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Abstract. This paper proposes a new approach to finding robust response surface designs that can accommodate

potential model misspecifications. To achieve this, experimental designs that are robust across all potential models

were considered prior to data collection. Blocking effects were combined into all possible models, and the set of all

reduced models was obtained using the weak heredity principle. The objective of this study was to propose the use of the

geometric mean of A-optimalities as a new weighted A-optimality criterion for finding robust response surface designs.

Both a genetic algorithm (GA) and an exchange algorithm (EA) were employed to optimize the weighted A-optimality

criterion and compared with the widely used central composite design. The weighted A-optimal designs generated by

GA and EA in this study had higher Aw and A-efficiencies than CCD, and the Aw-optimal designs generated by the GA

were as or more efficient than the EA.

1. Introduction

Response surface designs are a crucial type of experimental designs used in the development,

improvement, and optimization of industrial processes. Response surface methodology (RSM)

combines statistical and mathematical techniques for three main objectives: fitting a response

surface model on a specific region of interest, determining response optimization, and selecting

operating conditions to reach specific requirements or customer needs. RSM focuses on approx-

imating complex unknown functions with a lower-order polynomial, such as a first-order, an

interaction, or a second-order model.

In cases where it is impractical to collect data for all factor level combinations under identical

conditions, forming blocks is recommended to reduce variability. A common approach is to
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construct a small exact response surface design by assuming a second-order model. The model

for k design variables and b blocks can be represented by equation (1.1),

y = β0 +
k∑

i=1

βixi +
k−1∑
i=1

k∑
j=i+1

βi jxix j +
k∑

i=1

βiix2
i +

b−1∑
l=1

δl + ε. (1.1)

In this context, the k design variables are x1, x2, ..., xk, y represent the observed response, while

β’s denotes the parameter coefficients to be estimated. δl stands for the lth block effect, and ε is a

normally distributed error term with an expected value of zero and variance σ2.

When considering a model, there are various design choices available. Selecting an appropriate

design is crucial, and different design criteria can be used for this purpose. Design optimality

criteria primarily focus on the optimal characteristics of the XTX matrix, where X is the model

matrix [2]. Alphabetic optimality criteria are single-value measures that assess various desirable

variance properties. These criteria serve to compare designs and construct optimal ones [1]. Four

commonly used alphabetic design evaluation criteria include D, A, G, and IV optimality criteria.

D and A optimality criteria emphasize parameter estimation, whilst G and IV optimality criteria

focus on prediction variance. The use of the information matrix underscores the importance

assumption regarding the adequacy of the empirical model in design evaluation.

Optimality criteria (D, A, G, and IV) are typically derived from a single model. However,

it’s common that the original design might not be efficient for the actual model used after data

collection. Therefore, seeking a design that performs well across a set of possible reduced models

becomes essential. This concept is known as model robustness. Therefore, this paper aims to find

a response surface design that works well across the set of reduced models by evaluating it with a

good optimality criterion.

Numerous strategies have emerged for evaluating a set of potential reduced models. Chipman

[6] introduced two classes of reduced models based on weak heredity (WH) and strong heredity

(SH) principles. A model can be represented by vector ∆, where ‘1’denotes the inclusion of a term

and ‘0’indicates its absence. Notations ∆i, ∆i j, and ∆ii signify the indicator function values of the

ith first-order effect, the i jth interaction effect, and the iith second-order effect, respectively.

Under weak heredity (WH), the presence of the βi jxix j term necessitates the inclusion of either

the βixi or β jx j term (or both) in the model. Similarly, if the βiix2
i term is included, the βixi term

must also be present. For k = 2, the second-order model (without blocks) comprises 6 parameters

(β0, β1x1, β2x2, β12x1x2, β11x2
1, β22x2

2), yielding 17 WH reduced models corresponding to vectors ∆ =

(∆0, ∆1, ∆2, ∆12, ∆11, ∆22). For k = 3, there exist 185 reduced models, with the second-order model

featuring 10 parameters (without blocks).

Borkowski, Turk, and Chomtee [3] introduced weighted D-, A-, G-, and IV- efficiencies for re-

sponse surface designs. These efficiencies are derived by assigning prior probabilities to various

potential models, following model heredity principles. Their findings indicate that design opti-

mality criteria may exhibit sensitivity to deviations from the full second-order model using the

arithmetic mean. Chairojwattana, Chaimongkol, and Borkowski [5] devised a genetic algorithm to
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generate designs optimizing the weighted D- and G-optimality criteria for second-order response

surface designs. They computed the weighted average of efficiency values across all models using

the arithmetic mean, with weights determined by prior probability assignments to model effects.

Limmun, Borkowski, and Chomtee [10] proposed a weighted A-optimality criterion for mixture

designs, while another Limmun, Chomtee, and Borkowski [11] developed a weighted IV-optimal

criterion for mixture designs, both using the arithmetic mean as the criterion.

Yeesa, Srisuradetchai, and Borkowski [21] introduced the weighted G-optimality criterion in

2019, which optimizes designs for two- and three-variable hypercube designs with blocks, utilizing

the geometric mean as a criterion. Their resulting designs exhibit higher G-efficiencies compared

to traditional G-optimal designs when the true model comprises first-order or interaction models.

In 2020, Yeesa, Srisuradetchai, and Borkowski [22] proposed a weighted D-optimality criterion

derived from all possible models to formulate robust designs for response surface designs with

blocking factors, also employing the geometric mean as a criterion. The results indicate that the

weighted D-optimality criterion offers another viable option for researchers. Notably, it shows

that using the D-optimality criterion for second-order models, when the true model is indeed

second-order, is unnecessary, as the corresponding D-efficiencies do not significantly deviate from

those of robust designs obtained from the weighted D-optimality criterion. Limmun, Chomtee,

and Borkowski [12] propose the weighted optimality criterion, utilizing the geometric mean to

compute robust mixture designs within irregularly shaped polyhedral regions, as dictated by

constraints on mixture component proportions. The results show that the proposed designs,

based on G- and/or IV-efficiency, are robust to model misspecification.

In this study, we utilize A-optimality to formulate a weighted criterion aimed at generating

designs resilient to various potential models. Specifically, we employ the weighted A-optimality

criterion to assess designs. The objective of the weighted A-optimality criterion is to maximize

the weighted A-efficiencies, denoted as Aw, within the design space across a set of reduced mod-

els. These weights are determined by experimenters, with one common approach being their

assignment based on the parameters of each model. In cases where experimental runs cannot be

conducted under identical conditions, it becomes necessary to establish blocks. When observations

can be grouped into blocks of homogeneous units, the choice of blocking scheme is contingent

upon the experiment’s nature. Blocks introduce additional parameters into the model, considered

as nuisance parameters. However, effective blocking of experimental designs can yield favorable

features in experimental runs.

