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Abstract. In this article, we have defined µ-exact and finitely exact Banach frames and discuss their existence and

relationship. A necessary condition for the existence of a µ-exact Banach frame is given. Also, we discuss quasi-

complementary subspaces and prove a result using exact Banach frames. Finally, as an application, we discuss

boundedness of an isometry using exact retro Banach frame sequences.

1. Introduction

Duffin and Schaeffer [1] presented frames explicitly within the framework of nonharmonic

Fourier analysis. Daubechies, Grossmann, and Meyer [2] brought frames back to limelight. Thanks

to their many good qualities, frames are widely used in wireless communications, sigma-delta

quantization, filter bank theory, image processing, and signal processing. One of the inherent

characteristics of a frame is its ability to extract function properties and recreate it just using the

frame coefficients, which are a series of scalars.

A sequence Ψ = {gn}
∞

n=1 in a separable Hilbert space H is called a frame for H , if one can find

scalarsA,B > 0 satisfying the inequality

A‖h‖2 ≤
∞∑

n=1

|〈h, gn〉|
2
≤ B‖h‖2, for all h ∈ H . (1.1)

The scalars denoted as A and B in 1.1 are identified as the lower and upper frame bounds,

respectively. The frame bounds need not be unique. In caseA = B, then Ψ is termed as anA-tight
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frame and in the case when A = B = 1, Ψ is termed as a Parseval frame. The inequality (1.1) is

named as the frame inequality. The operator T : `2 (N)→H given as

T({ck}) =
∞∑

k=1

ckgk, {ck} ∈ `
2 (N)

is called the pre-frame operator and the adjoint operator T∗ : H → `2 (N) of it is named as the

analysis operator which is given by T∗(x) = {〈x, gk〉}, x ∈ H . Composing T and T∗ we obtain the

frame operator S = TT∗ : H →H given by

S(h) =
∞∑

k=1

〈h , gk〉gk, h ∈ H .

Note that onH , the frame operator S is an invertible, positive, bounded, and self-adjoint operator.

This provides the reconstruction formula that follows:

h = SS−1h =
∞∑

k=1

〈S−1h , gk〉gk =
∞∑

k=1

〈h , S−1gk〉gk, for all h ∈ H . (1.2)

In the remaining part of this paper, throughout B indicate a Banach space over the scalar fieldK (R

or C), and H is a separable Hilbert space. The related Banach space of scalar valued sequences

indexed by N is indicated by Bd.

The notion of frame was generalized or extended to Banach spaces in many ways by several

authors namely, Feichtinger and Gröchenig [3], Gröchenig [4], Casazza et al. [5] and Terekhin [6].

One of the extensions like atomic decomposition is a concept that is generalized from the notion

of frame in Hilbert spaces to Banach spaces. The concept of atomic decomposition for specific

Function spaces was initially introduced by Coifman and Weiss [7]. A further development

saw the idea of atomic decomposition extended to specific Banach spaces by Feichtinger and

Gröchenig [3]. Another extension is the concept of Banach frame for a Banach Space. The idea of

Banach frame was first given by Gröchenig [4]. He defined it as follows:

Let B be a Banach space and Bd be a related Banach space. Let {yn} ⊂ B
∗

and S : Bd → B be

given. Then the pair ({yn},S) is termed as a Banach frame for B w. r. t Bd, if

(1) {yn(x)} ∈ Bd, for each x ∈ B.

(2) ∃ scalars A1 and A2 with 0 < A1 ≤ A2 < ∞ satisfying the inequality

A1‖x‖B ≤ ‖{yn(x)}‖Bd ≤ A2‖x‖B, x ∈ B. (1.3)

(3) S({yn(x)}) = x, x ∈ B where the operator S is bounded and linear.

Scalars A1 and A2 are stated as a lower and an upper frame bound of ({yn}, S) and S : Bd → B is

stated as the reconstruction operator. The expression in (1.3) is called the frame inequalty. In case

A1 = A2, then ({yn}, S) is termed as a tight frame for B and if A1 = A2 = 1, then ({yn}, S) is said to be

a normalized tight Banach frame. The Banach frame ({yn}, S) is called exact if ∃ no reconstruction

operator S0 such that ({yn}n,i, S0) (i ∈N) is a Banach frame for B.

