∃ r1, r2 ∈ S such that ar1br2c ∈ M . Let ar1 = a1 and r2c = c1, ∃

a1 ∈< a >r, b ∈< b >lat and c1 ∈< c >l such that a1 · b · c1 ∈M . Hence, M is a P-m2-system. �

Definition 3.7. (i) Let Q be a PBI of S and let LQ = {x ∈ Q|ST x ⊆ Q} and which is related to
HQ = {y ∈ LQ|yST ⊆ LQ}.
(ii) RQ = {x ∈ Q|xST ⊆ Q} and which is related to HQ = {y ∈ RQ|ST y ⊆ RQ}.

Lemma 3.3. Let Q be a PBI of S. Prove that LQ is a PLI of S such that LQ ⊆ Q.
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Proof. Let ςi ∈ LQ. Then ςi ∈ Q and ST ςi ⊆ Q, ∀i. Since Q is a PBI of S, then
∑

i ςi ∈ Q

and (ς1 · ς2 · ... · ςn) ∈ Q. Now, ST (
∑

i ςi) ⊆ Q. Thus,
∑

i ςi ∈ LQ. Now, ST (ς1 · ς2 · ... · ςn) =

(ST ς1) · (ς2 · ... · ςn) ⊆ (ST ς1) · (ST ς2) · (ς3... · ςn) ⊆ (ST ς1) · (ST ς2) · ... · (ST ςn) ⊆ Q. Thus,

(ς1 · ς2 · ... · ςn) ∈ LQ. Let x ∈ LQ and r1, r2 ∈ S. Since r1r2x ∈ ST x ⊆ Q, we have r1r2x ∈ Q and

ST r1r2x ⊆ ST ST x ⊆ ST x ⊆ Q. Thus, r1r2x ∈ LQ. Hence, LQ is a PLI of S and LQ ⊆ Q. �

Lemma 3.4. Let Q be a PBI of S. Then, HQ is a partial subring of S.

Proof. Let ςi ∈ HQ. Then ςi ∈ LQ and ςiST ⊆ LQ, ∀i. Since ςi ∈ LQ, ςi ∈ Q and ST ςi ⊆ Q, ∀i.
Since Q is the partial subring of S and ςi ∈ Q. We have

∑
i ςi ∈ Q and (ς1 · ς2 · ... · ςn) ∈ Q.

Now, ST (
∑

i ςi) ⊆ Q implies
∑

i ςi ∈ LQ. Now, (
∑

i ςi)ST ⊆ LQ implies
∑

i ςi ∈ HQ. Now,

ST (ς1 · ς2 · ... · ςn) = (ST ς1) · (ς2 · ... · ςn) ⊆ (ST ς1) · (ST ς2) · (ς3... · ςn) ⊆ (ST ς1) · (ST ς2) · ... ·

(ST ςn) ⊆ Q implies (ς1 · ς2 · ... · ςn) ∈ LQ and (ς1 · ς2 · ... · ςn)ST = (ς1 · ς2 · ... · ςn−1) · (ςnST ) ⊆

(ς1ST ) · (ς2ST ) · ... · (ςnST ) ⊆ LQ. Thus, (ς1 · ς2 · ... · ςn) ∈ HQ. �

Lemma 3.5. Let Q be a PLI of S. Then, LQ = Q.

Proof. Clearly, LQ ⊆ Q. Let x ∈ Q, but Q is a PLI of S. Now, ST x ⊆ Q implies x ∈ LQ. Thus,

Q ⊆ LQ. Hence, LQ = Q. �

Theorem 3.3. Let Q be a PBI of a S. Then, HQ is the unique largest two-sided PID of S and which is
contained in Q.