Consequently, the novelty of our research lies in the introduction of weighted A-optimality

across the set of reduced models in experiments involving a blocking factor, using the geometric

mean as a criterion. Furthermore, we implement both a genetic algorithm and an exchange

algorithm to generate optimal designs, which are then compared to central composite designs.
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2. Materials andMethods

2.1. Weighted A-optimality Criterion. In this paper, our focus is on the A-optimality criterion,

which revolves around minimizing the individual variances of the estimated model coefficients.

Its aim is to minimize the total (or mean) of the variances of the estimated coefficients, achieved

by minimizing the sum of the diagonal elements of (XTX)−1. This, in turn, enhances precision in

estimating model parameters. Accordingly, a design is considered A-optimal when it minimizes

the trace of (XTX)−1.

The measure commonly used to assess the efficiency of any proposed design and its correspond-

ing model based on A-optimality is referred to as “A-efficiency”. The A-efficiency of an N-point

design is determined and denoted as

A-efficiency =
100p

trace
[
N
(

XTX)−1
)] , where p is the number of model parameters.

Let the initial or ‘full’model be the second-order model with blocks as specified in equation

(1.1). Given these conditions, models with larger parameter counts are allotted greater weights.

Here, M represents the count of reduced models derived from a given full model. A set of model

weights {w1, w2, ..., wM} is defined, where wi represents the weight assigned to the ith model, and∑M
i=1 wi = 1.

The weight assigned to the ith reduced model is calculated as wi =
p(i)

D×m(p(i)) , where p(i) denotes

the number of parameters excluding blocks in model i, m(p(i)) represents the count of models

with p(i) parameters, and D =
∑(k+2

2 )

p=1 p. These weights are utilized in computing the weighted

A-optimality criterion (Aw). For k = 2, the second-order model (excluding blocks) consists of 6

parameters with D =
∑6

p=1 p = 21. For k = 3, the second-order model (excluding blocks) contains

10 parameters with D =
∑10

p=1 p = 55.

The study generated robust designs in hypercube for 10 to 21 design points with 2 and 3 design

variables and 2 and 3 blocks, respectively. The proposed scheme for weighting the criteria was

based on giving more weight to a model with a larger number of parameters.

In this article, the geometric mean is utilized to calculate the Aw-optimality criterion. Consider

Ξ as the set comprising all potential exact designs within the design space χ. The Aw-optimality

criterion aims to seek a design ξ∗ satisfying:

ξ∗ = arg min
ξ∈Ξ

( M∏
i=1

[
trace[Mi

−1(ξ)]
]wi

)
, (2.1)

where Mi(ξ) = XT
(i)X(i)

/
N is a moment matrix for model i and N is the design size, X(i) is the

model matrix. Consequently, the corresponding weighted A-efficiency is defined as:

Aw =
M∏

i=1

Awi
i , (2.2)

where Ai =
100p

trace
[
N
(

XT
(i)

X(i))
−1
)] , which Ai is termed the A-efficiency of the ith reduced model.
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The consideration of the geometric mean arises from the necessity for the design to exhibit

robustness to model reduction and accommodate all parameters for reduced models. Conversely,

the weighted optimality criterion relying on the arithmetic mean fails to ensure the accommodation

of all reduced models. This misalignment contradicts the overarching aim of identifying a model-

robust design.

2.2. Genetic Algorithms. A genetic algorithm (GA), a computational optimization method in-

spired by Darwinian Evolutionary Theory, particularly survival of the fittest, was first described

by Holland in 1975 [9]. It operates by iteratively refining a population of potential solutions to-

wards an optimal state by mimicking natural selection processes. This is achieved through genetic

operators including selection, crossover, mutation, and inversion, which drive the evolution of the

population towards better solutions based on an objective function evaluating each individual’s

fitness. The effectiveness of a GA is influenced by several factors such as the choice of crossover

operator, crossover and mutation rates, and the size of the population. While early GAs utilized

binary encoding, the adoption of real-value encoding has proven advantageous in many applica-

tions due to its simplicity and computational efficiency. Real-value encoding is particularly suited

for optimizing multi-parameter problems, as it enables the representation of continuous variables.

Although numerous methodologies have been employed to find optimal designs, the GA has

emerged as a prominent choice in contemporary times. GAs exhibit a capacity to yield designs

approaching optimality, particularly when utilizing real-number encoding and appropriately de-

fined genetic operators. Consequently, a GA is capable of exploring the entirety of a continuous

design space to generate designs that are notably close to optimal.

GAs have been utilized in design optimization. For example, Shahraki and Noorossana [19]

proposed a combined genetic algorithm and reliability analysis enhanced by the design of exper-

iments for parameter optimization, demonstrating the method’s effectiveness with a numerical

example. Mahachaichanakul and Srisuradetchai [13] employed GAs to develop robust response

surface designs against missing data. Similarly, Yeesa, Srisuradetchai, and Borkowski [21] used

GAs to produce optimal response surface designs with blocking factors, applying the weighted

G-optimality criterion, and extended this approach in 2020 [22] to designs based on the weighted

D-optimality criterion. Comparative research in 2020 showed that GAs yield designs superior

to another algorithm. Additionally, Limmun, Chomtee, and Borkowski [12] proposed GA-based

designs using weighted optimality criteria to compute robust mixture designs within irregularly

shaped polyhedral regions.

The GA generates a precise N-point, k-variable response surface design, incorporating various

blocking structures. Each chromosome represents an N × k matrix, detailing the N design points

across k factors. The aim is to identify an N × k matrix that optimizes a design optimality criterion.

In this context, a gene constitutes a row within the chromosome (design), while a genetic variable

can pertain to any design variable within a gene (or row). Denoting the jth genetic design variable

in the ith row of a chromosome as xi j, the k-dimensional hypercube design region [−1, 1]k gives
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directions for the potential values for each xi j ∈ [−1, 1]k. An objective function, denoted as F, serves

as a measure of a chromosome’s fitness, reflecting the quality of the solution we aim to optimize. F
takes a chromosome as input to create the objective function value as output, where higher values

indicate superior fitness. The approach for generating designs using a GA is outlined below:

Step 1: Initiation Process
At the start of each generation, a population denoted by S chromosomes is established, with S
being an odd number. Begin by randomly generating S chromosomes to represent the population

of design matrices for a hypercube design region. Subsequently, calculate the objective function

for each chromosome.

Step 2: Selection Process
Following the generation of the initial population of S chromosomes, the best chromosome is

identified. This “elite chromosome” is distinguished by having the highest objective function F
value and influences the subsequent generation of chromosomes. To produce the next generation

of offspring chromosomes, select (S − 1)/2 pairs randomly from the remaining S − 1 non-elite

chromosomes (referred to as parent chromosomes) prior to the reproduction process.