Next, we give the definition of retro Banach frame introduced by Jain et al. [8].
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The pair ({gn},T ) ({gn} ⊂ B,T : B
∗

d → B
∗

) is called a retro Banach frame for B
∗

with respect to

B
∗

d, if

(1) {y(gn)} ∈ B
∗

d, for each y ∈ B
∗

.

(2) ∃ scalars A1 and A2 with 0 < A1 ≤ A2 < ∞ such that

A1‖y‖B∗ ≤ ‖{y(gn)}‖B∗ d ≤ A2‖y‖B∗ , x ∈ B. (1.4)

(3) T is bounded, linear and satisfies T ({y(gn)}) = y, y ∈ B
∗

.

The Scalars A1 and A2, are stated as a lower and an upper retro Banach frame bound of ({gn},T ).

The operator T : B
∗

d → B
∗

is termed as the reconstruction operator. The expression in (1.4) is

stated as the retro frame inequality. The other type of retro Banach frames are defined as in case of

Banach frames. A sequence {gn} ⊂ B is called a retro Banach frame sequence if it is a retro Banach

frame for span{gn}.

For further details concerning frames in Banach spaces and allied topics, one may refer to [9–18].

2. Main Results

In this section, we shall define two type of exactness of Banach frames and investigate relation-

ship between them. We begin with the following definition.

Definition 2.1. A Banach frame {xn} ⊂ B
∗

is called a µ-exact Banach frame for B if for a sequence
{
µn

}
of

positive real numbers

∣∣∣∣λ(n)k

∣∣∣∣ ≤ µk, lim
n→∞

∞∑
k=1

λ(n)k xk = 0, k, n ∈ N =⇒ lim
n→∞

λ(n)k = 0, k ∈ N. (2.1)

One may observe that an exact Banach frame for a Banach space B is always µ-exact. Indeed, if

({xn} ,T )
(
{xn} ∈ B

∗

,T : Bd → B
)

is an exact Banach frame, then one can find a sequence
{
yn

}
∈ B

such that xi

(
y j

)
= δi j, for all i, j ∈N. Suppose that for a sequence

{
µn

}
of positive real numbers

∣∣∣∣λ(n)k

∣∣∣∣ ≤ µk and lim
n→∞

∞∑
k=1

µ(n)k xk = 0, ∀ k, n ∈N.

Then

lim
n→∞

µ(n)k = lim
n→∞

 ∞∑
j=1

µ(n)j x j

 (yk) = 0.

However, an exact Banach frame need not be µ-exact.

Example 2.1. Let ({xn},S) be an exact retro Banach frame for B which is not a Schauder basis for B. Let
g ∈ B be such that it admit no representation of the type g =

∑
∞

i=1 aixi. Then, one can always express
g = limn→∞

∑mn
i=1 a(n)i xi, where sup1≤n<∞ |a

(n)
i | < ∞(i ∈N).
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Define a sequence {zn} in B by z1 = g, zn = xn−1, n = 1, 2, . . . . Then {zn} is exact but not µ-exact for
µ1 ≥ 1 and µk ≥ sup1≤n<∞ |a

(n)
k−1 |,∀ k = 2, 3, . . . . Indeed, since ({xn},S) is exact, {zn} is exact. However if

we write

c(n)1 = 1, c(n)j =

−a(n)j−1, j = 2, 3, . . . , mn + 1

0 , j = mn + 2, mn + 3, . . . , n ∈N,

then |c(n)j | ≤ µ j ,∀z, n ∈ N and limn→∞
∑
∞

j=1 c(n)j z j = limn→∞

[
g−

∑mn
z=1 a(n)j x j

]
= 0, but limn→∞ c(n)1 =

1.

In the following result, we shall provide a necessary condition for a normalize µ -exact Banach

frame for B.

Theorem 2.1. If
{
µn

}
is a sequence of positive real numbers with inf1≤k≤∞ µk > 0, then for a µ-exact Banach

frame {xn} with ‖xn‖ = 1, n ∈ B, we have
∞∑

n=1

λnxn = 0 =⇒ λn = 0, ∀ n ∈N, (2.2)

where {λn} is any sequence of scalars in K.

Proof. Suppose on the contrary that (2.2) is not true. Then, one can find a sequence of scalars

{rn} ⊆ K with sup1≤n≤∞ |rn| , 0 such that
∑
∞

p=1 rpxp = 0. This yields that

sup
1≤p≤∞

∣∣∣rp
∣∣∣ = sup

1≤p≤∞
‖rpxp‖ < ∞.

