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Abstract. This article introduces a mathematical analysis of the red palm weevil (RPW) model that incorporates optimal

control techniques. The investigation delves into the dynamics among date palm trees, the RPW, and tree micro-

injection. The analysis assesses the impact of sex pheromone traps and tree trunk injections on the RPW population.

Sufficient constraints are identified to provide both local stability and global stability analysis of equilibrium points.

The paper uses Sotomayor’s theorem as a guide to compute local bifurcations near equilibrium points. The study

concludes that adopting control strategies shows to a substantial decline in the RPW population, ultimately resulting

in extinction. Numerical simulations are employed to visually illustrate and support the theoretical findings.

1. Introduction

Red palm weevils Rhynchophorus ferrugineus are among the most destructive insects to palm

trees worldwide. In the middle of the 1980s, it was found in Saudi Arabia in 1987 and the

United Arab Emirates in 1986. It is well known that agricultural pests that attack date palms,

particularly the RPW. Thus, date plantations lose a third of their productivity. The Gulf region

has a favorable climate for growing palm trees, which makes it an ideal habitat for the red palm

weevil. Countries in this region also have extensive palm plantations, including palm groves,

which provide abundant food sources for the weevil [1–6].
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One of the main reasons why it is difficult to control this pest is because of its biology. This

is mainly because the life cycle of (RPW) the larval stage is within the palm. It creates tunnels

in the palm stem, boring in various directions and at different depths. In red palm plantations

worldwide, numerous methods have been implemented to control the red palm weevil (RPW).

However, despite the widespread use of chemical insecticides as a control measure, studies have

demonstrated that the application of these products inadvertently benefits the weevils by acting

as artificial selection pressure [7]. One of the most crucial strategies for combating the RPW is the

utilization of sex pheromone traps. These traps prevent insects from completing their life cycle

and proliferating, as they contain insecticides that kill the trapped insects. This technique aims to

collect and destroy entire insects [5, 8]. The researchers showed that using sex pheromone traps

to disrupt mating is one of the most efficient techniques for controlling RPW [9–11]. In several

places, tree micro-injection is used to eliminate some crop pests. To manage red palm weevils using

traditional methods, there is a need to understand the technique of partial injection of trees, which

has an effective role in eliminating the larvae, which are much more dangerous and destructive

than their adults. By drilling several holes at specific angles into the palm stem, a chimerical

compound will be injected into the stem. In the following case, after careful injection of the

product into the palm stem, the product is moved upwards in order to target the site of the lesion.

There is no movement of the pesticide down the tree roots which means it stays inside the tree.

Leaves falling to the ground are quickly broken down by microorganisms. After treatment, trees

or plants do not pose any threat to animals or workers in the immediate aftermath of treatment.

Following [12], The compartmental model for red palm weevil exhibits symmetry, meaning that

its differential equations are based on the idea that the rate of change of individuals within a

specific compartment is equivalent to the influx of individuals minus the efflux of individuals.

El-Shahed et.al. [13–15] proposed and analyzed a deterministic and stochastic model for RPW. The

principal aim of this paper is to present and examine a mathematical model of the RPW with sex

pheromone traps, taking into account the impact of optimal control on RPW dynamics. The focus

is specifically on evaluating their effect on the RPW population. The manuscript is structured as

below: In Section 2, we describe the RPW considered mathematical system and verify that the

solutions of the RPW model are bounded. Section 3 examines the local and global stability of

the RPW system. In Section 4, after determining the local bifurcation conditions, we investigate

whether Hopf bifurcation eventuates at the coexistence equilibrium point. To confirm the obtained

theoretical results, we illustrate some numerical simulations in the conclusion.

2. Mathematical model

In this part, based on the biological and ecological information presented, a considered model

explaining the dynamics of the Red Palm Weevil population is established.

• Let P(t) be the date palm tree population density. Without the presence of the RPW, we

consider the growth rate r of the date palm grows, and k palm capacity.
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• The larval stage and the adult stage are the two major stages of the RPW life cycle, respec-

tively. The date palm tree will eventually die because the larval stage presents the greatest

risk, as it destroys the palm tree’s interior tissue in the trunk. Allow L(t) to stand for the

RPW larvae population density. The female and male RPWs (F(t) and M(t), respectively)

make up the two compartments of the adult stage.