Proof. Let Q be the PBI of S. First, we that HQ is a two sided PID of S. Since HQ ⊆ LQ ⊆ Q. Let

ςi ∈ HQ,∀i ∈ I and y1, y2 ∈ S. Then ςi ∈ HQ ⊆ Q =⇒ ςi ∈ Q. Since ςi ∈ LQ, we have SSςi ⊆ Q

and ςiSS ⊆ LQ, ∀i ∈ I. Because Q is the PBI of S, then
∑

i ςi ∈ Q. Since ςi ∈ LQ,
∑

i ςi ∈ LQ,

SS(
∑

i ςi) ⊆ LQ ⊆ Q and (
∑

i ςi)SS ⊆ LQ. Hence,
∑

i ςi ∈ HQ. Since x ∈ LQ, then y1y2x ∈ SSx ⊆ Q
and SSy1y2x ⊆ SSSSx ⊆ SSx ⊆ Q =⇒ y1y2x ∈ LQ. Moreover xy1y2 ∈ xSS ⊆ LQ. Therefore

xy1y2 ∈ LQ and y1y2x ∈ LQ. To prove that xy1y2 ∈ HQ and y1y2x ∈ HQ. Now, xy1y2SS ⊆ xSSSS ⊆
xSS ⊆ LQ =⇒ xy1y2 ∈ HQ. Moreover y1y2xSS ⊆ SSxSS ⊆ SSLQ ⊆ LQ =⇒ y1y2x ∈ HQ, since

LQ is a PLI of S. Hence, HQ is a two-sided PID of S. To prove HQ is the largest two sided PID
of S. Let I be any PID of S and I ⊆ Q. Let i ∈ I. Consequently, i ∈ Q and SSi ⊆ I ⊆ Q. Hence,

SSi ⊆ Q =⇒ i ∈ LQ. Hence, I ⊆ LQ. Next, i ∈ LQ and iSS ⊆ I ⊆ LQ =⇒ i ∈ HQ. Hence,

I ⊆ HQ. �

Theorem 3.4. Let Q be a PBI of S. If Q is a P1P (P2P) of S, then HQ is a PPID of S.

Proof. Let Q be P1P of S. To prove that HQ is a PPID of S. Suppose that B1, B2 and B3 be the PBIs

of S such that B1 ·B2 ·B3 ⊆ HQ. By Theorem 3.3, HQ is the largest PID of S such that HQ ⊆ Q.

Thus I1 ⊆ B1 ⊆ HQ or I2 ⊆ B2 ⊆ HQ or I3 ⊆ B3 ⊆ HQ for the IDs I1, I2 and I3 . �

In the following examples, we show that the converse of the Theorem 3.4 is not true.



Int. J. Anal. Appl. (2024), 22:145 11

Example 3.7. By Example 3.1, Q = {a1,a3,a5} is a PBI and HQ = {a1,a5} is a PPID, but Q is not
a P1P of S. For the PBIs Q1 = {a1,a2,a3} and Q2 = {a1,a3,a6} and Q3 = {a1,a4,a6}. Now,
Q1 · Q2 · Q3 = {a1} ⊆ Q but Q1 * Q and Q2 * Q and Q3 * Q.

Example 3.8. By Example 3.1, Q = {a1,a4,a7} is a PBI and HQ = {a1,a7} is a PPID, but Q is not a
P2P of S. For a2,a6,a8 ∈ S and a2Sa6Sa8 = {a1,a4} ⊆ Q but a2 < Q,a6 < Q and a8 < Q.

Theorem 3.5. The PBI Q is a P3P of S if and only if HQ is a PPID of S.

Proof. Let Q be a PBI of S and Q be P3P of S. To prove that HQ is a PPID of S. Suppose that

A1, A2 and A3 are the PIDs of S such that A1 ·A2 ·A3 ⊆ HQ. By Theorem 3.3, HQ is the largest

two sided PID of S such that HQ ⊆ Q. Thus A1 ⊆ HQ or A2 ⊆ HQ or A3 ⊆ HQ.

Conversely, suppose that HQ is a PPID of S. To prove that Q is a P3P of S. For the PIDs
I1, I2 and I3 of S such that I1 ·I2 ·I3 ⊆ Q. To show that I1 ⊆ Q or I2 ⊆ Q or I3 ⊆ Q. Now,

I1 ·I2 ·I3 ⊆ HQ. This implies that I1 ⊆ HQ ⊆ Q or I2 ⊆ HQ ⊆ Q or I3 ⊆ HQ ⊆ Q. Hence, Q is a

P3P of S. �

Theorem 3.6. Let M be a P-m3-system andQ be a PBI of S withQ∩M = ∅. Then there exists a P3P
P of S containing Q with P∩M = ∅.