Write

a =
inf1≤p≤∞ µp

sup1≤p≤∞ |rp|
and r(n)p = arp, p, n ∈N.

Then, we compute ∣∣∣∣r(n)p

∣∣∣∣ = ∣∣∣arp
∣∣∣ ≤ inf

1≤p≤∞
µp ≤ µp, ∀ p, n ∈N.

This gives

lim
n→∞

n∑
p=1

r(n)p xp = lim
n→∞

n∑
p=1

arpxp = a lim
n→∞

n∑
p=1

rpxp = 0.

Since {xn} is µ-exact, we get

arp = lim
n→∞

r(n)p = 0, ∀n ∈N.

Also, since a , 0, we conclude that rp = 0, p ∈ N. This contradicts the assumption that

sup1≤p<∞ |rp| , 0. �

Next, we give another notion called finitely exact Banach frames.

Definition 2.2. A Banach frame ({xn} ,T ) is called finitely exact if for every finite sub-sequence
{
xnp

}k

p=1
of {xn}

k∑
p=1

λpxnp = 0 =⇒ λp = 0, p = 1, 2 . . . , k.
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In the following result we prove that a µ-exact Banach frame is always finitely exact.

Theorem 2.2. If a Banach frame ({xn} ,T ) is µ-exact, then it is finitely exact.

Proof. Suppose on the contrary that the Banach frame ({xn} ,T ) is µ-exact but not finitely exact.

Then, one can always find scalars λ1,λ2, . . . ,λp with sup1≤k≤p |λk| , 0 and such that
∑p

k=1 λkxk = 0.

Since ({xn} ,T ) is µ-exact there exist a sequence
{
µn

}
of positive real numbers satisfying (2.1). Write

a =
inf1≤k≤p µk

sup1≤k≤p |rk|

and

λ(n)i =

aλi, if 1 ≤ i ≤ p

0, if i ≥ p + 1.

Clearly a , 0. Also, as in Theorem 2.3, λi = 0, 1 ≤ i ≤ p. This contradicts the assumption that

sup1≤k≤p |λk| , 0. �

The converse statement of Theorem 2.2 is not true.

Example 2.2. Let {xn} be a Schauder basis in B. Then there exist a sequence
{
yn

}
⊂ B

∗

such that
yi(x j) = δi j,∀ i, j ∈ N. Then there exist a bounded linear operator T : Bd → B such that ({yn},T ) is an
exact Banach frame for B. Write

x =
∑
j=1

1
2i‖xi‖

xi.

Then y j(x) , 0, ∀ j ∈ N. Define {zn} ⊂ B by z1 = x, zn = xn−1, n = 2, 3, . . . . Then, it is easy to verify
that {zn} is finitely exact. If we take {µn} as in Definition 2.1 such that inf1≤ j<∞ µ j > 0, then {zn} is not
µ-exact.

Next, we discuss quasi-complementary subspaces related to a given exact Banach frame.

Recall that two subspaces X and Y of a normed linear space N are called quasi-complementary

if X ∩Y = {0} and X + Y is dense in N. In this case X and Y are called quasi-complements of each

other. Towards the existence of quasi-complementary subspaces in a normed linear space N, one

may notice that if {en} is a sequence of unit vectors in N = `p(1 < p < ∞), then X = [enk ] and

Y = [e j] j∈N�{nk}, where nk is any increasing sequence in N, are quasi-complementary subspace of N.

In view of the above discussion, we prove the following lemma.

Lemma 2.1. If ({xn} ,T ) is an exact Banach frame for B and {nk} is an increasing sequence in N, then
there exists two subspaces X and Y of B such that X∩Y = 0.

Proof. Since the Banach frame ({xn} ,T ) is exact, there exist a sequence yn ⊂ B such that xi(y j) =

δi, j,∀i, j ∈N. Write X = [ynk ] and Y = [yi]i∈N\{nk}. Let x ∈ X∩Y be any element. Then

xnk(x) = 0 = x j(x),∀ j ∈N\{nk}.