Step 3: Reproduction Process
Reproduction induces evolutionary changes in certain characteristics of the chromosomes, giving

rise to the next generation. Upon completion of the reproduction process, we obtain S − 1 off-

spring chromosomes, which are derived from the S− 1 parent chromosomes. If the best offspring

chromosomes exhibit a higher objective function value than the elite chromosome, the offspring

chromosome with the highest objective function value replaces the elite chromosome as the new

elite. Consequently, the elite chromosome and the S− 1 offspring become the progenitors, ensur-

ing the continuation of the next generation comprising S chromosomes. The reproduction process

can be adjusted based on the researcher’s preferences and the nature of the desired solutions.

Nonetheless, it embodies the same principles as biological population genetics. Each reproduction

operator undergoes a probability test on each row of P and Q, representing the two parent designs

paired during reproduction. Let Pa denote the ath row of P and Qb denote the bth row of Q. A

reproduction operator is applied if it passes a probability test. A probability test is passed (PTIP)

occurs when a randomly generated value, u, is less than or equal to a specified value, αt, where u
follows a uniform distribution [0,1], and the αt values are predetermined by the experimenter. In

this study, seven operators are applied to each parental pair in the reproduction process, following

a predetermined order.

1) Swap Rows (sr) Gene Operator: If a PTIP occurs for row Pa of parent P, the operator exchanges

Pa with a random row Qb of parent Q. The range of αsr values is 0.002 to 0.02.

2) Swap Cut Point (scp) Gene Operator: If a PTIP occurs for row Pa of parent P, the operator

exchanges the last two decimal digits of the k genetic design variables of Pa with the last 2 decimal

digits of the k genetic design variables for a random row Qb of parent Q. The range of αscp values

is 0.005 to 0.02.
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3) Swap Block (sb) Gene Operator: If a PTIP occurs for a row in block b (in either parent P or

parent Q), the operator exchanges the row in block b with a random row from another block. The

remaining operators are applied to the genetic variables in the rows of either parent P or parent Q.

The range of αsb values is 0.002 to 0.02.

4) Swap Coordinates (sc) Gene Operator: If a PTIP occurs for xi j of parent P, the operator ex-

changes xi j of parent P with a random xkl of parent Q. The range of αsc values is 0.002 to 0.02.

5) Zero (z) Gene Operator: If a PTIP occurs for xi j, then xi j is changed to 0. The range of αz values

is 0.01 to 0.05.

6) Extreme (e) Gene Operator: If a PTIP occurs for xi j, xi j is randomly set to either 1 or −1. The

range of αe values is 0.01 to 0.10.

7) Creep (c) Operator: If a PTIP occurs for xi j, a random variate from N(0, σ2) is added to xi j to

create a new value x∗i j. The variance σ2 is determined by the researchers. The aim is to gradually

change the value in each generation. If x∗i j > 1 or x∗i j < −1, it will be set to 1 or −1, respectively. The

range of αc values is 0.025 to 0.10.

Step 4: Convergence Check
The GA will stop if the objective function for the best chromosome in the new generation remains

unchanged over numerous generations, indicating that further improvement is unlikely to be

achieved.

2.3. Exchange Algorithms. The Exchange Algorithm (EA) operates by selecting points from a

candidate set to construct a design matrix X∗ that optimizes an optimality criterion. Initially, one

or more points are exchanged between a randomly generated starting design and points from

the candidate set. This iterative exchange process continues until no further enhancement in

the optimality criterion value is achieved, indicating the discovery of the best possible design

(Meyer and Nachtsheim, [14]). Variations of EAs have been developed by several researchers,

including Fedorov [8], Wynn [20] , Mitchell [15] and [16], and Cook and Nachtsheim [7]. A notable

modification by Mitchell [15] involves a more flexible method that modifies the basic single-point

exchange algorithm to allow the replacement of multiple points in the original design during each

iteration.

The procedure for generating designs to optimize the Aw-optimality criterion via an EA proceeds

as follows:

Step 1: Begin by specifying the number of design variables k and the number of blocks b for

N design points. Create a candidate set C comprising Nc points, and then randomly generate a

starting design matrix of size N × k. In this study, Nc = 21k for k = 2 and k = 3. That is, for

k = 2, select 212 = 441 candidate design points for each (x1, x2) with C = {−1,−0.9, . . . , 0.9, 1} ×

{−1,−0.9, . . . , 0.9, 1}. For k = 3, select 213 = 9, 261 candidate design points.

Step 2: Replace a point in the starting design with a point from C and compute the corresponding

Aw value. Repeat this process for all N ×Nc exchanges. Retain the exchange and the design that

produce the largest Aw value. This design becomes the new best design.
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Step 3: Continue iterating Step 2 until no further improvement is observed in the Aw value.

Step 4: Iterate Steps 1 to 3 for 20 starting designs. Keep the best design obtained from these 20

starting designs.

2.4. Central Composite Design. Central Composite Design (CCD) is a widely used experimental

design in response surface methodology (RSM) that facilitates the construction of second-order

models without requiring exhaustive experimentation of all factor combinations. This design is

instrumental in optimizing processes with multiple input variables. The CCD includes factorial

points (n f ), axial points (na), and center points (nc), totaling N = n f + na + nc design points to

estimate the parameters in the second-order model. The region of interest for a CCD depends

on the selection of the axial point distance, typically ranging from ±1.0 to ±
√

k. In this study, a

cuboidal design region is considered, with a face-centered cube design having the axial points

coded as (±1, 0, 0, ..., 0), (0,±1, 0, ..., 0), . . . , (0, 0, ...,±1).

To manage uncontrolled variability and improve experimental precision, blocking can be an

essential addition to CCD. The general approach to blocking in CCD is to use two blocks, with

the factorial points in one block and the axial points in the other block. If there are no center

points, one of the pure quadratic effects becomes non-estimable. This issue can be addressed by

adding center points, which allow all the quadratic effects to be estimable. For three blocks, the

factorial points are divided between the first two blocks, and the axial points are in the last block.

For further details and review, see Montgomery [17], which provides comprehensive coverage

of experimental design techniques, including CCD and blocking. Box, Hunter, and Hunter [4]

explain the principles of experimental design and the application of CCD with blocking. Myers,

Montgomery, and Anderson-Cook [18] offer in-depth insights into response surface methodology

and the practical aspects of CCD and blocking.

3. Results and Discussion

In this research, computer-generated designs using GA and EA are compared to CCDs. The

results for Aw- and A-efficiencies are presented in Tables 1 to 4. For GA-generated and EA-

generated designs, the Aw and A columns represent the Aw- and A-efficiencies of GA or EA

designs that maximize Aw-efficiency for all WH reduced models. The A f ull columns represent the

A-efficiencies of GA or EA designs that maximize A-efficiency only for the full second-order model

with blocks, as described in Equation (1.1). For CCDs, the Aw-efficiency is calculated by weighting

the efficiencies of all reduced models, and the A-efficiency is calculated from the full second-order

model with blocks. This context includes cases where the sample size in each block is feasible for

a CCD.

