International Journal of Analysis and Applications

Nigh-Locally Compactness in Topological Spaces

Rehab Alharbi*

Department of Mathematics, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia

*Corresponding author: ralharbi@jazanu.edu.sa

Abstract. The focus of this paper is the introduction of the notion of a nigh-locally compact topological space. To do this, concepts of "nigh-topological space" and "nigh-compact space" would be defined, and various conclusions and theorems would be derived. This would lead to a well-defined notion of a nigh-locally compact topological space, from which we would obtain a number of theorems and instances concerning this innovative idea.

1. INTRODUCTION

Assume (κ, η) is a topological space. Typically, κ is referred to as nigh-locally compact whenever every node x within κ has a nigh-compact neighborhood. In other words, if there are a nighcompact set K and an open set U for which $x \in U \subseteq K$. There are alternative widely accepted definitions, all of which hold if κ is a pre-regular space (or Hausdorff space). Yet generally speaking, they are not comparable. In what follows, we list some of these definitions for completeness:

- Each point in κ has a neighborhood that is almost compact.
- There is a closed compact neighborhood for each point in κ .
- Each point in κ has a neighborhood that is comparatively close together.
- There is a nigh-local basis of pretty compact neighborhoods at each location in κ .
- There is a nigh-local base of compact neighborhoods at each location in κ .
- There is a nigh-local base of closed compact neighborhoods at each location in κ .
- Given that κ is Hausdorff, it satisfies all or any of the preceding Conditions.

It is important to remember that a Hausdorff space is a near Tychonoff space if it is nighlocally compact. It is for this reason that the article on near Tychonoff spaces has instances of nigh-Hausdorff spaces that are not nigh-locally compact, but there are also examples of Tychonoff

Received: Jul. 16, 2024.

²⁰²⁰ Mathematics Subject Classification. 54E45.

Key words and phrases. compact space; nigh-compact space; locally compact space; nigh-locally compact space.

spaces that are not nigh-locally compact. However, for further description of more concepts and notions, the reader may refer to the references [1–6].

In this study, the notion of a nigh-locally compact topological space is introduced. This would involve defining the terms "nigh-topological space" and "nigh-compact space," as well as deriving a number of conclusions and theorems. Eventually, we would have a well-defined concept of a nigh-locally compact topological space, from which we might derive several theorems and examples pertaining to this novel concept. The remaining portions of this article are structured as follows: Section 2 recalls important notions and definitions needed later. Section 3 is divided into three subsections; the first one is about the nigh-topological space, the second one is about the nigh-compact space, and the third one is about the nigh-locally compact space. Finally, Section 4 contains the conclusion of this work.

2. Preliminaries

We list the most crucial concepts and foundational theorems required for our investigation in this section. We also extract some additional useful results to finish our investigation.

Definition 2.1. [7] Let $\xi = (\xi, \mu)$ be a topological space and $V = \{v_{\mu} : w_{\mu} \subset \xi\}$ be a family of subset of ξ . Then ξ is called a cover of ξ if $\xi = \bigcup \mu \in \xi v_{\mu}$. Also, we have:

- If v_{μ} is an open set in ξ for all $\mu \in \xi$ and $\xi = \bigcup \mu v_{\xi}$, then v is called open cover of ξ .
- If $\mu \in v$ is a cover of ξ , then μ is called subcover of ξ .

Definition 2.2. A topological space $\xi = (\xi, \mu)$ is said to be compact if and only if each open cover of ξ contains a finite cover. Also, ξ is compact if $v = \{v_{\mu} : \mu \in T, w_{\mu} \subset \xi\}$ is an open cover of ξ .

Theorem 2.1. [8] A compact subset of \mathbb{R} is any closed bounded subset.

Definition 2.3. [8] We say that a family of subsets A of k has a finite intersection property (f.i.p.) given a topological space $\xi = (\xi, \mu)$ if and only if the intersection of the set A with a finite number of members is not empty.

Theorem 2.2. [8] Suppose we have a topological space $\xi = (\xi, \mu)$. Then, ξ is considered compact if and only if each family of closed subsets of ξ that has (f.i.p) has an intersection that is not empty.

Remark 2.1. Consider a subspace of $\xi = (\xi, \mu)$ to be (W, μ_w) . If each open cover of w has a finite sub cover of w with respect to T_w , then we say that (W, μ_w) is compact. Observe that every open cover of W has a finite subcover in μ if and only if (W, T_w) is compact.

Theorem 2.3. [9] Consider W is a compact subset of T_2 -space ξ . For all $x \notin W$, we can separate x and W in two disjoint open sets.

Theorem 2.4. [9] Assume that ξ is a T_2 -space and that A and B are two disjoint compact subsets. Then, A and B can be divided into two disjoint open sets in ξ .

Theorem 2.5. [10] Every compact T_2 -space is T_4 -space.

Theorem 2.6. [10] All of T₂-space's compact subsets are closed.

Theorem 2.7. [9] In compact T_2 -space, a subset is considered compact if and only if it is closed.

Theorem 2.8. [9] The compactness property is preserved under onto continuous function.

Corollary 2.1. [9] *Compactness is topological property.*

Theorem 2.9. [11] The function f is a homeomorphism function if ξ is a compact space, γ a T_2 -space, and $f : \xi \to \gamma$ is a bijective continuous function.

Definition 2.4. [11] If f is a closed continuous function and $f^{-1}(y)$ is compact in ξ for all $y \in \gamma$, then the function $f : \xi \to \gamma$ is referred to as a perfect function.

Theorem 2.10. [11] If γ is compact and $f : \xi \to \gamma$ is a perfect function, then ξ is compact. In other words, the compactness property is an inverse invert under perfect functions.

Definition 2.5. The set $\{f^{-1}(y) : y \in \gamma\}$ is said to be fibers of f for all $y \in \gamma$. Therefore, a function $f : \Gamma \to \delta$ is considered perfect if and only if f has compact fibers for which it is closed and continuous.

Theorem 2.11. The projection $p : \xi \times \gamma \rightarrow \gamma$ is closed provided that ξ is compact space.

Theorem 2.12. [12] Consider two arbitrary spaces, ξ and γ , and a function $f : \xi \to \gamma$, for which f is a closed subset of $\xi \times \gamma$. Then, $f^{-1}(B)$ is closed in ξ if $B \subseteq \gamma$ is compact.

Theorem 2.13. [7] Let γ be a compact space and ξ an arbitrary space. A function $f : \xi \to \gamma$ is continuous *if and only if it is a closed subset of* $\xi \times \gamma$.

Theorem 2.14. [7] The space $\xi \times \gamma$ is compact if ξ and γ are compact spaces.

Definition 2.6. [13] For any $\gamma \in \xi$, there is an open set u_{γ} in Γ containing γ for which \bar{u} is compact; this defines the locally compact space ξ .

Theorem 2.15. *Tychonoff space is a locally compact T*₂*-space.*

Theorem 2.16. Assume that A is a compact subset of a locally compact space ξ . There exists an open set u in ξ for which $A \subseteq u \subseteq \overline{u} \subseteq V$ for which \overline{u} is compact in ξ if $A \subseteq V$ for which V open in ξ .

Theorem 2.17. [14] Every subspace of the form $f \cap V$ of a locally compact space ξ is locally compact, where f is closed and V open in ξ .

Theorem 2.18. Every locally compact subspace M of a T_2 -space ξ is open in \overline{M} .

3. NIGH-LOCALLY COMPACTNESS IN TOPOLOGICAL SPACES

The notion of a nigh-locally compact topological space is presented in this section. This would entail defining the terms "nigh-compact space" and "nigh-topological space", as well as drawing certain inferences and theorems.

3.1. **Nigh-topological space.** In this subsection, we describe a recent type of topological space known as a nigh-topological space, investigate its prosperities, and provide some new operations and results on a nigh-topological space [11].

Definition 3.1. *If a pair* (κ, η) *, that comprises a set* κ *and a family* η *of subsets of* κ *is satisfied with the following states:*

- (1) $\phi \in \eta$ and $\kappa \in \eta$,
- (2) A union of any number of members in η is a member of η ,
- (3) Any two members of η that intersect also belong to η ,

then it is referred to as a topological space.

Definition 3.2. Assume that (κ, η) is a topological space for which $B \subseteq \kappa$, then B is called:

- (1) a regular open set in κ if $B = \overline{B}^{\circ}$.
- (2) a regular closed set in κ if $B = \overline{B^o}$.
- (3) a semi open set in κ if \exists an open set W for which $W \subseteq B \subseteq \overline{W}$.

Definition 3.3. [5] Let δ be a subset of κ and (κ, η) be a topological space. A set δ is said to be nigh-open if there are two open sets, ν and ξ , for which $\xi \subseteq \delta \subseteq Ext(\nu)$ and $\nu \cap \delta = \phi$. A nigh-closed set is the complement of a nigh-open set.

Remark 3.1. Based on the previous definition, we have:

- (1) $\nu \cap \xi = \phi$.
- (2) The first open set is denoted by ξ , and the second by v.

Theorem 3.1. *In any topological space, every open set is also a nigh-open set.*

Proof. Consider δ is an open set in topological space (κ, η) . Then, we have $\delta \subseteq \delta \subseteq Ext(\phi)$ and $\delta \cap \phi = \phi$. Thus, δ is a nigh-open set.

Herein, it is important to note that the opposite of the aforementioned theorem need not hold. For instance, if we consider the usual topology \mathbb{R} , and take the set (-1, 2], which is a nigh-open as there are two open sets, $((0, 1) \text{ and } (4, 5) \text{ for which } (0, 1) \subseteq (-1, 2] \subseteq Ext(4, 5)$, however, given the standard topology on \mathbb{R} , the set (-1, 2] is not an open set.