• Let θ1 denote the tree Micro-injection of palm tree attacked by RPW larvae while θ repre-

sents the tree Micro-injection of palm tree attacked by adult RPW.

• From the larvae of the RPW, the adult weevils emerge at the rate α, female or male. Among

the larvae that transform into an adult weevil, ε is the proportion that turns into a female,

while (1− ε) is the complementary proportion that becomes male.

• Date palm consumption per RPW is represented as a Holling type-II response function βP
a+P .

Date palm trees are preyed by RPWs at a rate of β. Whilst a determines the half-saturation

point, in other words, half of maximum predation rate. Because not all date palm biomass

is converted to RPW biomass, we assume that the conversion rate is 0 < e < 1.

• In order to reduce RPW, we intend to restrict the use of female pheromone traps. First, the

number of offspring is decreased by interfering with RPW mating in order to decrease the

likelihood of fertilization. This is accomplished by setting up traps that release a female

pheromone lure that males are drawn to. As a result, there are fewer males available to

mate with nearby females, which lowers the likelihood of conception. Second, the RPW

males that the traps attract are killed because the pesticides in the traps.

• We take into consideration the methods put out by Barclay et al. [16], Barclay et al. [17] and

Anguelov et al. [18] to account for the impact of pheromone traps. Therefore, the strength

of the trap is determined according to how many wild females will release an equivalent

amount of pheromones. Following [18–22], the pheromone trap’s effect is supposed to

attract additional η females. This implies that F + η is the total number of RPW females

that attract RPW males in such a context. In particular, pheromone traps tend to attract

males with probability
(
η

F+η

)
. Males attracted to pheromone traps have a mortality rate γ.

RPW with sex pheromone traps and tree micro-injections is stated in the below model.

dP
dt

= rP(1−
P
k
) −

βPL
a + P

− µ1P,

dL
dt

=
eβPL
a + P

− αL− µ2L− θ1L,

dF
dt

= εαL− µF− θF,

dM
dt

= (1− ε)αL−
γηM
F + η

− µM− θM.

(2.1)

2.1. Non-negativity and boundedness. For the RPW system (2.1), it is important to include

both positivity and boundedness because positivity indicates that the populations survive and

boundedness can be seen as a natural restriction to growth as a result of limited resources.
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Proposition 2.1. Every solution of the RPW system (2.1) with positive initial conditions remains positive
for all t > 0

Proof. The right hand side of the system (2.1) is obviously continuously differentiable, and thus

locally Lipschitz with respect to P, L, F, M. It follows that the RPW system (2.1) possesses a unique

solution (P, L, F, M) for given positive initial values. From RPW system (2.1) with positive initial

conditions, one obtains:

P(t) = P(0) exp
{∫ t

0

[
r(1−

P(s)
k

) −
βL(s)

a + P(s)
− µ1

]
ds

}
≥ 0,

L(t) = L(0) exp
{∫ t

0

[
eβP(s)

a + P(s)
− (α+ µ2L + θ1)

]
ds

}
≥ 0,

F(t) = F(0) exp
{∫ t

0

[
εα

L(s)
F(s)

− µ− θ

]
ds

}
≥ 0,

M(t) = M(0) exp
{∫ t

0

[
(1− ε)α

L(s)
M(s)

−
γη

F(s) + η
− µ− θ

]
ds

}
≥ 0.

(2.2)

Thus the solution of RPW model (2.1) remains positive for all t > 0. �

Based on the first equation of the RPW system (2.1), one has dP
dt ≤ rP(1− P

k ) − µ1P and

dP
dt

+ (r− µ1)P ≤ −
r
k

[
P2
−

2k
r
(r− µ1)P

]
≤

k
r
(r− µ1).

By applying the comparison theorem of differential inequalities established by Birkhoff and Rota

[23, 24], we derive P(t) ≤ P1, where P1 =
kρ
r and ρ = r− µ1. Consequently, the solutions of model

(2.1) are bounded.