Proof. Let X =
{
J |J is a PBI with Q ⊆ J and J ∩M = ∅

}
. Clearly, X is non-empty.

According to Zorn’s lemma, there exists a maximal element P in X and P ∩M = ∅. To prove

that P is a P3P of S. Using Theorem 3.5, we prove that HP is a PPID in S. Since HP
⊆ P and

P∩M = ∅ implies that HP
∩M = ∅.

Case-(i): Suppose that HP is the largest PID in S such that HP
∩M = ∅. Suppose < ς

′

>< ς
′′

><

ς
′′′

>⊆ HP. Then < ς
′

>⊆ HP or < ς
′′

>⊆ HP or < ς
′′′

>⊆ HP. By proving at a contradiction

approach, If < ς
′

>* HP, < ς
′′

>* HP and < ς
′′′

>* HP, then ς1
′

∈< ς
′

> \HP, ς1
′′

∈< ς
′′

> \HP

and ς1
′′′

∈< ς
′′′

> \HP. Then < ς1
′

>⊆< ς
′

>, < ς1
′′

>⊆< ς
′′

> and < ς1
′′′

>⊆< ς
′′′

>. If

< ς
′

>< ς
′′

>< ς
′′′

>⊆ HP then < ς1
′

>< ς1
′′

>< ς1
′′′

>⊆< ς
′

>< ς
′′

>< ς
′′′

>⊆ HP. By the

maximal property of P, (HP+ < ς1
′

>) ∩M , ∅ and (HP+ < ς1
′′

>) ∩M , ∅ and (HP+ < ς1
′′′

>

) ∩M , ∅. Thus, (HP+ < ς1
′

>)(HP+ < ς1
′′

>)(HP+ < ς1
′′′

>) ⊆ HP. Since M is a P-m3-system,

for ς1, ς2 ∈ M , then there exist ς1 ∈ (HP+ < ς1
′

>) ∩M and ς2 ∈ (HP+ < ς1
′′

>) ∩M and

ς3 ∈ (HP+ < ς1
′′′

>) ∩M such that ς1
′

ς2
′

ς3
′

∈M , where ς
′

1 ∈< ς1 >, ς
′

2 ∈< ς2 > and ς
′

3 ∈< ς3 >. If

ς1 ∈ (HP+ < ς1
′

>), then ς
′

1 = l
′

+f1 for some l
′

∈ HP andf1 ∈< ς1
′

> and if ς2 ∈ (HP+ < ς1
′′

>),

then ς
′

2 = l
′′

+f2 for some l
′′

∈ HP and f2 ∈< ς1
′′

>. If ς3 ∈ (HP+ < ς1
′′′

>), then ς
′

3 = l
′′′

+f3

for some l
′′′

∈ HP and f3 ∈< ς1
′′′

>. Now, ς
′

1 · ς
′

2 · ς
′

3 ∈ (l
′

+f1) · (l
′′

+f2) · (l
′′′

+f3) = l
′

l
′′

l
′′′

+

l
′

f2l
′′′

+f1l
′′

l
′′′

+f1f2l
′′′

+ l
′

l
′′

f3 + l
′

f2f3 +f1l
′′

f3 +f1f2f3 ∈ HP+ < ς
′

> · < ς
′′

> · < ς
′′′

>.

If < ς
′

> · < ς
′′

> · < ς
′′′

>⊆ HP, then ς
′

1 · ς
′

2 · ς
′

3 ∈ HP. Thus, HP
∩M , ∅, which is a contradiction.

Hence, < ς
′

> · < ς
′′

> · < ς
′′′

>* HP. Hence, HP is a PPID of S. By Theorem 3.5, P is a P3P of S.

Case-(ii): If HP is not a largest PID in S, then there is a maximal ID P′ in S such that HP
⊆ P′ and

P′ ∩M = ∅ and apply case-(i). Thus, HP′ is a PPID. Hence, P′ is a P3P of S. �
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4. DifferentPSPBIs

In this section, we introduce three different PSPBIs of S.