Theorem 3.2. *Given a topological space* (κ, η) *where* δ *is a nigh-open set. Then,* $Int(\overline{\nu}) \subset Ext(\delta) \subseteq Ext(\xi)$ *, where* ξ *and* ν *are the first and second open sets, respectively.*

Proof. Suppose there is a nigh-open set δ in κ . Then, there are open sets, ξ and ν , for which $\xi \subseteq \delta \subseteq Ext(\nu)$ and $\nu \cap \delta = \phi$. As a consequence, we get

$$\overline{\delta} \subseteq \overline{Ext(\nu)} = \bigcap_{\substack{F \ closed \\ Ext(\nu) \subseteq F}} F.$$

As a result, we have

$$\bigcup_{\substack{F^c \text{ open set} \\ \overline{c} \subset (Ext(v))^c}} F^c = \overline{\nu} \subset \overline{\delta}^c = Ext(\delta).$$

Now, putting $w = F^c$ yields that w is an open set. As a result, we obtain

$$\bigcup_{\substack{w \text{ open}\\w\subset\overline{\nu}}} w \subset Ext(\delta)$$

But, we have

$$\bigcup_{\substack{w \text{ open}\\ w \subseteq \overline{\nu}}} w = Int(\delta).$$

Now, since $\xi \subseteq \delta$, then $Ext(\delta) \subseteq Ext(\delta)$, which implies $Int(\overline{\nu}) \subseteq Ext(\delta) \subseteq Ext(\xi)$.

Definition 3.4. Let $\eta \subseteq p(\kappa)$ for which κ be a non-empty set. If the following are satisfied:

- (1) $\phi, \kappa \in \eta$.
- (2) Any two nigh-open sets that intersect are also nigh-open sets.
- (3) A nigh-open set is the union of any family of nigh-open sets.

then η *is called a nigh-topology on* κ *.*

Theorem 3.3. *A nigh-topological space is a topological space.*

Proof. Let us consider a topological space (κ, η) . In order to demonstrate the nigh-topological space of (κ, η) , we examine the following cases:

- (1) By the definition of the topological space, it is clear that $\kappa, \phi \in \eta$.
- (2) Let δ and ρ be two nigh-open sets. Then, \exists open sets ξ_1, ξ_2, v_1 and v_2 for which

 $\xi_1 \subseteq \delta \subseteq Ext(\nu_1)$ and $\xi_2 \subseteq \rho \subseteq Ext(\nu_2)$.

This consequently implies

$$\xi_1 \cap \xi_2 \subseteq \delta \cap \rho \subseteq Ext(v_1) \cap Ext(v_2) \subseteq Ext(v_1 \cap v_2)$$

Now, it is a time to observe that $\xi_1 \cap \xi_2 = \xi$, which is an open set. Besides, $\nu_1 \cap \nu_2 = \nu$, which is an open set as well (i.e., $\xi \subseteq \delta \cap \rho \subseteq Ext(\nu)$ and $\delta \cap \rho$ is a nigh-open set).

(3) Let $\delta = {\delta_{\alpha} : \alpha \in \Gamma}$ be a family of nigh-open sets. We observe that δ_{α} is a nigh-open set for every $\alpha \in \Gamma$. So, \exists two open sets ξ_{α} and ν_{α} for which $\xi_{\alpha} \subseteq \delta_{\alpha} \subseteq Ext(\nu_{\alpha})$, for every $\alpha \in \Gamma$. Consequently, we have

$$\bigcup_{\alpha \in \Gamma} \xi_{\alpha} \subseteq \bigcup_{\alpha \in \Gamma} \delta_{\alpha} \subseteq \bigcup_{\alpha \in \Gamma} Ext(\nu_{\alpha}) \subseteq Ext(\phi).$$

Therefore, $\bigcup_{\alpha \in \Gamma} \delta_{\alpha}$ is a nigh-open set.

Definition 3.5. Assume that δ is a subset of κ and that $(\kappa, \eta_{(n)})$ is a non-topological space. Then:

(1) A nigh-limit point of a set δ is $F \in \Gamma$ if, for any nigh-open set v that contains v, we have:

$$\begin{cases} \nu \cap \delta_v \neq \phi, \text{ if } F \notin \delta \\ \nu \cap \delta_v \backslash_{\{F\}} \neq \phi, \text{ if } F \in \delta \end{cases}$$

(2) The definition of the nigh-derived set of δ , represented by δ'_v , is

 $\delta'_{\nu} = \{ \nu \in \Gamma : F \text{ is nigh-limite point of } \delta \}.$

- (3) The definition of the nigh-closure set of δ , represented by $CL_{(v)}(\delta)$, is $CL_{(v)}(\delta) = \delta \cup \delta'_{(v)}$.
- (4) The definition of the nigh-interior set of δ is $Int_{(v)}(\delta) = (CL_{(v)}(\delta^c))^c$.
- (5) The definition of the nigh-exterior set of δ is $Ext_{(v)}(\delta)$ and $Ext_{(v)}(\delta) = (CL_{(v)}(\delta))^c$.
- (6) The definition of the nigh-boundary set of δ is $Bd_{(v)}(\delta)$ and $Bd_{(v)} = CL_{(v)}(\delta) \cap CL_{(v)}(\delta^c)$.

Theorem 3.4. *Given a nigh-topological space* $(\kappa, \eta_{(v)})$ *, we have:*

- (1) $\phi'_{(v)} = \phi$.
- (2) $CL_{(v)}(\phi) = \phi$ and $CL_{(v)}(\kappa) = \kappa$.
- (3) $Int_{(v)}(\phi) = \phi$ and $Int_{(v)}(\kappa) = \kappa$.
- (4) $Ext_{(v)}(\phi) = \kappa, Ext_{(v)}(\kappa) = \phi.$
- *Proof.* (1) Suppose not! So, there is $F \in \kappa$ for which $F \in \phi'_{(v)}$. This confirms that κ is a limit point of $\phi_{(v)}$. Then, for all nigh-open sets containing κ , we have $v \cap \phi \neq \phi$, which is a contradiction. Thus, the result is hold.
 - (2) Observe that we can have $CL_{(v)}(\phi) = \phi \cup \phi'_{(v)} = \phi \cup \phi = \phi$. This immediately gives $CL_{(v)}(\kappa) = \kappa \cup \kappa'_{(v)} = \kappa$.
 - (3) Here, we have $Int_{(v)}(\phi) = \left(CL_{(v)}(\phi^c)\right)^c = \left(CL_{(v)}(\kappa)\right)^c = \kappa^c = \phi$, which implies $Int_{(v)}(\kappa) = \left(CL_{(v)}(\kappa^c)\right)^c = \left(CL_{(v)}(\phi)\right)^c = \phi^c = \kappa$.
 - (4) We can obtain $Ext_{(v)}(\phi) = (CL_{(v)}(\phi))^c = \phi^c = \kappa$. Accordingly, we get $Ext_{(v)}(\kappa) = (CL_{(v)}(\kappa))^c = \kappa^c = \phi$.

Theorem 3.5. *Given a non-topological space* (κ, η) *, let* δ *and* ρ *be two subsets of* κ *. Then:*

- (1) If $\delta \subseteq \rho$, then $\delta'_{(v)} \subseteq \rho'_{(v)}$.
- (2) If $\delta \subseteq \rho$, then $CL_{(v)}(\delta) \subseteq CL_{(v)}(\rho)$.
- (3) If $\delta \subseteq \rho$, then $Int_{(v)}(\delta) \subseteq Int_{(v)}(\rho)$.
- (4) If $\delta \subseteq \rho$, then $Ext_{(v)}(\rho) \subseteq Ext_{(v)}(\delta)$.

Proof. (1) Let $F \in \delta'_{(v)}$. So, Γ is a nigh-limit point of δ . Consequently, for all nigh-open set μ containing v, we obtain:

$$\begin{cases} \nu \cap \delta_v \neq \phi, \ if F \notin \delta \\ \nu \cap \delta_v \rangle_{\{F\}} \neq \phi, \ if F \in \delta. \end{cases}$$

Now, since $\delta \subseteq \rho$, then we have:

$$\begin{cases} \nu \cap \rho_v \neq \phi, \ if F \notin \rho \\ \nu \cap \rho_v \rangle_{\{F\}} \neq \phi, \ if F \in \rho. \end{cases}$$

Thus, κ is a nigh-limit point of ρ , which implies $F \in \rho'_{(v)}$, and hence the result hold.

- (2) Due to $\delta \subseteq \rho$, then we have $\delta'_{(v)} \subseteq \rho'_{(v)}$ and $\delta \cup \delta'_{(v)} \subseteq \rho \cup \rho'_{(v)}$, (i.e., $CL_{(v)}(\delta) \subseteq CL_{(v)}(\rho)$).
- (3) Because of $\delta \subseteq \rho$, then $\rho^c \subseteq \delta^c$. So, by using Theorem 2, we can have

$$CL_{(v)}(\rho^c) \subseteq CL_{(v)}(\delta^c),$$

and

$$\left(CL_{(v)}(\delta^{c})\right)^{c} \subseteq \left(CL_{(v)}(\rho^{c})\right)^{c}$$

As a result, we have $Int_{(v)}(\delta) \subseteq Int_{(v)}(\rho)$.

(4) Since $\delta \subseteq \rho$, then we have

$$CL_{(v)}(\delta) \subseteq CL_{(v)}(\rho),$$

and

$$CL_{(v)}(\rho^c)\Big)^c \subseteq \left(CL_{(v)}(\delta^c)\right)^c$$

This means that $Ext_{(v)}(\rho) \subseteq Ext_{(v)}(\delta)$.