Using lower frame inequality of the Banach frame ({xn} ,T ), x = 0. �



6 Int. J. Anal. Appl. (2024), 22:140

Note: From Lemma 2.1, one may notice that the existence of an exact Banach frame for B is

not a sufficient condition for the existence of quasi-complementary subspaces in a Banach space

B. In order to have a sufficient condition for the existence of quasi-complementary subspaces in a

Banach space B, we define the following:

Definition 2.3. Let ({xn} ,T ) be a Banach frame for B with respect to Bd and let {yn} be a sequence in
B such that xi(y j) = δi, j,∀i, j ∈ N. If there exist an associated Banach space (Bd)

∗

and a reconstruction
operator S : (Bd)

∗

→ B such that (
{
yn

}
,S) is a retro Banach frame for (Bd)

∗

, then the system of frames{
({xn} ,T ) , (

{
yn

}
,S)

}
is called a frame system for B.

In the following result, we prove that if a Banach frame B has a frame system, then it has

quasi-complementary subspaces.

Proposition 2.1. If a Banach space B has a frame system, then there exist quasi-complementary subspaces
in B.

Proof. Let
{
({xn} ,T ) , (

{
yn

}
,S)

}
be a frame system in B. Let {xk} be any increasing sequence in

N. Write X = [ynk ] and Y = [yi]i∈N\{nk}. Then, by Lemma 2.1, X ∩ Y = 0. By hypothesis,

X∪Y = [yn] = B and so X + Y is dense in B. �

Theorem 2.3. Let
{
gn

}
⊂ B be an exact retro Banach frame sequence in B and let δ ∈ (0, 1). There exist a

sequence {εn} with εn > 0,∀n ∈N such that whenever {hn} is sequence in B satisfying

‖gn − hn‖ ≤ εn, ∀n ∈N (2.3)

the linear map w taking gi to hi (i ∈N) is a δ-isometry of [gn] onto [hn].

Proof. Since
{
gn

}
is an exact retro Banach frame sequence, there exist a sequence {yn} in B∗ such

that yi(g j) = δi j, ∀i, j ∈N. Write

εn =
δ

‖yn‖2n+1
, n ∈N.

Let ai are any scalars and g =
∑n

i=1 aig j. Then

∥∥∥∥∥∥∥
n∑

i=1

ai [gi − hi]

∥∥∥∥∥∥∥ =
∥∥∥∥∥∥∥

n∑
i=1

yi(g) [gi − hi]

∥∥∥∥∥∥∥
≤

n∑
i=1

∣∣∣yi(g)
∣∣∣ εn

< δ

∥∥∥∥∥∥∥
n∑

i=1

aigi

∥∥∥∥∥∥∥
This gives

(1− δ)
∥∥∥g

∥∥∥ ≤ ∥∥∥w(g)
∥∥∥ ≤ (1− δ)

∥∥∥g
∥∥∥ . (2.4)
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Note that the set consisting of all the finite linear combinations of type
∑n

i=1 aigi is dense in the

closed linear space of {gn}. We conclude that the inequality (2.4) is true for all g ∈ [gn].

�

The condition of exactness of the retro Banach frame sequence in Theorem 2.3 is necessary for

the boundedness of the isometry w. We prove the following result in this direction.

Proposition 2.2. Let
{
gn

}
⊆ B be a retro Banach frame sequence which is not exact. Let δ ∈ (0, 1) and {εn}

be a sequence of non-negative scalars. Then the linear map w taking gi to hi (i ∈N) and satisfying (2.3) is
unbounded.

Proof. Let g j ∈ [gi]i, j. Consider hi = gi, i = 1, 2, . . . , j− 1, j + 1, . . . , h j , g j and
∥∥∥gi − h j

∥∥∥ = ε j. Then

(2.3) is satisfied. Also, since g j ∈ [gi]i, j, for a given p there exists

zp = g j −
∑
i, j

ap
i gi

satisfying

‖zp
‖ ≤

εn

p
.

Then, we obtain

∥∥∥w(zp)
∥∥∥ =

∥∥∥∥∥∥∥∥h j −
∑
i, j

ap
i gi

∥∥∥∥∥∥∥∥
≥

(
1−

1
p

)
εn.

Therefore

‖w‖ ≥

∥∥∥w(zp)
∥∥∥

‖zp‖
≥ p− 1.

Hence, in view of the fact that p is arbitrarily chosen number,‖w‖ → ∞. �
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