For k = 2 variables and b = 2 blocks, n1 and n2 represent the sample sizes in the first and second

blocks, respectively. For a CCD, the first and second blocks are the factorial block and the axial

block. The varying number of center points in the blocks of the CCD results in different efficiency

values. The maximum Aw-efficiency values of a CCD with blocks occur when N = 12, with 6
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design points in each block, the factorial block contains 4 factorial points and 2 center points, while

the axial block contains 4 axial points and 2 center points. The corresponding Aw-efficiency is

31.7871 and A-efficiency is 28.9256.

A comparison of Aw-efficiencies between GA designs, EA designs, and CCDs revealed that Aw-

efficiencies of GA and EA designs are always greater than those of CCDs. For example, for N = 16,

with sample sizes of 8 and 8 in the two blocks, the Aw-efficiencies of the GA design and EA design

are 32.8087 and 32.7045, respectively, which are significantly higher than the CCD’s Aw-efficiency

of 28.8825. Comparing GA with EA, GA was able to find designs with higher Aw values than EA in

almost all cases, except for three cases where the Aw values were equal: N = 11(5, 6), N = 11(7, 4),

and N = 15(7, 8).

Regarding A-efficiencies, comparisons are made between five designs: GA designs for “all

models," GA designs for “full model only," EA designs for “all models," EA designs for “full model

only," and CCDs. The A-efficiencies of CCDs are less than those of GA and EA designs in all cases.

Comparing GA with EA, the A-efficiencies values for “full model only" (A f ull) of GA designs are

always greater than those of EA designs, except where N = 11. In two cases presented, GA and

EA designs for “all models" and “full model only" reach the same design, meaning the A-efficiency

values for “all models" and “full model only" generated by GA and EA are the same.

For k = 2 variables and b = 3 blocks, n1, n2, and n3 represent the number of design points in

the first, second, and third blocks, respectively. The Aw- and A-efficiencies for GA and EA designs

are always greater than those of CCDs. Comparing GA with EA, the Aw- and A-efficiencies of GA

designs are always greater than those of EA designs.

For k = 3 variables and b = 2 blocks, in the same format as k = 2, the Aw-and A-efficiencies

for GA and EA designs are always greater than those of CCDs. Comparisons show that GA and

EA designs are more efficient than CCDs when the factorial block has no center point (n1 = 8).

Comparing GA with EA, the Aw-and A-efficiencies of GA designs are always greater than those of

EA designs, except where N = 20, with block sizes of 10 and 10, where both GA and EA reach the

same design.

For k = 3 variables and b = 3 blocks, the Aw-and A-efficiencies for GA and EA designs are

always greater than those of CCDs. In the comparison of Aw-efficiencies between GA and EA

designs, it was revealed that Aw-efficiencies of GA designs are always greater than those of EA

designs. For A-efficiencies, when comparing GA designs and EA designs for “all models," it

was found that GA designs generally have higher A-efficiencies than EA designs, except where

N = 18(5, 5, 8) and N = 20(5, 6, 9), where A-efficiencies of EA designs are greater. This is because,

for designs generated for “all models," the criterion used to find the best design is the weighted

A-optimal criterion, meaning designs with the highest Aw values might have lower A-efficiency

than designs with lower Aw values. For designs generated for “full model only," GA designs are

greater than EA designs in all cases.
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Table 1: Summary of Aw, A, and A f ull-efficiencies from GA designs,

EA designs, and CCDs with k = 2 variables and b = 2 blocks

N n1, n2
GA all models

GA full

model only
EA all models

EA full

model only
CCD

Aw A A f ull Aw A A f ull Aw A

10 (5, 5) 32.1315 29.2955 29.3815 32.1131 29.3127 29.3555 31.5871 27.9627

11 (5, 6) 32.3984 29.9210 29.9210 32.3984 29.9210 29.9210 30.7960 27.1019

11 (7, 4) 33.0968 30.2430 30.2430 33.0968 30.2430 30.2430 30.9918 29.3706

12 (6, 6) 32.6587 29.5161 29.5532 32.6507 29.4633 29.5444 31.7871 28.9256

13 (6, 7) 31.9823 29.1326 29.5351 31.9208 29.1585 29.5178 30.7917 27.6390

13 (7, 6) 33.1517 29.4994 29.7768 33.1328 29.4247 29.7629 31.2133 28.5556

14 (7, 7) 32.7340 28.9596 29.5054 32.6679 28.9097 29.4762 30.4709 27.4510

15 (7, 8) 32.5652 28.7465 29.3930 32.5652 28.7465 29.3630 29.5399 26.2632

15 (8, 7) 32.8358 29.2078 29.7679 32.8163 29.1838 29.7330 29.6159 26.6294

16 (8, 8) 32.8087 29.1265 29.7868 32.7045 29.7378 29.7655 28.8825 25.6098

Table 2: Summary of Aw, A, and A f ull-efficiencies from GA designs,

EA designs, and CCDs with k = 2 variables and b = 3 blocks

N n1, n2, n3
GA all models

GA full

model only
EA all models

EA full

model only
CCD

Aw A A f ull Aw A A f ull Aw A

12 (3, 4, 5) 21.7519 22.1024 22.1363 21.7402 22.0541 22.1175 17.1182 17.0213

12 (4, 4, 4) 24.0143 23.9541 23.9573 24.0061 23.9266 23.9521 20.9577 21.0526

13 (4, 4, 5) 23.4888 23.4902 23.6925 23.4834 23.4610 23.6868 19.9085 19.9339

13 (5, 4, 4) 24.5612 24.4675 24.4862 24.5485 24.4564 24.4787 21.8450 21.7056

14 (4, 5, 5) 23.1628 23.4723 23.4889 23.1443 23.4350 23.4686 19.4109 19.3278

14 (5, 5, 4) 24.2516 23.9448 24.1331 24.2190 23.8794 24.1293 21.2325 21.4446

15 (4, 5, 6) 22.8404 23.2460 23.2614 22.7436 23.1151 23.2489 18.4498 18.3055

15 (5, 5, 5) 24.0663 23.9767 24.0356 24.0537 23.9639 24.0239 20.6974 20.3876

16 (5, 5, 6) 23.8691 23.9173 23.9350 23.8599 23.8895 23.9069 19.8215 19.4411

16 (6, 5, 5) 24.7984 24.6829 24.7064 24.7868 24.6771 24.6868 21.1478 20.5613
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Table 3: Summary of Aw, A, and A f ull-efficiencies from GA designs,