Theorem 3.6. *If* $\delta \subseteq \kappa$ *in which* (κ, η) *is a nigh-topological space, then:*

- (1) $CL_{v}(\delta)$ is a nigh-closed set.
- (2) $Int_{(v)}(\delta)$ is a nigh-open set.
- (3) $Ext_{(v)}(\delta)$ is a nigh-open set.
- (4) $Bd_{(v)}(\delta)$ is a nigh-closed set.

Proof. (1) In case $F \in (CL_{(v)}(\delta))^c$, then $F \notin \delta \cup \delta'_{(v)}$. Thus, we get $F \notin \delta$ and $F \notin \delta'_{(v)}$. Thus, there is a nigh-open set v for which $v \cap \delta_{(v)} = \phi$ (say *). Then, we obtain

$$\begin{split} \nu \cap CL_{(v)(\delta)} &= \nu \cap (\delta \cap \delta'_{(v)}) \\ &= (\nu \cap \delta) \cup (\nu \cap \delta'_{(v)}) \\ &= \phi \cup (\nu \cap \delta'_{(v)}). \end{split}$$

This means that $\nu \cap CL_{(v)(\delta)} = \nu \cap \delta'_{(v)}$. Now, if $F \in (\nu \cap \delta'_{(v)})$, then $F \in \nu$ and $\nu \cap \delta_{(v)} \neq \phi$, which is a contradiction with (*). So, we get $(\nu \cap \delta'_{(v)}) = \phi$, and hence $\nu \cap CL_{(v)}(\delta) = \phi$. Thus, we obtain

$$F \in \nu_F \subseteq \left(CL_{(v)}(\delta)\right)^c$$

, which consequently implies

$$\left(CL_{(v)}(\delta)\right)^{c} = \bigcup_{\substack{F \in \nu_{F} \\ \nu_{F} \text{ is nigh-open set}}} \nu_{F}$$

Thus, it follows that $(CL_{(v)}(\delta))^c$ is a nigh-open set, and so $CL_{(v)}(\delta)$ is a nigh-closed set.

- (2) With the use if Theorem 1, we can notice that $CL_{(v)}(\delta^c)$ is nigh-closed set. Hence, $(CL_{(v)}(\delta))^c$ is a nigh-open set (i.e., $Int_{(v)}(\delta)$ is a nigh-open set).
- (3) Due to $Ext_{(v)}(\delta) = (CL_{(v)}(\delta))^c$. Then, we can assert that $Ext_{(v)}(\delta)$ is a nigh-open set.
- (4) Due to $Bd_{(v)}(\delta) = CL_{(v)}(\delta) \cap CL_{(v)}(\delta^c)$. Then, we can assert that $Bd_{(v)}(\delta)$ is a nigh-closed set.

Theorem 3.7. We have $CL_{(v)}(\delta) = \delta$ if and only if δ is a nigh-closed set.

Proof. \Rightarrow) Trivial.

(*c*) Consider *δ* is a nigh-closed set. It is clear that *δ* ⊆ *CL*_(*n*) (say *). Now, we want to prove that $CL_{(n)} \subseteq \delta$. To do so, we let *F* ∈ *δ'*. Now, to show *F* ∈ *δ*, we assume not, i.e. *F* ∉ *δ*. Then, we have *F* ∈ *δ^c*, which is a nigh-open set. In this regard, since *F* ∈ *δ'*, then *δ^c* ∩ *δ* ≠ *φ*, which is contradiction. So, we obtain *F* ∈ *δ*, i.e. *δ'* ⊆ *δ* and *δ* ⊆ *δ*. Therefore, we get *δ'* ∪ *δ* ⊆ *δ*, i.e. $CL_{(n)}(\delta) \subset \delta$, and hence the result hold.

Theorem 3.8. Consider (κ, η) is a nigh-topological space for which $\delta \subseteq \kappa$, then:

- (1) $CL_{(n)}(\delta) = \bigcap \{\varsigma; \varsigma \text{ is nigh-closed set and } \delta \subseteq \varsigma \}$, *i.e.* $CL_{(n)}(\delta)$ *is the smallest nigh-closed set containing* δ .
- (2) $Int_{(n)}(\delta) = \bigcup \{T : T \text{ is nigh-open set and } T \subseteq \delta \}.$
- (3) $Ext_{(n)}(\delta) = \bigcup \{W : W \text{ is nigh-open set and } W \subseteq \delta^c \}.$
- *Proof.* (1) Observe that $\delta \subseteq \varsigma$. By previous theorem, we can have $CL_{(v)}(\delta) \subseteq CL_{(v)}(\varsigma) = \varsigma$ for which $CL_{(v)}(\delta)$ is closed set. Therefore, $CL_{(v)}(\delta)$ is one member of ς'^s , which implies

$$\bigcap_{\substack{\zeta \text{ is nigh-closed set}\\\delta \subseteq \zeta}} \{\zeta\} \subseteq CL_{(v)}(\delta)$$

On the other hand, as $\delta \subseteq \zeta$, we can obtain

$$CL_{(v)}(\delta) \subseteq CL_{(v)}(\varsigma),$$

which gives

$$CL_{(v)}(\delta) \subseteq \bigcap_{\substack{\zeta \text{ is nigh-closed set}\\\delta\subseteq \zeta}} \{CL_{(v)}(\zeta)\} = \bigcap_{\substack{\zeta \text{ is nigh-closed set}\\\delta\subseteq \zeta}} \{\zeta\}$$

- (2) Herein, we have $Int_n(\delta) = (CL_{(n)}(\delta^c))^c = \cap \{\varsigma : \varsigma \text{ is nigh-closed set and } \delta^c \subseteq \varsigma\}$, which implies $(CL_{(n)}(\delta^c))^c = \cup \{\varsigma^c : \varsigma^c \text{ is nigh-closed set and } \varsigma^c \subseteq \delta\}$. Now, by letting $\varkappa^c = T$, we get $Int_{(n)}(\delta) = \cup \{T : T \text{ is nigh-open set and } T \subseteq \delta\}$.
- (3) By the previous part, one might have $Ext_{(n)}(\delta) = Int_{(n)}(\delta^c) = \bigcup \{W : W \text{ is nigh-open set and } W \subseteq \delta^c \}.$

3.2. **Nigh-compact space.** The so-called nigh-compact space is described in this subsection, and its properties are examined through the presentation of certain novel findings and theorems.

Definition 3.6. [15] Consider (κ, η) is a topological space and $V = \{v_{\zeta} : \zeta \in \omega\}$ is a family of subsets of κ . Then V is said to be a cover of κ if $\kappa = \bigcup \zeta \in \omega v_{\zeta}$. Furthermore, we have the following states:

- (1) If v_{ζ} is a nigh-open set in κ for all $\zeta \in \omega$ and $\kappa = \bigcup \zeta \in \omega v_{\zeta}$, then V is called a nigh-open cover of κ .
- (2) If $B \subseteq V$ is a cover of κ , then B is called a subcover of V for κ .

Definition 3.7. *If there is a finite subcover for each nigh-open cover of* κ *, then* (κ, η) *is a nigh-compact topological space.*

Example 3.1. [11] It can be noticed that (\mathbb{R}, η_u) is not a nigh-compact space.

Proof. It should be noted that there is a nigh-open cover $\varphi_n = \{(-n, n) : n \in \mathbb{N}\}$ of \mathbb{R} that has no finite subcover because if this is not true, i.e. φ_n has a finite subcover of \mathbb{R} , say T, then T can be expressed in the from $T = \{(-n_1, n_1), (-n_2, n_2), \dots, (-n_k, n_k)\}$. Thus, we have $\mathbb{R} = \bigcup_{i=1}^n, (-n_i, n_i)$. Now, if we let $M = \max\{n_1, n_2, n_3, \dots, n_k\}$, then $n_i \leq M$ and $-n \geq -M$ m for all $i = 1, 2, \dots, k$. Therefore, we obtain $\mathbb{R} = \bigcup_{i=1}^{n_{i=1}} (-n, n) \subseteq \bigcup_{i=1}^n (-M, M) = (-M, M)$, and so we have $\mathbb{R} \subseteq (-M, M)$, which is a contradiction. Thus, \exists a nigh-open cover of \mathbb{R} that has no finite subcover of \mathbb{R} . Hence, (\mathbb{R}, η_u) is not a nigh-compact space.

Example 3.2. Every [c,d] is a nigh-compact space in (\mathbb{R}, η_u) .