Definition 4.1. (i) A PBI P of S is called a partial 1-semiprime (P1SP) if Q3
⊆ P, implies Q ⊆ P for

any PBI Q of S.
(ii) partial 2-semiprime (P2SP) if x

′

Sx
′

Sx
′

⊆ P implies x
′

∈ P.
(iii) partial 3-semiprime (P3SP) if I 3

⊆ P implies I ⊆ P, for any PID I of S.

Theorem 4.1. A PBI P of S is P2SP if and only if Z1
3
⊆ P (Z2

3
⊆ P, Z3

3
⊆ P), with Z1 is a PRI (Z2

is a PLATI and Z3 is a PLI) of S implies Z1 ⊆ P (Z2 ⊆ P, Z3 ⊆ P).

Proof. Suppose that Z3
1 ⊆ P. To prove that Z1 ⊆ P. For ς

′

∈ Z1, ς
′

Sς
′

Sς
′

⊆ Z3
1 ⊆ P. Because P is a

(P2SP) of S implies that ς
′

∈ P. Thus, Z1 ⊆ P.

Conversely, suppose that ς
′

Sς
′

Sς
′

⊆ P.

Now (ς
′

ST )(ς
′

ST )(ς
′

ST ) ⊆ (ς
′

ST )S(ς
′

ST )S(ς
′

ST ) ⊆ ς
′

Sς
′

Sς
′

⊆ P implies ς
′

ST ⊆ P. If

ς
′

ST ⊆ P, then

< ς
′

>r · < ς
′

>rt · < ς
′

>rt =

[{∑
n
ς
′

|n ∈ Z+

}
+ ς

′

ST

]
·

[{∑
m
ς
′

|n ∈ Z+

}
+ ς

′

ST

]
[{∑

m′
ς
′

|n ∈ Z+

}
+ ς

′

ST

]

⊆

[ ∑
nmm′

ς
′

ς
′

ς
′

]
+ ς

′

Sς
′

Sς
′

⊆ ς
′

ST ⊆ P.

Thus, ς
′

∈ P. �

The following implications hold for P1SP implies P2SP implies P3SP. Some examples

showing that the reverse implications may not be valid.

Example 4.1. In Example 3.1, Clearly, P = {a1,a4,a6} is a P2SP, but P is not a P1SP. For PBI
Q = {a1,a3} and Q3

⊆ P but Q * P.

Example 4.2. By Example 3.4 and routine calculation, P = {f1,f5} is a P3SP ofS. Now,f6Sf6Sf6 =

{f1,f5} ⊆ P but f6 < P implies P is not a P2SP of S.

Definition 4.2. (i) A subset N of S is represent a P-n1-system if for any ς1 ∈ N , ∃ ς
′

, ς
′′

, ς
′′′

∈< ς1 >b

such that ς
′

· ς
′′

· ς
′′′

∈ N .
(ii) A subset N of S is represent a P-n2-system if for any ς2 ∈ N , ∃ ς

′

, ς
′′

, ς
′′′

∈< ς2 >r or ς
′

, ς
′′

, ς
′′′

∈<

ς2 >lat or ς
′

, ς
′′

, ς
′′′

∈< ς2 >l such that ς
′

· ς
′′

· ς
′′′

∈ N .
(iii) A subset N of S is represent a P-n3-system if for any ς3 ∈ N , ∃ ς

′

, ς
′′

, ς
′′′

∈< ς3 > such that
ς
′

· ς
′′

· ς
′′′

∈ N .
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Theorem 4.2. Let P be the PBI of S. Then, P is a P1SP (P2SP, P3SP) if and only if S \ P is a
P-n1 − system(P-n2 − system, P-n3 − system).