Theorem 2.1. The solutions of Red Palm Weevil system (2.1) in R4
+ are uniformly bounded.

Proof. Below [25, 26], consider, H(t) = P(t) + L(t) + F(t) + M(t), then

dH(t)
dt

≤ rP
(
1−

P
k

)
− µ1P− µ2L− µ(F + M) −

γηM
F + η

=
−r
k

(
P−

k
2

)2

+
rk
4
− νH(t),

where, ν = min
{
µ,µ1,µ2

}
. Thus, dH(t)

dt + νM ≤ rk
4 . Applying the comparison theorem of differential

inequality [23], one achieve 0 ≤ H(t) ≤ rk
4ν . The outcomes of Eq. (2.1) in R4

+ is uniformly bounded

in

Σ =

{
(P, L, F, M) ∈ R4

+ : H(t) ≤
rk
4ν

+ ς, for any ς > 0
}

.

�

Following [27], the offspring number R0 can be obtained as follows

R0 =
eβkρ

Ψ(kρ+ ar)
,

where Ψ = α+ θ1 + µ2, Ω = θ+ µ.
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3. Equilibria and stability

There are three equilibrium points of the RPW model (2.1):

(1) E0, defined as (0, 0, 0, 0).

(2) The free RPW equilibrium point E1 =
( kρ

r , 0, 0, 0
)
. E1 exists if r > µ1

(3) The coexistence equilibrium point E2 = (P2, L2, F2, M2), where

P2 =
aΨ

eβ−Ψ
, L2 =

a + P2

β

[
ρ−

rP2

k

]
, F2 =

εαL2

Ω
, M2 =

(1− ε)αL2(η+ F2)

γη+ Ω(η+ F2)
.

When R0 > 1, E2 exists positively as a coexistence equilibrium point. At the equilibrium

points, there is symmetry since the population’s rate of change is zero.

We will discuss the locally asymptotically stable (LAS) equilibrium points and the globally asymp-

totically stable (GAS) equilibrium points of RPW system (2.1). Following [28–30], the Jacobian

matrix of RPW system (2.1)is defined in general form as:

J =


r− 2P

k r− aβL
(a+P)2 − µ1

−βP
a+P 0 0

eaβL
(a+P)2

eβP
a+P−Ψ 0 0

0 εα −Ω 0

0 (1− ε)α γηM
(F+η)2 −

γη
F+η −Ω


(3.1)

The following two theorems are presented to examine the stability of RPW extinction equilibrium

point E0 = (0, 0, 0, 0),

Theorem 3.1. If r < µ1, then E0 is LAS.

Proof. The Jacobian matrix at E0, takes the form:

J(E0) =


r− µ1 0 0 0

0 −Ψ 0 0

0 ε α −Ω 0

0 (1− ε)α 0 −Ω − γ

 . (3.2)

The eigenvalues of J(E0) are λ1 = r− µ1 , λ2 = −Ω − γ , λ3 = −Ψ and λ4 = −Ω. When r < µ1, the

eigenvalues of J(E0) is a negative part in E0 . By Routh-Hurwitz assumption E0 is LAS provided

that r < µ1. �

Theorem 3.2. If r < µ1 and ω < θ+ µ, then E0 is GAS.

Proof. By using Lyapunov function Ψ1(t) = P(t) + L(t) + F(t) +M(t), which is dΨ1
dt along the result

of RPW system (2.1) gives:

dΨ1

dt
≤ rP

(
1−

P
k

)
− µ1P− µ2L− θ1L

≤ (r− µ1)P + (ω− θ− µ)F.

Taking r < µ1, one gets dΨ1
dt ≤ 0, therefore E0 is GAS. �
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Here we examine the stability of E1 = (P1, 0, 0, 0), which is the free RPW equilibrium point.

Theorem 3.3. If R0 < 1, R1 < 1 and ρ > 0, then E1 is LAS.