Proof. Suppose not! That is [c, d] is not nigh-compact. Then, there is a nigh-open cover of [c, d], say U, for which it has no finite subcover of [c, d]. Due to $[c, d] = [c, \frac{c+d}{2}] \cup [\frac{c+d}{2}, d]$, then either $[c, \frac{c+d}{2}]$ or $[\frac{c+d}{2}, d]$ can not be covered by finite members of U. Now, as $[c_1, d_1] = [c_1, \frac{c+d}{2}] \cup [\frac{c+d}{2}, d_1]$, then either $[c_1, \frac{c+d}{2}]$ or $[\frac{c+d}{2}, d_1]$ can not be covered by finite members of U. Suppose that $[c_1, d_1]$ is one of these so that it can not be covered by finitely numbers of U. Then, we have $b_2 - a_2 = \frac{1}{2^2}(c, d)$. If we continue by the argument, we get $\{[c_n, d_n]\}_{n=1^\infty}$, which is a sequence of intervals for which $[c_n, d_n]$ can not be covered by finitely number members of U, for all n = 1, 2, ... Consequently, we have $d_n - c_n = \frac{c-d}{2^n} \to 0$ as $n \to \infty$. Therefore, by the cantor nested intervals theorem, we have $\Gamma p \in \bigcap_{i=1}^{\infty} [c_n, d_n]$, and so $p \in [c_n, d_n]$, for all n = 1, 2, ... Since $p \in [a, b]$, then O is a nigh-open interval for which $p \in O \subseteq [c, d]$, where $O \in U$ and O = (p - t, p + t) for which t > 0. Hence, we obtain $p \in (p - t, p + t)$, and by taking n as large as enough for which $\frac{1}{2^n} < t$, we get $p \in [c_n, d_n]$ by one of member of U, which is a contradiction! From this discussion, the desired result hold. \Box

Corollary 3.1. *Every finite space is nigh-compact.*

Proof. Let (κ, η) be a finite topological space and let $W = \{w_{\xi}\}_{\xi \in \delta}$ be a nigh-open cover of κ . Then, for all x in κ , $\exists \Gamma \xi \in \delta$ for which $x \in w_{\xi}$. Define $O = \{w_{\xi_t} : t = 1, 2, ..., n, \xi \in \delta\}$. Then, O is finite and $\kappa = \bigcup_{t=1}^{n} W_{\xi_t}$. Hence, O is a finite subcover of κ , and so κ is nigh-compact.

Example 3.3. (κ, η_{cof}) is a nigh-compact space.

Proof. Let $U = \{u_{\xi}\}_{\xi \in \delta}$ be a nigh-open cover of κ . Then, u_{ξ} is a nigh-open in κ for every $\xi \in \delta$. Consequently, u_{ξ} is a nigh-open set in κ . Thus, $\kappa - u_{\xi}$ is a finite set, and hence, by the previous corollary, it is nigh-compact. So, every nigh-open cover of $\kappa - u_{\xi}$ has a finite subcover of $\kappa - u_{\xi}$. But U is a nigh-open cover of κ , and so U is a nigh-open cover of $\kappa - u_{\xi}$, say $\{u_i\}_{i=1}^m$. Hence, $\kappa - u_{\xi}$ as $\kappa - u_{\xi} \subseteq \kappa$. Therefore, U has a finite subcover that covers $\kappa - u_{\xi}$, say $\{u_i\}_{i=1}^m$. Therefore, we have $\kappa - u_{\xi} = \bigcup_{i=1}^m u_i$, which implies $\kappa = (\bigcup_{i=1}^m u_i) \cup u_{\xi}$. Therefore, κ has a subcover $B = \{u_1, \ldots, u_m, u_{\xi}\}$, and so κ is nigh-compact.

Corollary 3.2. *Every subspace of* (κ, η_{cof}) *is nigh-compact.*

Proof. Since every subspace of (κ, η_{cof}) is a co-finite topological space, then by previous theorem, we can infer that every subspace of a co-finite topological space is compact.

Example 3.4. (\mathbb{R} , η_{dis}) is not nigh-compact.

Proof. Let $V = \{\{x\} : x \in \mathbb{R}\}$. Due to \mathbb{R} is defined by η_{dis} , then $\{x\}$ is nigh-open in \mathbb{R} . Therefore, V is a nigh-open cover of \mathbb{R} . Now, let $\dot{V} \subset V$, i.e. \dot{V} is proper in V, then $\Gamma y \in \mathbb{R}$ and $y \notin \dot{V}$. Therefore, \dot{V} is not a nigh-cover of \mathbb{R} , and so \dot{V} is not a subcover of V. Thus, V has no finite subcover which contradicts 1! Therefore, (\mathbb{R}, η_{dis}) is not nigh-compact.

Theorem 3.9. The set *E* of real numbers is nigh-closed and bounded if and only if the set *E* is nigh-compact.

Proof. Consider $E \subseteq \mathbb{R}$ is nigh-compact, then, for all $e \in E$, we get $e \in (e - 1, e + 1) = u_e : u_e$ is nigh-open in \mathbb{R} . Then, $\{u_e : e \in E\}$ is a nigh-open cover of E, and because of E is nigh-compact, then $E \subseteq \bigcup_{i=1}^{n} u_{e_i}$. As a result, $\Gamma e_1, e_2, \ldots, e_n \in E$ for which $e_i \in u_{e_i}$, for all $i = 1, 2, \ldots, n$. Now, let $M = max\{e_1, e_2, \ldots, e_n\}$ and $m = min\{e_1, e_2, \ldots, e_n\}$. Then, we have $E \subseteq \bigcup_{i=1}^{n} u_{e_i} \subseteq [m - 1, m + 1]$, and so E is bounded. In this regard, since E is nigh-compact in T_2 -space, then E is nigh-closed. Conversely, suppose E is nigh-closed and bounded in \mathbb{R} for which E is bounded, then $E \subseteq [a, b]$ for some a < b in \mathbb{R} . Due to E is closed in nigh-compact subset [a, b], then E is nigh-compact.

Definition 3.8. [8] Let A be a family of subsets of κ and (κ, η) be a topological space. If the intersection of the finite number of members set A is not empty, we say that A has a finite intersection property (f.i.p.).

Theorem 3.10. [1] If (κ, η) is a topological space, then κ is a nigh-compact space if and only if (f.i.p) has a non-empty intersection for every family of a nigh-closed subset of κ .

Proof. \Rightarrow) Consider κ is a nigh-compact space. If we assume that \exists a family of closed subsets of κ , say $F = \{F_{\alpha} : \alpha \in \beta\}$, with *f.i.p* for which $\bigcap_{\alpha \in \beta} F_{\alpha} = \phi$, then we have

$$\bigcup_{\alpha\in\beta}(\kappa-F_{\alpha})=\kappa-\bigcap_{\alpha\in\beta}(F_{\alpha})=\kappa.$$

Due to F_{α} is a nigh-closed set in κ for all $\alpha \in \beta$, then $\kappa - F_{\alpha}$ is a nigh-open set in κ for all $\alpha \in \beta$. Thus, $U = \{\kappa - F_{\alpha} : \alpha \in \beta\}$ is a nigh-open cover of κ , and hence by compactness of κ , U has a finite subcover of κ . As a result, we have $\kappa = \bigcup_{i=1}^{n} (\kappa - F_i) = \kappa - \bigcap_{i=1}^{n} F_i$, and so $\phi = \bigcap_{i=1}^{n} F_i$, which is a contradiction with *F* has *f.i.p*. Therefore, we can assert that every family of closed subsets of κ with *f.i.p* has non empty intersection.

 \Leftarrow) Suppose that every family of closed subsets of *κ* with *f.i.p* has non empty intersection. Now, if we assume *κ* is not a nigh-compact space, then \exists a nigh-open cover of *κ*, say $U = \{u_{\alpha} : \alpha \in \beta\}$, that can not be reduced to a finite subcover of *κ*. Therefore, we obtain

$$\phi = \kappa - \bigcup_{\alpha \in \beta} u_{\alpha} = \bigcap_{\alpha \in \beta} (\kappa - u_{\alpha})$$

Consequently, due to u_{α} is open for all $\alpha \in \beta$, then { $\kappa - u_{\alpha} : \alpha \in \beta$ } is a family of nigh-closed subsets of κ . Consequently, we have the following claim.

Claim: *f* has *f.i.p.*

To demonstrate the above statement, we assume it is not true. Then, $\exists u_1, u_2, ..., u_n$ for which $\bigcap_{i=1}^{n} (\kappa - u_i) = \phi$. Thus, we have $\kappa = \bigcup_{i=1}^{n} u_i$, and so *U* has a finite subcover of κ , which is a contradiction. Hence, $F = \{\kappa - u_\alpha\}$ has *f.i.p*, and thus by the assumption $\bigcap_{\alpha} \in \beta u_\alpha \neq \phi$, we can obtain

$$\kappa \neq \kappa - \bigcap_{\alpha \in \beta} (\kappa - u_{\alpha}) = \bigcup_{\alpha \in \beta} (\kappa - (\kappa - u_{\alpha})) = \bigcup_{\alpha \in \beta} u_{\alpha}$$

This means that we have $\kappa \neq \bigcup_{\alpha \in \beta} u_{\alpha}$, which is contradiction. Therefore, κ is a nigh-compact space.

Remark 3.2. Consider a subspace of (κ, η) to be (W, η_w) . If there is a finite subcover of W with respect to T_w for every nigh-open cover of W, then (W, η_w) is a nigh-compact space. Furthermore, (W, T_w) is a nigh-compact space if and only if each nigh-open cover of W in η has a finite subcover.

Theorem 3.11. Every nigh-closed subset of a nigh-compact space is nigh-compact.

Proof. Suppose that *W* is a nigh-closed subset in a nigh-compact space κ . Let $U = \{u_{\alpha} : \alpha \in \beta\}$ ba a nigh-open cover of *W*. Then $\kappa = W \cup (\kappa - W) = \bigcup_{\alpha \in \beta} u_{\alpha} \cup (\kappa - W)$ is a nigh-open cover of κ . Due to κ is a nigh-compact space, then $W \cup (\kappa - W)$ can be reduced to a finite subcover, say $\kappa = (\bigcup_{i=1}^{n} u_{\alpha_i}) \cup (\kappa - W)$. Therefore, we have $W = \bigcup_{i=1}^{n} u_{\alpha_i}$. Consequently, $\{u_{\alpha_i} : i = 1, ..., n\}$ forms a finite subcover of *W*. Therefore, *W* is nigh-compact.

Theorem 3.12. Let W be a nigh-compact subset in T_2 -space κ . Then for all $x \notin W$, we can separate x and W into two disjoint open sets.