EA designs, and CCDs with k = 3 variables and b = 2 blocks

N n1, n2
GA all models

GA full

model only
EA all models

EA full

model only
CCD

Aw A A f ull Aw A A f ull Aw A

15 (8, 7) 33.4864 29.6429 29.6611 33.4264 29.6347 29.6347 13.3539 4.7210

16 (8, 8) 33.2353 29.5396 29.5678 33.1618 29.3961 29.5228 15.1019 7.0831

17 (8, 9) 33.1723 29.9770 30.0625 33.0568 29.4628 29.7903 15.7369 8.3500

17 (9, 8) 33.5636 30.2369 30.2628 33.5285 30.2204 30.2204 22.8904 18.6298

18 (9, 9) 33.6356 30.3831 30.2888 33.5367 30.4067 30.2513 21.9673 17.8716

18 (10, 8) 34.0503 30.9246 30.9287 34.0258 30.9155 30.9155 26.4062 22.4494

19 (9, 10) 33.3103 30.4309 30.4815 33.2639 30.4323 30.4364 21.0702 17.1280

19 (10, 9) 33.9885 31.0876 31.0915 33.9740 31.0709 31.0825 25.3153 21.4151

20 (9, 11) 33.1536 30.2144 30.8286 32.9851 29.8188 30.6743 20.2152 16.4172

20 (10, 10) 33.9332 31.4286 31.4286 33.9332 31.4286 31.4286 24.2766 20.4515

Table 4: Summary of Aw, A, and A f ull-efficiencies from GA designs,

EA designs, and CCDs with k = 3 variables and b = 3 blocks

N n1, n2, n3
GA all models

GA full

model only
EA all models

EA full

model only
CCD

Aw A A f ull Aw A A f ull Aw A

17 (4, 5, 8) 23.6658 24.0893 24.0997 23.5296 23.9061 23.9296 16.6702 14.8526

17 (5, 5, 7) 25.1583 24.9904 25.1142 24.8136 24.4061 24.8713 22.1866 21.0835

18 (5, 5, 8) 24.8541 24.7944 24.9388 24.7182 24.8517 24.8995 23.9476 22.2953

18 (6, 6, 6) 26.2173 25.7226 25.8568 26.1728 25.6996 25.7799 24.7563 23.4604

19 (5, 5, 9) 24.4083 24.5774 24.6824 24.2882 24.4902 24.5605 20.2037 19.1187

19 (6, 6, 7) 26.0094 25.7303 25.8985 25.8870 25.5616 25.6891 23.7665 22.4069

20 (5, 6, 9) 24.5030 24.8335 24.9214 24.4523 24.8520 24.8719 20.3075 19.2601

20 (6, 6, 8) 25.8170 25.8315 25.8913 25.6811 25.7078 25.7668 22.7991 21.4098

21 (6, 6, 9) 25.6054 25.7126 25.7575 25.4254 25.6556 25.7486 21.8760 20.4785

21 (7, 7, 7) 26.5984 26.5065 26.5065 26.5344 26.3531 26.3637 23.8124 21.9805

Based on the results of the comparison between GA designs, EA designs, and CCDs, GA

consistently identified designs with the highest Aw-efficiency. Consequently, this research presents

the design points obtained through GA in Tables 5 to 8. These tables show the design points

identified by GA using the Aw-optimality criterion, which can be very useful for practitioners

looking to implement experimental designs for data collection. For example, in Table 5 for k = 2,
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b = 2, N = 10, and the block sizes are 5 and 5, the corresponding Aw-efficiencies of the robust

design (“all models” design) are equal to 32.1315. The design points in the 1st block are denoted

by superscript 1, i.e., (1, 1)1, (−0.13,−0.14)1, (−1, 1)1, (1,−0.09)1, and (−0.12,−1)1, while design

points in the 2nd block are given as superscript 2, i.e., (0.13, 1)2, (1,−1)2, (−1,−1)2, (0.1, 0.11)2,

and (−1, 0.06)2. In Table 6, for k = 2, b = 3, N = 12, and the block sizes are 3, 4, and 5, the

corresponding Aw-efficiencies are equal to 21.7519. The design points in the 1st block are denoted

by superscript 1, design points in the 2nd block are given as superscript 2, and design points in the

3rd block are given as superscript 3.

Table 5: Design generated by Genetic Algorithm for Aw-optimality

criterion with k = 2 variables and b = 2 blocks

N ni Aw Design Points

10 (5, 5) 32.1315

(1, 1)1, (−0.13,−0.14)1, (−1, 1)1, (1,−0.09)1,

(−0.12,−1)1, (0.13, 1)2, (1,−1)2, (−1,−1)2,

(0.1, 0.11)2, (−1, 0.06)2

11 (5, 6) 32.3984

(0, 1)1, (0, 0)1, (0,−1)1, (1, 0)1,

(−1, 0)1, (0, 0)2, (0, 0)2, (1,−1)2,

(1, 1)2, (−1,−1)2, (−1, 1)2

11 (7, 4) 33.0968

(0, 0)1, (−1, 1)1, (0, 0)1, (1,−1)1,

(0, 0)1, (−1,−1)1, (1, 1)1, (0,−1)2,

(1, 0)2, (−1, 0)2, (0, 1)2

12 (6, 6) 32.6587

(−1, 0.15)1, (0, 1)1, (−1,−1)1, (1, 0)1,

(0.17,−1)1, (0.04, 0.05)1, (−0.08,−0.06)2, (−1,−1)2,

(−0.08,−0.1)2, (−1, 1)2, (1, 1)2, (1,−1)2

13 (6, 7) 31.9823

(−0.05, 1)1, (1, 0)1, (0.03, 0.04)1, (−1, 0.26)1,

(0.12,−1)1, (−1,−1)1, (1, 1)2, (−1, 1)2,

(−1,−0.06)2, (1,−1)2, (−0.03,−0.1)2, (−1,−1)2, (−0.03,−0.1)2

13 (7, 6) 33.1517

(−0.01, 0)1, (0.06,−1)1, (1, 1)1, (−1, 1)1,

(−1,−1)1, (1,−0.05)1, (−0.01, 0)1, (1,−1)2,

(0.01, 0)2, (−1,−1)2, (−0.06, 1)2, (−1, 0.06)2, (1, 1)2

14 (7, 7) 32.7340

(−0.05, 0.05)1, (−1, 1)1, (−0.05, 0.05)1, (1, 1)1, (−0.05, 0.05)1,

(1,−1)1, (−1,−1)1, (−1,−1)2, (1, 1)2, (−1, 0)2,

(0.11,−1)2, (−1, 1)2, (0, 1)2, (1,−0.11)2

15 (7, 8) 32.5652

(0, 0)1, (0, 0)1, (1,−1)1, (−1,−1)1, (1, 1)1, (0, 0)1,

(−1, 1)1, (1, 1)2, (0, 1)2 ,(−1,−1)2, (1,−1)2, (1, 0)2,

(0,−1)2, (−1, 0)2, (−1, 1)2

15 (8, 7) 32.8358

(−0.06, 0)1, (−0.06, 0)1, (−1, 1)1, (−1,−1)1, (0.01,−1)1,

(1,−1)1, (−0.06, 0)1, (1, 1)1, (0,−1)2, (0.15, 1)2,

(−1,−1)2, (−1, 1)2, (−1,−0.05)2, (1, 0.05)2, (1,−1)2

16 (8, 8) 32.8087

(−0.04, 0)1, (1, 0)1, (1, 1)1, (−0.04, 0)1, (−1,−1)1,

(−0.04, 0)1, (1,−1)1, (−1, 1)1, (0.04,−1)2, (1, 0)2, (0.04, 1)2,

(1,−1)2, (−1, 1)2, (−1,−1)2, (1, 1)2, (−1, 0)2
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Table 6: Design generated by Genetic Algorithm for Aw-optimality