Proof. At E1, the Jacobian matrix has the following form:

J(E1) =


−ρ

−βkρ
kρ+ar 0 0

0 eβkρ
kρ+ar −Ψ 0 0

0 εα −Ω 0

0 (1− ε)α 0 −γ−Ω

 ,

The eigenvalues of J(E1) are λ1 = −ρ, λ2 = −Ω − γ and the other tow roots are determined by

λ2 + (Ψ + Ω)(1 − R1)λ+ ΨΩ(1 − R0) = 0, where R1 =
eβkρ

(kρ+ar)(Ψ+Ω)
. It can be observed that if

R0 < 1, R1 < 1 and ρ > 0, then E1 is LAS. �

Theorem 3.4. If e1βP1 < a(µ2 + θ1), then E1 is GAS.

Proof. Assume the below positive given Lyapunov function:

Ψ2(t) = e
(
P− P1 − P1ln(

P
P1

)
)
+ L(t) + F(t) + M(t),

calculating dΨ2
dt , we obtain,

dΨ2

dt
≤ e(P− P1)

[
r
(
1−

P
k

)
− µ1 −

βL
a + P

]
+

eβPL
a + P

− (µ2 + θ1)L

≤
−er
k

(P− P1)
2 +

(
eβP1

a + P
− (µ2 + θ1)

)
L.

Choosing eβP1 < (a + P2)(µ2 + θ1), one obtains dΨ2
dt ≤ 0 , therefore, free RPW equilibrium point

E1 is GAS.

�

As follows, we investigate the stability of E2 = (P2, L2, F2, M2).

Theorem 3.5. If βL2

(a+P2)2 >
rP2
k and eβP2

a+P2
> Ψ, then E2 is LAS

Proof. At E2, the Jacobian matrix of RPW Eq. (2.1) given below

J(E2) =



βL2

(a+P2)2 −
rP2
k

−βP
a+P 0 0

eaβL2

(a+P2)2
eβP2
a+P2
−Ψ 0 0

0 εα −Ω 0

0 (1− ε)α γηM2

(F2+η)2 −
γη

F2+η
−Ω


(3.3)

The first eigenvalue of J(E2) is λ1 = −
γη

F2+η
−Ω. The other roots are determined by

λ3 +
(
A1 +

εαω
Ω

+ Ω
)
λ2 + (A1ω+ A2A3)λ+ A2A3Ω = 0, (3.4)
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where

A1 =
βL2

(a + P2)2 −
rP2

k
, A2 =

eaβL2

(a + P2)2 , A3 =
eβP2

a + P2
−Ψ.

When A1 > 0 and A3 > 0, then all the eigenvalues of J(E2) near the E2 which satisfies the

Routh–Hurwitz points E2 is LAS. �

4. Bifurcation analysis

Using Sotomayor’s theorem [31], this section discusses the local bifurcations of the RPW

model(2.1) near the equilibrium points. Vector representation of the RPW model (1) is as dX
dt =

G(X), such that X = P, L, F, M)T, G = (ξ1, ξ2, ξ3, ξ4)
T with fi, i = 1...4 of the RPW Eq. (2.1), right

side.

Theorem 4.1. Transcritical bifurcation of the RPW system (1) with respect to the bifurcation parameter r
occurs around E0 if r = µ1.

Proof. We define the eigenvector V1 corresponding to the eigenvalue λ = 0 of J(E0) as V1 =

(ν1, ν2, ν3, ν4)
T, hence J(E0)V1 = 0, gives V1 = (ν1, 0, 0, 0)T, ν1 is a real number. By same procedure,

Such that the eigenvector V2, the eigenvalue λ = 0 of J(E0)T as V2 = (τ1, τ2, τ3, τ4)
T, Where,

J(E0)TV2 = 0 provies V2 = (τ1, 0, 0, 0) where, real number τ1. Suppose, ∂G
∂r = Gr(X, r) = (P(1 −

P
k ), 0, 0, 0)T, therefore, VT

2 Gr(E0, r∗) = 0. Due to Sotomayor’s technique, the RPW model (1) does

not have saddle-node bifurcations near E0 at r∗ = µ1.