Proof. For all $w \in W$, we have $w \neq x$ with $x \notin W$. Since κ is a T_2 -space, then \exists two open subset $u_w(x)$ and v(w) in κ for which $x \in u_w(x)$ and $w \in v(w)$ for which $u_w(x) \cap v(w) = \phi$. Hence, $v = \{v(w) : w \in W\}$ forms a nigh-open cover of W. But W is nigh-compact. So, V can be reduced to a finite subcover of W, say $\{v(w_1), v(w_2), \dots, v(w_n)\}$. Hence, we obtain $W \subseteq \bigcup_{i=1}^n V(w_\Gamma)$ (say (1)). Therefore, for all $V(w_k)$, $\Gamma = 1, \dots, n$, there is corresponding open sets $u_{w_k}(\Gamma)$ condoling Γ for which $u_{w_k}(\Gamma) \cap v(w_k) = \phi$ (since κ is a T_2 – *space*). Now, let $u = \bigcap_{k=1}^n u_{w_k}$, then $\Gamma \in u$ for which u is an open set in κ and $u \cap V(w_\Gamma) = \phi$, for all $k = 1, \dots, n$. Also, for all $\Gamma = 1, \dots, n$, we obtain

 $u \subseteq u_{w_{\Gamma}}(\Gamma)$. Thus, we have $u \cap U_v \subseteq u_{w_k}(\Gamma) \cap v(w_{\Gamma}) = \phi$, which implies $u \cap V(w_k) = \phi$, for all k = 1, ..., n. Hence, we get $(u \cap U_v(w_1)) \cup (u \cap U_v(w_2)) \cup ... \cup (u \cap U_v(w_n)) = \phi$, which gives $u \bigcup_{k=1}^n V(a_k) = \phi$. Now, we let $V = \bigcup_{n=1}^k v(w_k)$. Then, *V* is a nigh-open set as it is a union of finite nigh-open sets in Γ . Now, with the use of (1), we get $A \subseteq V$, and so Γ has two nigh-open sets *u* and *v* in κ for which $\Gamma \in u$ and $W \subseteq v$ with $u \cap v = \phi$.

Theorem 3.13. *Given a* T_2 *-space* κ *, let A and B be two disjoint nigh-compact subsets. After that, A and B can be divided into two disjoint near-open sets in* κ *.*

Proof. For all $x \in A$, we have $x \notin B$. Due to $A \cap B = \phi$, then by the previous theorem, \exists two nighopen sets u_{Γ} and v_{Γ} in κ for which $x \in u_{\Gamma}$ and $B \subseteq v_{\Gamma}$ with $u_{\Gamma} \cap v_{\Gamma} = \phi$. Hence, $U = \{u_{\Gamma} : \Gamma \in A\}$ forms a nigh-open cover of A. But A is compact, then U can be reduced to a finite subcover, say $\{u_{\Gamma_1}, u_{\Gamma_2}, \ldots, u_{\Gamma_n}\}$. Thus, we obtain $A \subseteq \bigcup_{i=1}^n u_{\Gamma_i}$. Now, let $u = \bigcup_{i=1}^n u_{\Gamma_i}$. Then, u is a nigh-open set in κ with $A \subseteq u$ (say (1). In this regard, there is a corresponding set V_{Γ_i} for which $B \subseteq V_{\Gamma_i}$, for all u_{Γ_i} with $i = 1, 2, \ldots, n$. Thus, we have $B \subseteq \bigcap_{i=1}^n V_{\Gamma_i}$, which implies that V is a nigh-open set and $B \subseteq V$ (say (2)). Now, due to $u_{\Gamma_i} \cap v_{\Gamma_i} = \phi$, for all $i = 1, 2, \ldots, n$. Thus, we get $u \cap v_{\Gamma_i} = \phi$, for all $i = 1, 2, \ldots, n$. But $V = \bigcap_{i=1}^n V_{\Gamma_i} \subseteq V_{\Gamma_i}$, for all $i = 1, 2, \ldots, n$. This consequently implies that $u \cap v \subseteq V_{\Gamma_i} \cap u = \phi$. Hence, $v \cap u = \phi$ (say (3)). Therefore, by (1), (2) and (3), we can infer that Γ is a nigh-open set for which u and v are in Γ for which $A \subseteq u$ and $B \subseteq v$ with $u \cap v = \phi$.

Theorem 3.14. *Every nigh-compact* T_2 *-space is a* T_4 *-space.*

Proof. Consider κ is a nigh-compact T_2 -space. Then, κ is a T_1 -space (say (1)). Assume that A and B are two nigh-closed disjoint subsets of κ . Due to κ is a nigh-compact space, then A and B are nigh-compact. This implies that A and B are two nigh-compact subsets of T_2 -space. Hence, by the previous theorem, we can separate A and B into two disjoint nigh-open sets. So, κ is normal. Consequently, by (1) and (2), we can confirm that κ is a T_4 -space.

Theorem 3.15. *Every nigh-compact subset of a T*₂*-space is nigh-closed.*

Proof. Suppose that *A* is a nigh-compact subset of a T_2 -space κ . Let $x \notin A$, then by previous theorem, \exists two nigh-open sets *U* and *V* in κ for which $x \in U$ and $A \subseteq V$ with $U \cap V = \phi$. So, we have $U \subseteq \kappa - V$, and since $A \subseteq V$, we can obtain $\kappa - V \subseteq \kappa - A$. Thus, we have $x \in U \subseteq \kappa - V \subseteq \kappa - A$, which means that $x \in U \subseteq k - A$. Consequently, due to *U* is a nigh-open set, then $\kappa - A$ is a nigh-open set, and so *A* is nigh-closed.

Theorem 3.16. [9] Every subset of a nigh-compact T₂-space is nigh-compact if and only if it is nigh-closed.

Proof. \Rightarrow) Suppose that *A* is a nigh-compact set in a nigh-compact T_2 -space κ . Then, *A* is a nigh-compact in a T_2 -space κ . So by previous theorem, *A* is nigh-closed.

 \Leftarrow) Suppose that *A* is nigh-closed in a nigh-compact *T*₂-space. Then, *A* is nigh-closed in a nigh-compact space *κ*. Thus by previous theorem, *A* is nigh-compact.

Theorem 3.17. Let (κ, η) be a T_3 -space κ . If A is a nigh-compact subset of κ for which $A \subseteq u$, for some nigh-open set u, then \exists a nigh-open set $V \in \kappa$ for which $A \subseteq V \subseteq \overline{V} \subseteq u$.

Proof. For all $x \in A$, we have $x \in u$. Since κ is a regular space, then by the previous theorem, there is a nigh-open set V_x for which $A \subseteq V \subseteq \overline{V} \subseteq u$ (say (1)). Hence, $V = \{V_X : X \in A\}$ is a nigh-open cover of A, Consequently, due to A is nigh-compact, then we can reduce V to a finite subcover of A, say $\{u_{\Gamma_1}, u_{\Gamma_2}, \ldots, u_{\Gamma_n}\}$. Therefore, we obtain $A \subseteq \bigcup_{i=1}^n u = u$. Now, let $V = \bigcup_{i=1}^n V_{\Gamma_i}$, then we have $A \subseteq V \subseteq \overline{V} \subseteq u$. Also, if we let $V = \bigcup_{i=1}^n V_{\Gamma_i}$, then we get $A \subseteq V \subseteq \overline{V} \subseteq u$ as required.

Theorem 3.18. [9] The nigh-compactness property is preserved under onto continuous function.

Proof. Consider κ is a nigh-compact space and $f : \kappa \to \gamma$ is onto continuous function. To prove that γ is nigh-compact, we first assume $U = \{u_{\alpha} : \alpha \in \beta\}$ is a nigh-open cover of γ . Then, u_{α} is a nigh-open set in γ , for all $\alpha \in \beta$. Due to f is continuous, then $f^{-1}(U) = \{f^{-1}(u_{\alpha}) : \alpha \in \beta\}$ is a nigh-open cover of κ . Since κ is nigh-compact, then $f^{-1}(U)$ can be reduced to a finite subcover of κ . Therefore, we have

$$\gamma = f(\kappa) = f(\bigcup_{i=1}^n f^{-1}(u_{\alpha_i})) = \bigcup_{i=1}^n u_{\alpha_i}.$$

Hence, $\{u_{\alpha_1}, \ldots, u_{\alpha_n}\}$ is a finite subcover of *U*, which consequently implies that γ is nigh-compact.

Corollary 3.3. *The nigh-compactness is a topological property.*

Proof. Consider $f : \kappa \to \gamma$ is a homomorphism function and κ is a nigh-compact space. Then, f is continuous and onto function. Thus by the above theorem, we can assert that γ is nigh-compact, and this proves that the compactness is a topological property.

Example 3.5. The set (0, 1) is not nigh-compact in (\mathbb{R}, η_u) .

Proof. Since $(0,1) \cong (-1,1)$ by a function $f : (0,1) \to (-1,1)$ for which $f(\Gamma) = 2\Gamma - 1$, (*f* is bijection homeomorphism $f : (-1,1) \to \mathbb{R}$ for which $f(\Gamma) = \tan(\frac{\pi}{2}\Gamma)$), then by the transitive of the relation \cong , we conclude that $(0,1) \cong \mathbb{R}$. Now, due to (\mathbb{R}, η_u) is not nigh-compact, then (0,1) with the usual topology is not a nigh-compact set.

Theorem 3.19. [2] Let $f : \kappa \to \gamma$ be a bijective continuous function and κ is a nigh-compact γ T_2 -space, then f is a homeomorphism function.

