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Abstract. The focus of this paper is the introduction of the notion of a nigh-locally compact topological space. To do

this, concepts of "nigh-topological space" and "nigh-compact space" would be defined, and various conclusions and

theorems would be derived. This would lead to a well-defined notion of a nigh-locally compact topological space, from

which we would obtain a number of theorems and instances concerning this innovative idea.

1. Introduction

Assume (κ, η) is a topological space. Typically, κ is referred to as nigh-locally compact whenever

every node x within κ has a nigh-compact neighborhood. In other words, if there are a nigh-

compact set K and an open set U for which x ∈ U ⊆ K. There are alternative widely accepted

definitions, all of which hold ifκ is a pre-regular space (or Hausdorff space). Yet generally speaking,

they are not comparable. In what follows, we list some of these definitions for completeness:

• Each point in κ has a neighborhood that is almost compact.

• There is a closed compact neighborhood for each point in κ.

• Each point in κ has a neighborhood that is comparatively close together.

• There is a nigh-local basis of pretty compact neighborhoods at each location in κ.

• There is a nigh-local base of compact neighborhoods at each location in κ.

• There is a nigh-local base of closed compact neighborhoods at each location in κ.

• Given that κ is Hausdorff, it satisfies all or any of the preceding Conditions.

It is important to remember that a Hausdorff space is a near Tychonoff space if it is nigh-

locally compact. It is for this reason that the article on near Tychonoff spaces has instances of

nigh-Hausdorff spaces that are not nigh-locally compact, but there are also examples of Tychonoff
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spaces that are not nigh-locally compact. However, for further description of more concepts and

notions, the reader may refer to the references [1–6].

In this study, the notion of a nigh-locally compact topological space is introduced. This would

involve defining the terms "nigh-topological space" and "nigh-compact space," as well as deriving

a number of conclusions and theorems. Eventually, we would have a well-defined concept of

a nigh-locally compact topological space, from which we might derive several theorems and

examples pertaining to this novel concept. The remaining portions of this article are structured

as follows: Section 2 recalls important notions and definitions needed later. Section 3 is divided

into three subsections; the first one is about the nigh-topological space, the second one is about the

nigh-compact space, and the third one is about the nigh-locally compact space. Finally, Section 4

contains the conclusion of this work.

2. Preliminaries

We list the most crucial concepts and foundational theorems required for our investigation in

this section. We also extract some additional useful results to finish our investigation.

Definition 2.1. [7] Let ξ = (ξ,µ) be a topological space and V = {vµ : wµ ⊂ ξ} be a family of subset of
ξ. Then ξ is called a cover of ξ if ξ =

⋃
µ ∈ ξvµ. Also, we have:

• If vµ is an open set in ξ for all µ ∈ ξ and ξ =
⋃
µvξ, then v is called open cover of ξ.

• If µ ∈ v is a cover of ξ, then µ is called subcover of ξ.

Definition 2.2. A topological space ξ = (ξ,µ) is said to be compact if and only if each open cover of ξ
contains a finite cover. Also, ξ is compact if v = {vµ : µ ∈ T, wµ ⊂ ξ} is an open cover of ξ.

Theorem 2.1. [8] A compact subset of R is any closed bounded subset.

Definition 2.3. [8] We say that a family of subsets A of k has a finite intersection property ( f .i.p.) given
a topological space ξ = (ξ,µ) if and only if the intersection of the set A with a finite number of members is
not empty.

Theorem 2.2. [8] Suppose we have a topological space ξ = (ξ,µ). Then, ξ is considered compact if and
only if each family of closed subsets of ξ that has ( f .i.p) has an intersection that is not empty.

Remark 2.1. Consider a subspace of ξ = (ξ,µ) to be (W,µw). If each open cover of w has a finite sub
cover of w with respect to Tw, then we say that (W,µw) is compact. Observe that every open cover of W has
a finite subcover in µ if and only if (W, Tw) is compact.

Theorem 2.3. [9] Consider W is a compact subset of T2-space ξ. For all x < W, we can separate x and W
in two disjoint open sets.

Theorem 2.4. [9] Assume that ξ is a T2-space and that A and B are two disjoint compact subsets. Then,
A and B can be divided into two disjoint open sets in ξ.
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Theorem 2.5. [10] Every compact T2-space is T4-space.

Theorem 2.6. [10] All of T2-space’s compact subsets are closed.

Theorem 2.7. [9] In compact T2-space, a subset is considered compact if and only if it is closed.

Theorem 2.8. [9] The compactness property is preserved under onto continuous function.

Corollary 2.1. [9] Compactness is topological property.

Theorem 2.9. [11] The function f is a homeomorphism function if ξ is a compact space, γ a T2-space, and
f : ξ→ γ is a bijective continuous function.

Definition 2.4. [11] If f is a closed continuous function and f−1(y) is compact in ξ for all y ∈ γ, then the
function f : ξ→ γ is referred to as a perfect function.

Theorem 2.10. [11] If γ is compact and f : ξ→ γ is a perfect function, then ξ is compact. In other words,
the compactness property is an inverse invert under perfect functions.

Definition 2.5. The set { f−1(y) : y ∈ γ} is said to be fibers of f for all y ∈ γ. Therefore, a function
f : Γ→ δ is considered perfect if and only if f has compact fibers for which it is closed and continuous.

Theorem 2.11. The projection p : ξ× γ→ γ is closed provided that ξ is compact space.