Proof. Let P be the partial 1-semiprime of S and let ς ∈ S \ P. Hence, < ς >b · < ς >b · <

ς >b* P. Then there exist ς
′

, ς
′′

, ς
′′′

∈< ς >bsuch that ς
′

· ς
′′

· ς
′′′

=

{∑
n1
ς +
∑

n2
ς3 + f1

}
·{∑

n′1
ς+
∑

n′2
ς3 +f2

}
·

{∑
n′′1
ς+
∑

n′′2
ς3 +f3

}
, where f1 =

∑
(i, j) ςriςr jς and f2 =

∑
(i, j) ςr

′

iςr
′

jς

and f3 =
∑

(i, j) ςr
′′

i ςr
′′

j ς for n1, n2, n
′

1, n
′

2, n
′′

1 , n
′′

2 ∈ N and ri, r j, r
′

i , r
′

j, r
′′

i , r
′′

j ∈ S. Now, f1 ·f2 ·f3 ∈<

ς >b · < ς >b · < ς >b* P. Thus, ς
′

· ς
′′

· ς
′′′

< P. Hence, S \ P is a partial-n1-system.

Conversely, Let S \ P be a partial-n1-system. Suppose that Q3
⊆ P for the partial bi-ideal Q of S.

Let us arrive at a contradiction. Let ς ∈ Q \ P. Hence, ς ∈ S \ P implies < ς >b · < ς >b · < ς >b* P,

which is a contradiction. Thus, Q ⊆ P. Therefore, P is a partial 1-semiprime of S. Similarly, we

can prove the other cases. �

The following implications hold for P-n1-system implying that the P-n2-system implies P-

n3-system. It is impossible to prove the reverse of the implications using the following example.

Example 4.3. By Example 3.1,N = {a2,a3,a5,a7,a8,a9} is a P-n2- system, but not a P-n1-system.
For a3 ∈ N , there is no ς1, ς2, ς3 ∈< a3 >b such that ς1 · ς2 · ς3 ∈ N . Since < a3 >b · < a3 >b · <

a3 >b= {a1} < N .

Example 4.4. By Example 3.4, N = {f2,f3,f4,f6, } is a P-n3-system, but not a P-n2-system of S.
For f6 ∈ N and f6Sf6Sf6 = f5 < N .

Corollary 4.1. If Q is a P1SP (P2SP) of S, then HQ is a PSPID of S.

Proof. Let Q be (P1SP) of S. To prove that HQ is a PSPID of S. Suppose that B is the PSPBI
of S such that B3

⊆ HQ. By Theorem 3.3, HQ is the largest PPID of S such that HQ ⊆ Q. Thus

I ⊆ B ⊆ HQ for the ID I . �

Using this example, we show that the converse of the above corollary is not true.

Example 4.5. By Example 3.1 and routine computation, HQ = {a1,a2,a4,a5,a7},
Q = {a1,a2,a3,a4,a5,a6,a7} and Q1 = {a1,a2,a3,a4,a5,a6,a7,a8}. Clearly, HQ is a PSPID,
but Q is not a P1SP of S by Q1

3
⊆ Q but Q1 * Q.

By Example 3.1, taking HQ = {a1,a4,a6} is a PSPID of S. Let Q = {a1,a4,a6,a7} be a PBI and
a8Sa8Sa8 = {a1,a4,a6,a7} ⊆ Q but a8 < Q. This implies that Q is not a P2SP of S.

Theorem 4.3. The PBI Q is a P3SP of S if and only if HQ is a PSPID of S.

Proof. Let Q be a P3SP of S. To prove that HQ is a PSPID of S, suppose that A is the PSPID of

S such that A 3
⊆ HQ. According to Theorem 3.3, HQ is the largest PSPID of S such that HQ ⊆ Q.

Thus, A ⊆ HQ.

Conversely, suppose that HQ is a PSPID ofS. To prove thatQ is a P3SPID ofS. For the PID
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I of S such that I 3
⊆ Q. To show that I ⊆ Q. Now, I 3

⊆ HQ. This implies that I ⊆ HQ ⊆ Q.

Hence, Q is a P3SPID of S. �

5. Conclusion

In this article, we study P1P, P2P, P3P, P1SP, P2SP and P3SP as well as some characteri-

zation of PBI. Some of their fundamental characteristics have been discussed and some have been

described using PPBI and PSPBI. In addition, we demonstrated how to construct generators of

PLI, PLATI, PRI, PID and PBI like elements and subsets. In the future, we will use PPBI to

characterize partial hyper semirings and partially ternary hyper semirings. There are also several

other types of PPBI like the maximum and minimal PBI.
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