Proof. Consider *F* is a nigh-closed subset of κ . Because of κ is a nigh-compact space, then by the previous theorem, *F* is nigh-compact in κ . Due to *f* is continuous and onto, then *f* preserves the compactness property. Hence, f(F) is nigh-compact in γ , and since γ is a T_2 -space, then f(F) is nigh-closed in γ . As a result, *f* is nigh-closed. Consequently, due to *f* is continuous, then *f* is a homeomorphism function.

Definition 3.9. [3] A function $f : \kappa \to \gamma$ is called a perfect function if f is a nigh-closed continuous function and $f^{-1}(y)$ is nigh-compact in κ , for all $y \in \gamma$.

Theorem 3.20. [11] If $f : \kappa \to \gamma$ is a perfect function and γ is nigh-compact, then κ is nigh-compact (i.e., the compactness property is an inverse invert under a perfect function).

Proof. Consider $U = \{u_{\alpha} : \alpha \in \beta\}$ is a nigh-open set of κ . Since we have $f^{-1}(y) \subseteq \kappa$, then U is a nigh-open cover of $f^{-1}(y)$, *forally* $\in \gamma$. But $f^{-1}(y)$ is nigh-compact. Thus, U can be reduced to a finite subcover of $f^{-1}(y)$, say $\{u_{\alpha}\}_{\alpha}$, for which $\beta_y \subseteq \beta$ and β_y is finite. Hence, we obtain $f^{-1}(y) \subseteq \bigcup_{\alpha \in \beta} u_{\alpha}$, and so $f^{-1}(Y) \cap (K - \bigcup_{\alpha \in \beta} u_{\alpha}) = \phi$ is nigh-open in Y. Due to $\bigcup_{\alpha \in \beta} u_{\alpha}$ is a union of finite members of U, then U a nigh-open cover of κ . Thus, $F(\Gamma - \bigcup_{\alpha \in \beta} u_{\alpha})$ is nigh-closed. Now, we have for all $y \in \gamma$, $y \in O_y$ for which O_y can be reduced to a finite subcover of γ , say $\{O_{y_1}, O_{y_2}, \dots, O_{y_n}\}$. Hence, we obtain $\gamma \subseteq \bigcup_{i=1}^n O_{y_i}$, which implies that

$$k \subseteq f^{-1}(\gamma) = \bigcup_{i=1}^{n} f^{-1}(O_{y_i} = \bigcup_{i=1}^{n} f^{-1}(\gamma - f(k - \bigcup_{i=1}^{n} u_{\alpha_i}) = \bigcup_{i=1}^{n} u_{\alpha_i})$$

for which $1 \le i \le n$. Thus, $\{u_{\Gamma_i}\}$ is a subcover of a nigh-open cover Γ that covers Γ , and hence Γ is nigh-compact.

Definition 3.10. For all $y \in \gamma$, the set $\{f^{-1}(y) : y \in \gamma\}$ is called filter of f. Hence, the function $f : \Gamma \to \delta$ is called perfect if and only if f is nigh-closed and continuous with nigh-compact filter.

Theorem 3.21. Let κ be a nigh-compact space. Then, the projection $p : \kappa \times \gamma \rightarrow \gamma$ is nigh-closed.

Proof. Let $y \in \gamma$ and O be a nigh-open set in $\kappa \times \gamma$ for which $p^{-1}(y) = \kappa \times \{\gamma\} \subseteq O$. By the previous theorem, there is a nigh-open set v in γ that contains y for which $f^{-1}(V) \subseteq O$. Due to O is a nigh-open set of $\kappa \times \gamma$, then for all $(x, y) \in \kappa \times \{\gamma\}$, there are two nigh-open basic sets $u_{\kappa\Gamma}$ and $v_{y_{\kappa}}$ in κ and γ respectively for which $(x, y) \in u_{\kappa} \times V_{y_{\kappa}} \subseteq O$. Hence, $U = \{u_x : x \in \kappa\}$ forms a nigh-open cover of κ . But κ is nigh-compact, so U can be reduced to a finite subcover, say $\{u_{x_1}, u_{x_2}, \dots, u_{x_n}\}$. Hence, for all u_{x_i} , $i = 1, 2, \dots, n$, there is a corresponding V_{y_x} for which $y \in V$. Therefore, we have $p^{-1}(V) = \kappa \times \{\gamma\} \subseteq u \times V \subseteq O$. As a result, we have $p^{-1}(V) \subseteq O$, which implies that p is nigh-closed.

Theorem 3.22. Let κ and γ be two arbitrary spaces and $f : \kappa \to \gamma$ be a function for which f is a nigh-closed subset of $\kappa \times \gamma$. If $B \subseteq \gamma$ is nigh-compact, then $f^{-1}(B)$ is nigh-closed in κ .

Proof. To show that $f^{-1}(B)$ is nigh-closed in κ , it is enough to show that $\kappa - f^{-1}(B)$ is open in κ . To this end, we let $x \in (\kappa - f^{-1}(B))$. Then, we have $f(x) \in (\gamma - B)$, and so we obtain $f(x) \notin B$. This implies $x \notin f^{-1}(B)$ (say (1)). Now, for all $b \in B$, we have $(x, b) \notin f$. Due to f is a nigh-closed subset of $\kappa \times \gamma$, then $(x, b) \in (\kappa \times \gamma) - f$ is a nigh-open set of $\kappa \times \gamma$. Also, since f is a nigh-closed subset of $\kappa \times \gamma$, then there are two nigh-open basic sets $u_b(x)$ and v(b) in κ and γ respectively for which $(x, b) \in u_b(x) \times v(b) \subseteq (\kappa \times \gamma) - f$. Consequently, for all $z \in \kappa$, we have $(z, f(z)) \notin u_b(x)$, because if this is not hold, then $(z, f(z)) \in (\kappa \times \gamma) - f$. Therefore, we get $(z, f(z)) \notin f$, which is a contradiction. Now, $V = \{v(b) : b \in B\}$ is a nigh-open cover of B, and since B is nigh-compact, then it can be reduced to a finite subcover, say $\{v(b_1), v(b_2), \dots, v(b_n)\}$. Also, for all $v(b_i), i = 1, 2, \dots, n$, there is

a corresponding $u_{b_i}(x)$ for which $x \in U_{b_i}(x)$. In this regard, we let $U(x) = \bigcup_{i=1}^n u_{b_i}$, and so U(x) is a nigh-open set in κ with $x \in U(x)$. Therefore, we have $U(x) \cap f^{-1}(B) = \phi$, and consequently $x \in u(x) \subseteq \kappa - f^{-1}(B)$. Hence, due to u(x) is nigh-open in κ , then $\kappa - f^{-1}(B)$ is nigh-open. Thus, $f^{-1}(B)$ is nigh-closed in κ .

Theorem 3.23. [7] Let κ be an arbitrary space and γ be a nigh-compact space. If $f : \kappa \to \gamma$ is a nigh-closed subset of $\kappa \times \gamma$, then f is continuous.

Proof. Let *B* be a nigh-closed subset in γ . Due to γ is nigh-compact, then by the previous theorem, *B* is nigh-compact in γ (ad any nigh-closed subset of a nigh-compact space is nigh-compact). Therefore, by the previous theorem, $f^{-1}(B)$ is nigh-closed, and hence *f* is continuous.

Theorem 3.24. [7] Let κ and γ be two nigh-compact spaces. Then, $\kappa \times \gamma$ is a nigh-compact space.

Proof. Define a projection function $p_y : \kappa \times \gamma \to \gamma$ as $p_y(x, y) = y$. Then, it is clear that p_y is continuous and surjective function. Since κ is nigh-compact, then p_y is a nigh-closed function. Consequently, due to for all $y \in \gamma$, we have $p^{-1}(y) = \kappa \times \{y\} \cong \kappa$ and κ is compact, then p_y is a nigh-closed continuous function with nigh-compact fibers. Therefore, f is perfect function, and since γ is nigh-compact, then by the previous theorem, $\kappa \times \gamma$ is nigh-compact too (as the compactness property is an inverse inerrant under perfect function).

3.3. **Nigh-locally compact space.** This subsection describes the so-called nigh-locally compact space and examines its features by presenting some new results and theorems.

Definition 3.11. A topological space (κ, η) is said to be a nigh-locally compact space if for all $\gamma \in \kappa$, $\exists a$ nigh-open set u_{γ} in κ containing γ for which u_{γ} is nigh-compact.

Example 3.6. The topological space (\mathbb{R}, η_u) is a nigh-locally compact space, but it is not nigh-compact.

Proof. To prove this example, we should consider the following states:

- Observe that \mathbb{R} is a nigh-locally compact space as for all $\Gamma \in \mathbb{R}$, we have open intervals $u = (\Gamma 1, \Gamma + 1)$ for which $\overline{u} = [\Gamma 1, \Gamma + 1]$ is nigh-compact.
- On the other hand, one may notice that \mathbb{R} is not nigh-compact, as there is a nigh-open cover $\varphi_n = \{(-n, n) : n \in \mathbb{N}\}$ of \mathbb{R} that has no finite subcover, because if this is not true (i.e., φ_n has a finite subcover of \mathbb{R} , say ϱ), then ϱ forms $\sigma = \{(-n_1, n_1), (-n_2, n_2), \dots, (-n_k, n_k)\}$, and thus $\mathbb{R} = \bigcup_{i=1}^n (-n, n)$.

Theorem 3.25. *Every nigh-locally compact* T₂*-space is Tychonoff space.*

Theorem 3.26. Let κ be a nigh-locally compact T_2 -space and A be a nigh-compact subset of κ . If $A \subseteq V$ for which V is a nigh-open set in κ , then \exists a nigh-open set u in κ for which $A \subseteq u \subseteq \overline{u} \subseteq V$ and \overline{u} is nigh-compact in κ .