criterion with k = 2 variables and b = 3 blocks

N ni Aw Design Points

12 (3, 4, 5) 21.7519
(−0.02,−1)1, (1, 0.36)1, (−0.89, 0.5)1, (−1,−0.1)2,

(1,−1)2, (−0.06, 0)2, (1, 1)2, (0.06,−0.07)3,

(1,−0.2)3, (0.06, 1)3, (−1,−1)3, (−1, 1)3

12 (4, 4, 4) 24.0143
(−1, 0)1, (0,−1)1, (1, 0)1, (0, 1)1,

(1,−1)2, (0, 1)2, (−1,−1)2,(0, 0.06)2,

(0,−1)3, (1, 1)3, (0,−0.06)3, (−1, 1)3

13 (4, 4, 5) 23.4888
(1,−1)1, (−1,−0.11)1, (0.29, 1)1, (0.02,−0.05)1,

(0.11,−0.11)2, (−1, 1)2, (−0.02,−1)2, (1, 1)2, (−1,−1)3,

(1, 0.06)3, (1,−1)3, (−0.02, 0.05)3, (−0.25, 1)3

13 (5, 4, 4) 24.5612
(−1, 1)1, (1, 0)1, (0.12, 0)1, (0.12, 0)1,

(−1,−1)1, (−1, 0)2, (−0.13, 0)2 ,(1, 1)2,

(1,−1)2, (−0.06, 1)3, (−1, 0)3, (−0.06,−1)3, (1, 0)3

14 (4, 5, 5) 23.1628
(−0.06, 1)1, (−0.14,−1)1, (1,−0.15)1, (−1, 0.05)1, (0.06, 0.16)2,

(−1,−1)2, (1,−1)2, (−1, 1)2, (0.06, 0.15)2,

(−1, 1)3, (0.01,−0.05)3, (1, 1)3, (0.2,−1)3, (−1,−0.17)3

14 (5, 5, 4) 24.2516
(−0.05,−1)1, (−0.03, 0.16)1, (1,−1)1, (−1, 0.06)1, (1, 1)1,

(1,−0.1)2, (0.05,−0.1)2, (1, 1)2, (−1, 1)2, (−0.14,−1)2,

(−1,−1)3, (0.27, 0.05)3, (−0.07, 1)3, (1,−1)3

15 (4, 5, 6) 22.8404
(1,−0.1)1, (−0.03, 1)1, (−0.17,−1)1, (−1, 0.05)1, (0.15,−1)2,

(−1, 1)2, (0.08, 0)2, (1, 1)2, (−1,−0.21)2, (−0.01, 0.1)3,

(1, 1)3, (−0.01, 0.1)3, (1,−1)3, (−1,−1)3, (−1, 1)3

15 (5, 5, 5) 24.0663
(−1,−1)1, (−0.01, 0)1, (−0.01,−0.05)1, (1,−0.05)1, (−0.79, 1)1,

(−1,−1)2, (1,−1)2, (0.14, 1)2, (−1, 0.1)2, (−0.02, 0.11)2,

(−1,−0.05)3, (−0.02,−0.16)3, (−1, 1)3, (1, 1)3, (0.07,−1)3

16 (5, 5, 6) 23.8691
(−0.08, 1)1, (1, 1)1, (−0.06,−0.06)1, (−1,−0.1)1, (1,−1)1,

(−1, 1)2, (1, 1)2, (−0.08,−1)2, (−0.01,−0.01)2, (1, 0)2,

(−1,−1)3, (1, 0.1)3, (−1, 1)3, (0.06, 0.05)3, (0.14, 1)3, (1,−1)3

16 (6, 5, 5) 24.7984
(1,−1)1, (1, 0.05)1, (0.03, 0.15)1, (0.03, 0.15)1, (−1,−1)1,

(−0.12, 1)1, (1, 1)2, (−0.12,−1)2, (0.04,−0.17)2, (−1, 1)2,

(1,−0.15)2, (−1, 0)3, (1,−1)3, (1, 1)3, (0.03, 0.1)3, (0,−1)3
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Table 7: Design generated by Genetic Algorithm for Aw-optimality