Now,

DGr(E0, r∗) =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

then VT
2 DGr(E0, r∗)V1 = ν1τ1 , 0. Consequently

VT
2 D2G(X, r)(V1, V1) = −

2rτ1ζ2
1

k
, 0

A transcritical bifurcation occurs at r∗ = µ1 for the RPW system (1) based on Sotomayor’s theorem.

�

Theorem 4.2. Transcritical bifurcation of the RPW system (1) by employing bifurcation parameter θ1

occurs around around E1 = (P1, 0, 0, 0) if R0 = 1.

Proof. By the help of Jacobian matrix of the RPW the Eq. (2.1) at E1 with θ1 = θ∗1 =
eβkρ

(kρ+ar) − α−µ2

has zero eigenvalue takes the form

J(E1) =


−ρ

−βkρ
kρ+ar 0 0

0 0 0 0

0 εα −Ω 0

0 (1− ε)α 0 −γ−Ω

 ,
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The eigenvector corresponding to J(E1)V3 = 0, given below,

V3 =



−βP2
1(Ω+γ)k

(a+P2
1)(1−ε)α(2rP1+k(µ−r))ν2

(Ω+γ)
(1−ε)αν2
(Ω+γ)ε
(1−ε)Ω ν2

ν2


,

where ν2 is any non zero real number. By the same way, the eigenvector corresponding to

J(E1)
TV4 = 0 is V4 = (0, τ2, 0, 0)T where τ2 is a non-zero real number. Let, ∂G

∂θ1
= Gθ1(X,θ1) =

(0,−L, 0, 0)T, thus, VT
4 Gθ1(E1,θ∗1) = 0. Due to Sotomayor’s local bifurcation theorem, the RPW

model (1) does not have saddle-node bifurcations near E1 at θ∗1 ==
eβkρ

(kρ+ar) − α− µ2.

Now,

DGθ1(E1,θ1
∗) =


0 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 ,

then VT
4 DGθ1(E1,θ1

∗)V3 =
−(Ω+γ)
(1−ε)α ν3τ3. As a result

VT
4 D2G(X,θ1)(V3, V3) =

4aβeτ2

(a + P1)2 ζ1ζ2 , 0

Based on Sotomayor’s theorem, the RPW Eq. (1) satisfies all the criteria of transcritical bifurcation

at θ∗1 =
eβkρ

(kρ+ar) − α− µ2. �

5. Optimal control of RPW

In order to reduce the number of red palm weevils over time t, control procedures are proposed

in this section using the principles of optimal control theory. Two constrained controls, u1(t) and

u2(t), are thus introduced to the system (2.1). Therefore the red palm weevil model with two

controls takes the form

dP
dt

= rP(1−
P
k
) −

βPL
a + P

− µ1P

dL
dt

=
eβPL
a + P

− αL− µ2L− θ1L− u1L,

dF
dt

= εαL− µF− θF− u2F,

dM
dt

= (1− ε)αL−
γηM
F + η

− µM− θM− u2M,

(5.1)

where P(0) = P0, L(0) = L0, F(0) = F0, M(0) = M0. The objective is to find a pattern

to minimize the number of Larvae and adult RPW spreading the infection using the following

functional

J(u1(t), u2(t)) = min
∫ T

0

[
L + F + M + c1u2

1 + c2u2
2

]
dt,
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where c1 and c2 are positive weight constants. One can seek a pair (u∗1, u∗2) of the optimal control

problem such that:

J(u∗1(t), u∗2(t)) = min
{
J(u1(t), u2(t))|(u1, u2) ∈ U0

}
,

where U0 =
{
(u1, u2) : 0 ≤ u j ≤ 1, u j is measurable, t ∈ [t, te], j = 1, 2

}
. Utilizing the Pontryagin’s

maximum principle [32–36], one can determine the condition for the control of of the RPW system

(5.1) as follows.