Proof. Assume that κ is a nigh-locally compact T_2 -space. Then, κ is a Tychonoff space, and so it is a T_3 -space. Consequently, κ is a regular space. Thus, for all $x \in A$, we have $x \in v$. Consequently, since V is an open set, then \exists a nigh-open set V_X in κ for which $x \in v_x \subseteq \overline{v_x} \subseteq V$. Now, due to κ is a nigh-locally compact space, then there is a nigh-open set w_x for which $x \in w_x$ for which $\overline{w_x}$ is nigh-compact. Thus, we have $x \in v_x \cap w_x = u_x$, which is a nigh-open set in κ . Hence, $\{u_x : x \in A\}$ forms a nigh-open cover of A. As a result, since A is nigh-compact, then $A \subseteq \bigcup_{i=1}^n (u_{x_i}) = u$ for which u is a nigh-open set in κ . Therefore, we obtain $u_{x_i} = v_{x_i} \cap w_{x_i}$, for all i = 1, 2, ..., n. Thus, we have $u_{\overline{x_i}} \subseteq \overline{w_{x_i}}$. Now, due to every nigh-closed set in a nigh-compact space is nigh-compact, then $\bigcup_{i=1}^n (u_{\overline{x_i}} = \bigcup_{i=1}^n (u_{x_i}) = \overline{u}$ is compact. Hence, we have $A \subseteq u \subseteq \overline{u}$. But $u_{x_i} = v_{x_i} \cap w_{x_i}$, and so $u_{\overline{x_i}} \subseteq \overline{v_{x_i}}$. Therefore, $u_{x_i} \subseteq v_{x_i}$, for all i = 1, 2, ..., n. Thus, we get

$$\bar{u} = \bigcup_{i=1}^{n} (u_{x_i}) = \bigcup_{i=1}^{n} (\bar{u_{x_i}}) \subseteq \bigcup_{i=1}^{n} (\bar{v_{x_i}}) \subseteq V,$$

as $\bar{v_{x_i}} \subseteq V$.

Theorem 3.27. Let κ be a nigh-locally compact space. Then, any subspace of the form $f \cap V$ of κ is nigh-locally compact in κ , where f is nigh-closed and V is a nigh-open set in κ .

Proof. To prove this result, we should consider the following states:

- To show that the nigh-locally compactness is hereditary with respect to a nigh-open set, we let *V* be a nigh-open set in a nigh-locally compact space κ . Now, to show that *V* is nigh-locally compact, we let $x \in v$. Then, we have $x \in \kappa$, and since κ is a T_3 -space, then it is regular. Also, since *V* is a nigh-open set, then \exists a nigh-open set *u* in κ for which $x \in u \subseteq \overline{u} \subseteq v$. Consequently, since κ is a nigh-locally compact space, then \exists a nigh-open set *W* in κ for which $x \in W$ for which \overline{W} is nigh-compact. Thus, we have $x \in u \cap W = M$, where *M* is a nigh-open set in *V*. Due to $M \subseteq u$ and $u \subseteq V$, then $M \subseteq V$ and $M \subseteq W$. Thus, we have $\overline{M} \subseteq \overline{W}$. Consequently, due to \overline{W} is nigh-compact for which \overline{M} is nigh-closed in \overline{W} , then \overline{M} is nigh-compact. Thus, for all $x \in V$, \exists an open set *M* containing *x* for which \overline{M} is nigh-compact. Therefore, *V* is nigh-locally compact.
- To show that the locally compactness is hereditary with respect to the closed set, we let *F* be a nigh-closed set in a nigh-locally compact space κ . Also, we let $x \in F$, then $x \in \kappa$. Due to κ is nigh-locally compact, then $F \cap W$ and $F \cap W^F = F \cap W \cap F = F \cap W \subseteq \overline{W}$. So, \exists a nigh-open set $F \cap W$ for which $F \cap W^F$ is nigh-compact. Therefore, *F* is nigh-locally compact.
- To show that every subspace $F \cap V$ of a nigh-locally compact space is nigh-locally compact, where F is a nigh-closed set and V is a nigh-open set in κ , we should note that due to F is nigh-locally compact. Then, and by the previous part, we observe that the nigh-locally compactness is hereditary with respect to nigh open sets. Therefore, $F \cap V$ is nigh-locally compact in F, and so it is in κ .

Theorem 3.28. Every nigh-locally compact dense subspace M of aT_2 -space κ is nigh-open in \overline{M} , (i.e., every nigh-locally compact subspace M of a T_2 -space κ can be represented as $M = F \cap V$, where F is nigh-closed and V is nigh-open in κ).

Proof. To prove this result, it is enough to show that every nigh-locally compact dense subspace M of κ is nigh-open in M = k. To this end, we let $x \in M$. Now, due to M is nigh-locally compact, then \exists a nigh-open set u in M for which $x \in u$ for which $u \in M$ is nigh-compact in M, and so it is nigh-compact in κ . Now, since κ is a T_2 -space, then by the fact that asserts every nigh-compact subset of T_2 -space is nigh-closed, we have $\bar{u} \in M$ is nigh-closed in κ for which $u \subseteq \bar{u}$ for which $u \subseteq M$. Thus, we have $u \subseteq \bar{u} \cap M$ (say (1)). In the same regard, due to u is a nigh-open set in M, then \exists a nigh open W in κ for which $u = W \cap M$. But $x \in u$, and so $x \in W$. This implies that $x \in W \subseteq \bar{W} = W \cap \bar{\kappa} = W \cap \bar{M} = W \cap M$ (since W is a nigh-open set in κ). Thus, by the previous theorem that says if T nigh-open in κ , then $T \cap \bar{A} = T \cap A$, for all $A \subseteq \kappa$), we have $x \in W \subseteq M$. Also, since W is nigh-open in κ , then M is nigh-open in $k = \bar{M}$, which completes the proof of this result.

Corollary 3.4. Every subspace *M* of a nigh-locally compact space κ is nigh-locally compact if and only if *M* can be written as $M = V \cap F$, where *V* is nigh-open and *F* is nigh-closed in κ .

Corollary 3.5. A space κ is nigh-locally compact if and only if it is homomorphic to a nigh-open subspace of a nigh-compact space.

Proof. \Rightarrow) Suppose κ is a nigh-locally compact space. Then, κ is Tychonoff. As every Tychonoff space is emendable in a nigh-compact space (i.e., every Tychonoff space is homomorphic to a nigh-open subspace in a nigh compact space), then κ is homeomorphic to a nigh-open subspace in a nigh compact space).

 \Leftarrow) Suppose that κ is homeomorphic to a nigh-open subspace in a nigh compact space. Then, it is clear that κ is a nigh-locally compact space.

Theorem 3.29. Let $f : \kappa \to \gamma$ be a continuous nigh-open function and γ be T_2 -space. If κ is a nigh-locally compact space, then γ is nigh-locally compact.

Proof. Let $y \in \gamma$ and $\Gamma \in f^{-1}(y)$. Then, we have $\Gamma \in \kappa$. Now, due to κ is a nigh-locally compact space, then \exists a nigh-open set u in κ for which $\Gamma \in u$ for which \bar{u} is nigh-compact. Consequently, as $f : \kappa \to \gamma$ is nigh-open, then f(U) is also nigh-open in γ for which $y \in f(U)$ is continuous in γ . In the same regard, due to the compactness is preserved under continuity, then $f(\bar{u})$ in γ . Consequently, due to γ is a T_2 -space, then $f(\bar{u})$ is nigh-closed in γ . Thus, we obtain $f(\bar{u}) = f(\bar{\iota})$. But $u \subseteq \bar{u}$, and so $f(u) \subseteq (\bar{u})$. Hence, $f(\bar{u}) \subseteq barf(\bar{u} = f(\bar{u} \text{ is nigh-compact in } \gamma \text{ for which } f(\bar{u})$ is nigh-compact. Therefore, for all $y \in \gamma$, we have Γ is a nigh-open set for which f(U) in γ and $f(\bar{u})$ is nigh-compact. Hence, γ is nigh-locally compact.

Definition 3.12. *A space* κ *is called* κ *-space if for all nigh-closed (open) subset in* κ *, we have* $A \cap Z$ *is a subset in every nigh compact subspace* Z *of* κ *.*

Theorem 3.30. *Every nigh-locally compact space is a* κ *-space.*

Proof. Suppose that κ is a nigh-locally compact space and $A \cap Z$ is an open set in every nighcompact subset Z of κ . To show that κ is κ -space, it is enough to show that A is a nigh-open set in κ . For this purpose, we let $a \in A$, then we have $a \in \kappa$. Now, since κ is a nigh-locally compact space, then \exists a nigh-open set V in κ for which $a \in V$ for which \overline{V} is nigh-compact. Hence, we obtain $A \in \overline{V}$, and hence it is nigh-open in κ . But $A \cap V = A \cap (\overline{V} \cap V) = (A \cap V) \cap V$ is nigh-open in κ . Therefore, we have $a \in A, a \in V$, and so $a \in (A \cap V) \subseteq A$. This implies that A is a nigh-open set, and hence κ is κ -space.

Definition 3.13. • A space κ is called Frechet space if and only if for all $A \subseteq \kappa$ and for all $a \in \overline{A}$, $\exists a_n \in A$ for which $a_n \to a$.

• A space κ is called sequential space if and only if a subset A of κ is nigh-closed if and only if for all $(a_n) \in A$ for which A contains its limit.