criterion with k = 3 variables and b = 2 blocks

N ni Aw Design Points

15 (8, 7) 33.4864

(1,−1,−1)1, (−1,−1, 1)1, (0.05, 1, 0.05)1, (−1, 1,−1)1,

(0.05, 0.05, 1)1, (1, 0.05, 0)1, (0.07, 0.07, 0.1)1, (−1,−1,−1)1,

(−1, 1, 1)2, (1,−1, 1)2, (−0.05,−0.05,−1)2, (1, 1, 1)2,

(−1,−0.05, 0)2, (1, 1,−1)2, (−0.05,−1,−0.05)2

16 (8, 8) 33.2353

(−1,−1,−1)1, (−0.01,−1, 0.05)1, (−0.09, 0.1, 0.1)1, (1,−1, 1)1,

(−1, 1, 1)1, (1, 1,−1)1, (−0.01, 0.03,−1)1, (1, 0.09, 0.1)1,

(0.03,−0.04, 1)2, (−1,−0.04,−0.05)2, (0.03, 1,−0.05)2, (−1, 1,−1)2,

(−1,−1, 1)2, (1,−0.09,−0.1)2, (1, 1, 1)2, (1,−1,−1)2

17 (8, 9) 33.1723

(−1, 0.01, 0)1, (1, 1,−1)1, (−1, 1, 1)1, (−1,−1,−1)1,

(−0.02,−0.08, 1)1, (0.13,−0.1, 0)1, (1,−1, 1)1, (−0.01, 1,−0.1)1,

(−1, 1,−1)2, (1, 1, 0.2)2, (0.03,−1, 0.1)2, (−1, 0.08, 0.1)2,

(0.03, 0.06,−1)2, (1, 0.2, 1)2, (0.05, 1, 1)2, (1,−1,−1)2, (−1,−1, 1)2

17 (9, 8) 33.5636

(0.07,−1,−0.05)1, (−1,−1,−1)1, (0.07,−0.02,−1)1, (1,−1, 1)1,

(0.03,−0.02, 1)1, (−1,−0.04,−0.05)1, (−1, 1, 1)1, (1, 1,−1)1,

(0.03, 1, 0)1, (−0.04, 0.05,−1)2, (−1, 0.04, 0.05)2, (1,−1,−1)2,

(1, 1, 1)2, (−1, 1,−1)2, (−1,−1, 1)2, (1, 0.01, 0)2, (−0.04,−1, 0.05)2

18 (9, 9) 33.6356

(−0.07,−0.07, 1)1, (−1,−1,−1)1, (−1, 1, 1)1, (1,−0.07,−0.1)1,

(−0.07, 1,−0.1)1, (−0.07,−0.07,−0.2)1, (1,−1, 1)1, (−0.08,−0.08, 0)1,

(1, 1,−1)1, (0.19, 1, 1)2, (0.08, 0.08,−1)2, (−1, 0.08, 0.05)2, (0.08,−1, 0.1)2,

(1, 1, 0.2)2, (−1,−1, 1)2, (1,−1,−1)2, (1, 0.19, 1)2, (−1, 1,−1)2

18 (10, 8) 34.0503

(−0.01, 0,−1)1, (−1, 0, 0)1, (−0.02, 0, 1)1, (1, 1,−1)1, (−1, 1, 1)1,

(−1,−1,−1)1, (1, 0, 0)1, (−0.05, 1, 0.05)1, (−0.05,−1, 0.05)1, (1,−1, 1)1,

(−1, 0,−0.05)2, (1,−1,−1)2, (−1, 1,−1)2, (0.06,−1,−0.05)2,

(0.04, 0, 1)2, (0.06, 1,−0.05)2, (−1,−1, 1)2, (1, 1, 1)2

19 (9, 10) 33.3103

(0.16,−0.16, 0)1, (0.05,−0.05,−1)1, (1, 1,−1)1, (−1, 1, 1)1, (1,−1, 1)1,

(0.03, 1, 0)1, (0.05,−0.05, 1)1, (−1,−0.03, 0)1, (−1,−1,−1)1, (1,−1,−1)2,

(−1, 1,−1)2, (−1,−1, 1)2, (−0.03,−1, 0)2, (−1, 0.04, 0)2, (1, 0.03, 0)2,

(−0.08, 0.08,−1)2, (1, 1, 1)2, (−0.04, 1, 0)2, (−0.08, 0.08, 1)2

19 (10, 9) 33.9885

(0,−1, 0)1, (0, 0.04, 1)1, (1, 0.04, 0)1, (−1,−1,−1)1, (0, 1, 0)1,

(1, 1,−1)1, (0, 0.04,−1)1, (−1, 0.04, 0)1, (1,−1, 1)1, (−1, 1, 1)1,

(1,−1,−1)2, (−1, 1,−1)2, (1, 1, 1)2, (0, 1, 0)2, (−1,−1, 1)2,

(0,−0.06, 1)2, (−1,−0.06, 0)2, (0,−0.06,−1)2, (1,−0.06, 0)2

20 (9, 11) 33.1536

(0,−0.07, 0)1, (−0.16,−0.11, 1)1, (1,−1, 1)1, (−1,−1,−1)1, (−0.05, 1,−0.1)1,

(0.04, 0.08,−1)1, (1,−0.04,−0.1)1, (1, 1,−0.1)1, (−1, 1, 1)1, (1, 1,−1)2,

(1, 0.03, 1)2, (−1,−1, 1)2, (1,−1,−1)2, (0.02, 1, 1)2, (−1, 0.07, 0.05)2,

(−1, 0.07, 0)2, (1, 1, 1)2, (0.03, 0.01,−1)2, (0.08,−1, 0.05)2, (−1, 1,−1)2

20 (10, 10) 33.9332

(0,−1, 0)1, (0,−1, 0)1, (1, 1, 1)1, (−1, 1,−1)1, (0, 0, 1)1,

(1,−1,−1)1, (1, 1,−1)1, (−1, 0, 0)1, (0, 0, 1)1, (−1, 0, 0)1,

(−1, 1, 1)2, (0, 1, 0)2, (1, 0, 0)2, (0, 1, 0)2, (−1,−1, 1)2,

(0, 0,−1)2, (1,−1, 1)2, (−1,−1,−1)2, (0, 0,−1)2, (1, 0, 0)2
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Table 8: Design generated by Genetic Algorithm for Aw-optimality