H =L + F + M + c1u2
1 + c2u2

2 + ξ1

(
rP(1−

P
k
) −

βPL
a + P

− µ1P
)

+ ξ2

(
eβPL
a + P

− αL− µ2L− θ1L− u1L
)
+ ξ3 (εαL− µF− θF− u2F)

+ ξ4

(
(1− ε)αL−

γηM
F + η

− µM− θM− u2M
)

,

where ξ j(t), j = 1, 2, 3, 4 are the co-state variables to be determined. According to Pontryagin’s

maximum principle, one can get the following adjoint equations.

dξ1

dt
= −

∂H
∂P

= −ξ1

[
r−

2rP
k
−

aβL
(a + P)2 − µ1

]
− ξ2

(
eβaL

(a + P)2

)
dξ2

dt
= −

∂H
∂L

= −1 + ξ1
βP

(a + P)
− ξ2

(
eβP

a + P
−Ψ − u1

)
− ξ3εα− ξ4(1− ε)α,

dξ3

dt
= −

∂H
∂F

= −1 + ξ3(Ω + u2) − ξ4

(
γηM

(F + η)2

)
,

dξ4

dt
= −

∂H
∂M

= −1 + ξ4

(
γη

F + η
+ Ω + u2

)
,

(5.2)

with the boundary conditions ξ j(te) = 0, j = 1, 2, 3, 4 The optimality criteria for the system 5.2

deduce to

∂H
∂u1

= 2c1u1 − ξ2L

∂H
∂u2

= 2c2u2 − ξ3F− ξ4M,

Using ∂H
∂u1

= 0 and ∂H
∂u2

= 0 at u1 = u∗1 and u2 = u∗2, yields

u∗1 =
ξ2L
2c1

, u∗2 =
ξ3F + ξ4M

2c2

Consequently

u∗1(t) =


0 if u1 ≤ 0,
ξ2L
2c1

if 0 < u∗1 < 1,

1 if u∗1 > 1
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u∗2(t) =


0 if u2 ≤ 0,
ξ3F+ξ4M

2c2
if 0 < u∗2 < 1,

1 if u∗2 > 1

which, can be rewritten in the following compact form

u∗1(t) = min
{
max

{
0,
ξ2L
2c1

}
, 1

}
and u∗2(t) = min

{
max

{
0,
ξ3F + ξ4M

2c2

}
, 1

}
. (5.3)

The red palm weevil systems 5.1,5.2, and 5.3, by numerically solving to obtain the best controls.

6. Numerical simulations

To illustrate the previously theoretical findings, numerical simulations of the Red Palm Weevil

system (2.1) are taken out in this section. Date palms and red palm weevils will be numerically

studied by using the below parameters [13,14]: r = 0.5, k = 3, β = 0.9, µ1 = 0.01, µ2 = 0.002, µ =

0.001, α = 0.1, a = 3, θ = 0.03, e = 0.2, γ = 0.2, ε = 0.6, η = 0.02.

As demonstrated in Fig. 1, the parameter η has a significant impact on the Red Palm Weevil male

population density. The population density of male Red Palm Weevils declines with increasing η,

as seen in Fig. 1. We conclude that the parameters η can regulate the dynamics of the considered

model. Similarly, as can be seen in Fig. 2 the Tree Micro-injection parameter θ significantly

affects the Red Palm Weevil male population density. According to Fig. 2, the male Red Palm

Weevil population density decreases as θ increases. From this, we infer that the Red Palm Weevil’s

dynamics can be controlled by Micro-injection parameter θ. In Fig. 3 and theorem (4.1), we display

the bifurcation graphs concerning r as a bifurcation parameter to illustrate the impact of the Palm

tree’s intrinsic growth rate, r. It can be demonstrated that a transcritical bifurcation occurs at

r = 0.01 if the growth rate r is increased while maintaining the values of all other parameters. We

change the value of β while holding the values of all other parameters to better understand how

the red palm weevil system model 2.1 changes dynamically in reaction to shifts in the amount

of predation between palm tree and weevil. Fig. 4 and theorem (4.2) both demonstrate that a

transcritical bifurcation occurs at β = 0.7476035115. To explain the effect of carrying capacity k
of the palm tree, We construct the bifurcation diagram concerning k as a bifurcation parameter,

as indicated in Fig. 5 and theorem 4.2, a transcritical bifurcation occurs at k = 3.3843. Moreover,