Theorem 3.31. *Every first countable space is a* κ *-space.*

Proof. Suppose that κ is a first countable space. Let $A \subseteq Z$ be nigh-closed in every nigh-compact subset Z of κ . To show that κ is a κ -space, it is enough to show that A is nigh-closed in κ . For this goal, we let $a \in \overline{A}$. Now, due to every first countable space is a Frechet space, then $\exists (a_n) \in A$ for which $a_n \rightarrow a$. Hence, $a_n \cup a$ is a nigh-compact subset of κ . Thus, $A \cap ((a_n) \cup a)$ is closed in $(a_n) \cup a$, and so $a \in A$. This implies $\overline{A} \subseteq A$. But $A \subseteq \overline{A}$, and so $\overline{A} = A$. Therefore, A is a nigh-closed set, which means that κ is κ -space.

Theorem 3.32. *Every Frechet space is a sequential space.*

Proof. Suppose that κ is a Frechet space. To show that κ is a sequential space, it is enough to show that A is a nigh-closed set in κ if and only if for all $(a_n) \in A$, we have $(a_n) \rightarrow a$, which implies $a \in A$. So we have the following states: \rightarrow) Suppose that A is a nigh-closed set in κ and $(a_n) \in A$ for which $a_n \rightarrow a$. Then, for all nigh-open set u in κ containing a, we have $\Gamma m \in \mathbb{N}$ for which $a_n \in u$, for all $n \ge m$. Thus, we have $a_n \in u$ for which $a_n \in A$, for all $n \ge m$. This implies that $A \cap u \neq \phi$, and since $a \in u$ for which u is a nigh-open set in κ , then $a \in \overline{A} = A$ as A is nigh-closed.

←) Suppose that the condition here is hold. To show that *A* is a nigh-closed, we let $a \in \overline{A}$. Now, since κ is a Frechet space, then $\exists a_n \in A$ for which $a_n \in A$ for which $a_n \to a$. Hence, by the condition assumed, we conclude that $a \in A$, and so $\overline{A} \subseteq A$. But $A \subseteq \overline{A}$, and so $\overline{A} = A$. Hence, *A* is a nigh-closed set.

Theorem 3.33. *Every* T_2 *-sequential space is a* κ *– space.*

Proof. Suppose that κ is a T_2 -sequential space. To show that κ is a γ -space, we suppose that $A \cap Z$ is a nigh-closed set in every nigh-compact subset Z. Also, to show that κ is a γ -space, it is enough

to show that *A* is a nigh-closed set. For this purpose, we assume not! (i.e., we assume that *A* is not a nigh-closed set). Now, since κ is a sequential space, then $\exists (a_n) \in A$ for which $a_n \to a$ and $a \notin A$. Thus, if we assume that $z = \{a, a_1, a_2, \ldots, a_n\} = (a_n) \cup \{a\}$, then *Z* is nigh-compact. Consequently, we have $A \cap ((a_n) \cup \{a\})$, which implies that *z* is nigh-closed (say (1)). In the same regard, due to κ is a T_2 -space, then $Z \cong A(w_0)$. Therefore, *a* is a unique cluster point of (a_n) . As a result, since $a \notin A$, we obtain $A \cap Z = A \cap (a_n) \cup \{a\}$, which is not a nigh-closed set, and this is a contradiction with (1). Hence, *A* is a nigh-closed set, which implies that κ is a γ -space.

Corollary 3.6. Let κ be a sequential space. Then, $f : \kappa \to Y$ is continuous function if and only if $f(\lim x_i) \subseteq \lim f(x_i)$.

Proof. Suppose that $f : \kappa \to Y$ is a continuous function and $x \in \lim f(x_i)$. To show that $f(\lim x_i) \subseteq \lim f(x_i)$, it is enough to show that $f(x) \in \lim f(x_i)$. For this goal, we let V be a nigh-open set γ for which $f(x) \in V$. Then, $x \in f^{-1}(V)$ is a nigh-open set in κ . Due to f is continuous and $x \in \lim f(x_i)$, then $\exists m \in \mathbb{N}$ for which $x_i \in f^{-1}(V)$, for all $i \neq m$. Also, since $f(x) \in V$ for which V is a nigh-open set in γ , then $f(x_i) \to f(x)$. Hence, we have $f(x) \in \lim f(x_i)$, and so $f(\lim x_i) \subseteq \lim f(x_i)$. Conversely, we suppose that $f(\lim x_i) \subseteq \lim f(x_i)$. Here, we want to show that $f : \kappa \to Y$ is continuous. To this end, we let A be a nigh-closed set in γ . So, it is enough to show that $f^{-1}(A)$ is nigh-closed in κ . Now, by using the definition of the sequential space that says "A space κ is sequential if T is nigh-closed in κ if and only if for all $(t_n) \in T$, $t_n \to t$, we have $T \in t$ ", we let $x_i \subseteq f^{-1}(A)$ and $x_i \to x$ (i.e., $x \in limx_i$). Thus, we have the following claim: claim: $x \in f^{-1}(A)$.

To prove this claim, we should note that $x \in \lim x_i$. Then, by the assumption $f(x_i) \to f(x)$, we have $f(x) \in f(\lim x_i) \subseteq \lim f(x_i)$. So, if we assume that u is nigh-open in γ , we obtain $f(x) \in u$. Consequently, $\exists m \in \mathbb{N}$ for which $f(x_i) \in u$, for all $i \ge m$. But $x_i \subseteq f^{-1}(A)$, and so $f(x_i) \in A$, $\forall i = 1, 2, \ldots$ This implies $u \cap A \neq \phi$, and since $f(x) \in u$ for which u is a nigh-open set in γ , then $f(x) \in \overline{A} = A$. Now, due to A is nigh-closed, then we have $x \in f^{-1}(A)$. As a result, since κ is a sequential space, then $f^{-1}(A)$ is nigh-closed in κ . Therefore, f is continuous.

Corollary 3.7. *If every sequence in* κ *has at most one limit, then* κ *is a* T_1 *-space. Moreover, if* κ *is a first countable space, then* κ *is a* T_2 *-space.*

Proof. Assume that κ is not a T_1 -space. Then, if we assume that $x \neq y$ implies that any open set u can contain $x, y \in u$, we infer that $y_n = y$, for n = 1, 2, ... Therefore, we have $(y_n) \rightarrow y$, and so for all nigh-open set u containing y, we have $x \in u$. Therefore, we have $y_n \rightarrow x$. Consequently, due to every sequence in κ has at most one limit, then we have x = y, which is a contradiction with $x \neq y$. Hence, κ is T_1 -space.

4. CONCLUSION

This study has introduced the concept of a topological space that is nigh-locally compact. The definitions of "nigh-compact space" and "nigh-topological space," as well as a number of other deductions and theorems, have been presented in order to accomplish that goal.

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the publication of this paper.

References

- R. Alharbi, J. Oudetallah, M. Shatnawi, I.M. Batiha, On c-Compactness in Topological and Bitopological Spaces, Mathematics 11 (2023), 4251. https://doi.org/10.3390/math11204251.
- [2] J. Oudetallah, N. Abu-Alkishik, I.M. Batiha, Nigh-Open Sets in Topological Space, Int. J. Anal. Appl. 21 (2023), 83. https://doi.org/10.28924/2291-8639-21-2023-83.
- [3] J. Oudetallah, R. Alharbi, I.M. Batiha, On r-Compactness in Topological and Bitopological Spaces, Axioms 12 (2023), 210. https://doi.org/10.3390/axioms12020210.
- [4] J. Oudetallah, I.M. Batiha, On Almost Expandability in Bitopological Spaces, Int. J. Open Probl. Comp. Sci. Math. 14 (2021), 43–48.
- [5] J. Oudetallah, M.M. Rousan, I.M. Batiha, On D-Metacompactness in Topological Spaces, J. Appl. Math. Inf. 39 (2021), 919–926. https://doi.org/10.14317/JAMI.2021.919.
- [6] A.A. Hnaif, A.A. Tamimi, A.M. Abdalla, I. Jebril, A Fault-Handling Method for the Hamiltonian Cycle in the Hypercube Topology, Comp. Mater. Cont. 68 (2021), 505–519. https://doi.org/10.32604/cmc.2021.016123.
- [7] J.C. Kelly, Bitopological Spaces, Proc. London Math. Soc. s3-13 (1963), 71–89. https://doi.org/10.1112/plms/s3-13.1.71.
- [8] T.C.K. Raman, On Generalized b-Closed Sets In Bitopological Spaces, Int. J. Sci. Eng. Techn. 5 (2016), 124–127.
- [9] N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, The Amer. Math. Mon. 70 (1963), 36–41. https://doi.org/10.1080/00029890.1963.11990039.
- [10] M.C. Datta, Projective Bitopological Spaces, J. Aust. Math. Soc. 13 (1972), 327–334. https://doi.org/10.1017/ s1446788700013744.
- [11] J. Oudetallah, Nearly Expandability in Bitopological Spaces, Adv. Math., Sci. J. 10 (2020), 705–712. https://doi.org/ 10.37418/amsj.10.2.2.
- [12] P. Fletcher, H.B. Hoyle, III, C.W. Patty, The Comparison of Topologies, Duke Math. J. 36 (1969), 325–331. https: //doi.org/10.1215/s0012-7094-69-03641-2.
- [13] Y.W. Kim, Pairwise Compactness, Publ. Math. Debrecen 15 (2022), 87–90. https://doi.org/10.5486/pmd.1968.15.1-4.
 12.
- [14] I.L. Reilly, Bitopological Local Compactness, Indag. Math. (Proceedings) 75 (1972), 407–411. https://doi.org/10.1016/ 1385-7258(72)90037-6.
- [15] J. Swart, Total Disconnectedness in Bitopological Spaces and Product Bitopological Spaces, Indag. Math. (Proceedings) 74 (1971), 135–145. https://doi.org/10.1016/s1385-7258(71)80020-3.