criterion with k = 3 variables and b = 3 blocks

N ni Aw Design Points

17 (4,5,8) 23.6658

(−0.35,−0.04,−1)1, (1,−1, 0)1, (−1,−0.23, 1)1, (0.21, 1, 0.05)1,

(1,−0.54, 1)2, (0, 0.03, 0)2, (−1, 1, 1)2, (1, 1,−1)2, (−1,−1,−1)2,

(0.02, 0.1, 0)3, (1, 1, 1)3, (−1, 0.09,−0.05)3, (−0.08,−1, 1)3,

(−1,−1, 0.2)3, (1,−0.18,−1)3, (0.3,−1,−1)3, (−1, 1,−1)3

17 (5,5,7) 25.1583

(0.15,−0.12,−1)1, (0.09,−1, 0)1, (1, 1, 0.3)1, (−1, 1,−1)1,

(−1, 0.02, 1)1, (−1,−0.02,−0.3)2, (1, 1,−1)2, (−0.12, 1, 1)2,

(1,−1, 1)2, (−0.07,−0.09,−0.1)2, (−1,−1,−1)3, (1,−1,−1)3,

(−0.06, 1,−1)3, (−1,−1, 1)3, (0.11, 0.03, 0)3, (−1, 1, 0.3)3, (1, 0.12, 1)3

18 (5,5,8) 24.8541

(1, 0.07, 0)1, (−1, 1,−1)1, (0.07,−1,−1)1, (−0.04, 0.07, 1)1, (−1,−1, 0.2)1,

(−0.03,−0.04, 0)2, (1,−1, 1)2, (1, 1,−1)2, (−1,−1,−1)2, (−1, 1, 1)2,

(1,−1,−1)3, (1, 1, 1)3, (−1,−0.02,−1)3, (−1,−1, 1)3, (−0.07, 1, 0)3,

(−1, 0.05,−0.2)3, (0.04,−1, 0)3, (0.01, 0.07,−1)3

18 (6,6,6) 26.2173

(0.03,−1,−0.1)1, (0.13, 0.05, 1)1, (0.12, 1, 0.3)1, (−1,−0.22, 0.05)1,

(1, 0.11,−1)1, (−1, 1,−1)1, (−0.04, 0.08,−1)2, (0, 0.01, 0)2,

(1, 1,−0.3)2, (−1, 1, 1)2, (1,−1, 1)2, (−1,−1,−1)2, (−1, 0.26,−0.2)3,

(−1,−1, 1)3, (−0.08, 1,−1)3, (1,−1,−1)3, (0.02,−0.02, 0)3, (1, 1, 1)3

19 (5,5,9) 24.4083

(1, 1,−0.25)1, (−0.15, 0.18, 1)1, (0.02,−1,−1)1, (−1, 0.06, 0)1,

(1,−1, 1)1, (−1, 1,−1)2, (−0.17,−1, 1)2, (1, 1, 1)2, (−0.1,−0.1, 0.05)2,

(1,−1,−1)2, (1, 0.14,−1)3, (0.06, 1,−1)3, (0,−0.1,−0.1)3, (−1, 1, 1)3,

(0, 1, 0.15)3, (1,−0.04, 1)3, (1,−1, 0)3, (−1,−1, 1)3, (−1,−1,−1)3

19 (6,6,7) 26.0094

(−0.23, 0.03, 0)1, (0.03,−1, 1)1, (1, 1, 1)1, (−1,−0.01, 0)1, (−0.02, 1,−0.4)1,

(1,−1,−1)1, (0.03, 0.05, 0)2, (1, 1,−1)2, (−1,−1,−1)2, (0.1,−1, 0)2,

(−1, 1, 1)2, (1,−0.24, 1)2, (−0.03,−0.13,−1)3, (0.02, 1, 1)3, (−1,−1, 1)3,

(1, 1, 0.1)3, (−1, 1,−1)3, (1,−0.03,−1)3, (1,−1, 0.1)3

20 (5,6,9) 24.5030

(0.19,−1,−0.1)1, (0.04, 1, 1)1, (−1, 0.27,−1)1, (−1,−1, 1)1, (1, 0.04,−0.15)1,

(−1,−1,−1)2, (−0.05,−0.02, 0.15)2, (−1, 1, 1)2, (1,−1, 1)2, (−0.05,−0.02, 0.1)2,

(1, 1,−1)2, (−0.01,−0.12,−1)3, (−0.01,−1, 1)3, (−1,−1, 0)3, (−1, 1,−0.2)3,

(1, 1, 1)3, (−1,−0.08, 1)3, (−0.1, 1,−1)3, (1, 0.06, 0.1)3, (1,−1,−1)3

20 (6,6,8) 25.8170

(−0.06,−0.06,−0.2)1, (−0.05,−1,−0.2)1, (−0.27, 1, 1)1, (1,−0.29, 1)1, (1, 1,−1)1,

(−1,−0.14,−0.05)1, (−1,−1, 1)2, (0.06, 0.07, 0)2, (0.07, 0.07, 0.05)2,

(1, 1, 1)2, (−1, 1,−1)2, (1,−1,−1)2, (−1, 0.14, 1)3, (1, 1, 0)3, (1,−0.02,−1)3,

(−1, 1, 0.2)3, (1,−1, 0.2)3, (−0.03, 0.21,−1)3, (0.08,−1, 1)3, (−1,−1,−1)3

21 (6,6,9) 25.6054

(1,−0.09, 1)1, (−0.1, 1, 1)1, (−1,−0.12, 0)1, (−0.12,−1, 0.05)1, (1,−0.11,−1)1,

(−0.1, 1,−1)1, (−1,−1, 1)2, (1, 1, 1)2, (0.09, 0.09, 0)2, (1,−1,−1)2, (−1, 1,−1)2,

(0.09, 0.09, 0)2, (−1, 0.24, 0.05)3, (−1, 1, 1)3, (−0.04,−0.04, 1)3, (−1,−1,−1)3,

(0.24,−1, 0)3, (1, 1,−1)3, (1, 1, 0)3, (1,−1, 1)3, (−0.04,−0.03,−1)3

21 (7,7,7) 26.5984

(−0.04, 0.11, 1)1, (−0.08,−1,−1)1, (1,−0.12,−0.05)1, (−1, 1,−1)1, (−1,−1, 1)1,

(0, 1, 0.2)1, (1,−0.12, 0)1, (−1,−0.42,−1)2, (−0.03, 0.05, 0)2, (−0.05,−1, 0)2,

(−1, 1, 1)2, (1, 1,−1)2, (−0.03, 0.05, 0.05)2, (1,−1, 1)2, (0.14,−1, 1)3, (1,−1,−1)3,

(0.03, 0.27,−1)3, (−1,−1,−0.1)3, (1, 1, 1)3, (−1, 1,−0.11)3, (−1,−0.03, 1)3
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When evaluated in terms of criteria, under the same algorithm, A-efficiencies of designs gener-

ated for the “full model only” (A f ull) of the second-order model with blocks are higher than those

of designs generated for the “all models” (A for best Aw designs) across nearly all combinations of

k and b. This is because the objective of the “full model only” designs is to specifically optimize

the full second-order model with blocks. However, there are instances where A-efficiencies for the

“full model only” designs are equal to those for the “all models”. For instance, in Table 1, for k = 2,

b = 2, and N = 11 with block sizes of 5 and 6, the A-efficiencies of all designs for the “all models”

and the “full model only” are 29.9210. Similarly, for k = 3, b = 2, and N = 20 with block sizes of

10 and 10, the A-efficiencies are 31.4286. For k = 3, b = 3, and N = 21 with block sizes of 7, 7, and

7, only for GA design cases, the A-efficiencies of both designs are 26.5065, which were higher than

both EA designs for the “all models” and the “full model only”. These examples illustrate that the

designs from the “all models” and the “full model only” can sometimes be identical.

Overall, A-efficiency values for “all models” (best Aw designs) are close to the optimal A-

efficiency for the “full model only”. This pattern is consistent for both GAs and EAs. When fitting

the full second-order model, using the Aw-optimality criterion results in designs with A-efficiency

values nearly matching those of the full second-order model. Additionally, the “all models”

designs support all possible reduced models, making them more robust to model misspecification

compared to the “full model only” designs.

4. Conclusions

The study demonstrates that computer-generated designs using GA and EA are more efficient

than traditional CCDs in terms of both Aw- and A-efficiencies, across various configurations of vari-

ables and blocks. GA designs generally outperform EA designs. The findings support the use of

GA designs for more robust and efficient experimental setups, providing significant improvements

over CCDs, particularly in complex model scenarios.

Our findings indicate that optimal designs for the second-order model may be less efficient than

previously believed. Given the uncertainty of potential reduced models prior to data collection,

researchers should explore experimental designs that offer robustness across various possible mod-

els. The proposed robust design, known as Aw-optimal designs, provides a promising alternative.

Even if the actual model is a second-order model, employing an A-optimal design (full model

only) is unnecessary because the A-efficiency of the robust design (all models) for the second-

order model is nearly identical to that of the full model-only design. Thus, using the all-models

design for a second-order model results in little A-efficiency loss. Overall, the proposed approach

provides a useful tool for finding robust response surface designs against model misspecification.
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