it can be seen that the Red Palm Weevil free equilibrium pointE1 = (P1, 0, 0, 0) is asymptotically

locally stable when 3.3843 < k < 9.2114. According to Fig. 5 and the theorem3.5, a Hopf bifurcation

happens at k = 9.211. This is visible from the last three figures, starting with Fig. 6 when k = 1.5,

but changing k to 7 changed the solution behavior to Fig. 7, and Fig. 8 depicts the Hopf bifurcation

meaning when we adjusted k to 17. Based on Figures 10, 11 and 12, it can be observed that the

adoption of control strategies leads to a significant decline in the population of red palm weevil

larvae, adult females, and males, eventually leading to their extinction. Finally, Fig 13, represents

the control variables u1(t) and u2(t) as a function of time.



Int. J. Anal. Appl. (2024), 22:148 11

0 200 400 600 800 1000 1200 1400 1600 1800 2000

t

0

0.1

0.2

0.3

0.4

0.5

0.6

M
(t

)

η=0

η=0.01

η=0.02

Figure 1. Dynamical illustration of the model (2.1) with η = 0, 0.01, 0.02
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Figure 2. Dynamical illustration of the model (2.1) with θ = 0, 0.005, 0.01
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Figure 4. Bifurcation graph of Red Palm Weevil model (2.1) with respect to β
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Figure 8. Dynamical illustration of the model (2.1) with k = 17
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Figure 10. The effect of optimal control on the Larvae population L(t)
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Figure 11. The effect of optimal control on the Larvae population F(t)
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Figure 12. The effect of optimal control on the Larvae population M(t)
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Figure 13. The graph represents the control variables u1(t) and u2(t)

7. Discussion and Conclusion

This study incorporates a mathematical model for the Red Palm Weevil utilizing sex pheromone

traps and tree micro-injections. We have studied how sex pheromone traps influence the spread

of the red palm weevil. Studies have been made into how the red palm weevil and date palm

tree interacted. To guarantee local LAS and global GAS stability equilibrium points, we found

some conditions. The equilibrium, E1, has been demonstrated to be locally asymptotically stable

for R0 < 1. We can infer from theorem (4.2) that the RPW model has a transcritical bifurcation for

R0 = 1. Theorem (3.3) shows a Hopf bifurcation in the Red Palm Weevil model when carrying

capacity k controls the bifurcation. We observed that sex pheromone traps can control Red Palm

Weevil. With the aid of Sotomayor’s theorem, the occurrence of local bifurcation close to the equi-

librium point is calculated. Without numerical examples of the analytical conclusions, analytical

studies are never performed. Thus, all analytical conclusions are supported by data and figures.

Numerical simulations are presented here that demonstrate the dynamical behavior of the system

and agree well with the analytical results. We have found that Red Palm Weevil male population

density is regulated by the sex pheromone trap parameter η. However, we focused on only a theo-

retical analysis of such scenarios, despite providing a realistic mathematical model of pheromone

traps and tree injections for controlling Red Palm Weevil. Without the use of chemical pesticide

resistance to the insect, our theoretical analysis can identify the primary mechanisms involved in

Red Palm Weevil control utilizing pheromone traps. It would be highly advantageous to develop

a mathematical model that incorporates pheromone traps, tree Micro-injection, pesticides, and

mechanical resistance to control the Red Palm Weevil. As a result of the numerical simulation of



18 Int. J. Anal. Appl. (2024), 22:148

the red palm weevil, it can be concluded that the optimal control policy, through stem injections

and chemical pesticides, has a significant effect in making the red palm weevil system free from

pests and maintaining a stable nature in the remaining period. The model examined here could

be improved in subsequent work to enhance the mathematical system of this article to describe

and explain the effect of pesticides in RPW control in the presence of pheromone traps and tree

Micro-injection. Checking whether the mechanisms identified by the model behave similarly in

the real world may require further empirical or field research in this area. In the present work, we

assumed that temperature, environmental influence, and all other conditions were homogeneous,

but this assumption is not so. For the following studies, one can consider the heterogeneous red

palm weevil system.
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