Theorem 2.12. [12] Consider two arbitrary spaces, ξ and γ, and a function f : ξ → γ, for which f is a
closed subset of ξ× γ. Then, f−1(B) is closed in ξ if B ⊆ γ is compact.

Theorem 2.13. [7] Let γ be a compact space and ξ an arbitrary space. A function f : ξ→ γ is continuous
if and only if it is a closed subset of ξ× γ.

Theorem 2.14. [7] The space ξ× γ is compact if ξ and γ are compact spaces.

Definition 2.6. [13] For any γ ∈ ξ, there is an open set uγ in Γ containing γ for which ū is compact; this
defines the locally compact space ξ.

Theorem 2.15. Tychonoff space is a locally compact T2-space.

Theorem 2.16. Assume that A is a compact subset of a locally compact space ξ. There exists an open set u
in ξ for which A ⊆ u ⊆ ū ⊆ V for which ū is compact in ξ if A ⊆ V for which V open in ξ.

Theorem 2.17. [14] Every subspace of the form f ∩ V of a locally compact space ξ is locally compact,
where f is closed and V open in ξ.

Theorem 2.18. Every locally compact subspace M of a T2-space ξ is open in M̄.

3. Nigh-locally compactness in topological spaces

The notion of a nigh-locally compact topological space is presented in this section. This would

entail defining the terms "nigh-compact space" and "nigh-topological space", as well as drawing

certain inferences and theorems.
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3.1. Nigh-topological space. In this subsection, we describe a recent type of topological space

known as a nigh-topological space, investigate its prosperities, and provide some new operations

and results on a nigh-topological space [11].

Definition 3.1. If a pair (κ, η), that comprises a set κ and a family η of subsets of κ is satisfied with the
following states:

(1) φ ∈ η and κ ∈ η,
(2) A union of any number of members in η is a member of η,
(3) Any two members of η that intersect also belong to η,

then it is referred to as a topological space.

Definition 3.2. Assume that (κ, η) is a topological space for which B ⊆ κ, then B is called:

(1) a regular open set in κ if B = B
o
.

(2) a regular closed set in κ if B = Bo.
(3) a semi open set in κ if ∃ an open set W for which W ⊆ B ⊆ W̄.

Definition 3.3. [5] Let δ be a subset of κ and (κ, η) be a topological space. A set δ is said to be nigh-open
if there are two open sets, ν and ξ, for which ξ ⊆ δ ⊆ Ext(ν) and ν ∩ δ = φ. A nigh-closed set is the
complement of a nigh-open set.

Remark 3.1. Based on the previous definition, we have:

(1) ν∩ ξ = φ.
(2) The first open set is denoted by ξ, and the second by ν.

Theorem 3.1. In any topological space, every open set is also a nigh-open set.

Proof. Consider δ is an open set in topological space (κ, η). Then, we have δ ⊆ δ ⊆ Ext(φ) and

δ∩φ = φ. Thus, δ is a nigh-open set. �

Herein, it is important to note that the opposite of the aforementioned theorem need not hold.

For instance, if we consider the usual topology R, and take the set (−1, 2], which is a nigh-open as

there are two open sets, ((0, 1) and (4, 5) for which (0, 1) ⊆ (−1, 2] ⊆ Ext(4, 5), however, given the

standard topology on R, the set (−1, 2] is not an open set.

Theorem 3.2. Given a topological space (κ, η)where δ is a nigh-open set. Then, Int(ν) ⊂ Ext(δ) ⊆ Ext(ξ),
where ξ and ν are the first and second open sets, respectively.

Proof. Suppose there is a nigh-open set δ in κ. Then, there are open sets, ξ and ν, for which

ξ ⊆ δ ⊆ Ext(ν) and ν∩ δ = φ. As a consequence, we get

δ ⊆ Ext(ν) =
⋂

F closed
Ext(ν)⊆F

F.
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As a result, we have ⋃
Fc open set

Fc
⊂(Ext(ν))c

Fc = ν ⊂ δ
c
= Ext(δ).

Now, putting w = Fc yields that w is an open set. As a result, we obtain⋃
w open

w⊂ν

w ⊂ Ext(δ).

But, we have ⋃
w open

w⊂ν

w = Int(δ).

Now, since ξ ⊆ δ, then Ext(δ) ⊆ Ext(δ), which implies Int(ν) ⊆ Ext(δ) ⊆ Ext(ξ). �

Definition 3.4. Let η ⊆ p(κ) for which κ be a non-empty set. If the following are satisfied:

(1) φ,κ ∈ η.
(2) Any two nigh-open sets that intersect are also nigh-open sets.
(3) A nigh-open set is the union of any family of nigh-open sets.

then η is called a nigh-topology on κ.

Theorem 3.3. A nigh-topological space is a topological space.

Proof. Let us consider a topological space (κ, η). In order to demonstrate the nigh-topological

space of (κ, η), we examine the following cases:

(1) By the definition of the topological space, it is clear that κ,φ ∈ η.

(2) Let δ and ρ be two nigh-open sets. Then, ∃ open sets ξ1, ξ2, ν1 and ν2 for which

ξ1 ⊆ δ ⊆ Ext(ν1) and ξ2 ⊆ ρ ⊆ Ext(ν2).

This consequently implies

ξ1 ∩ ξ2 ⊆ δ∩ ρ ⊆ Ext(ν1)∩ Ext(ν2) ⊆ Ext(ν1 ∩ ν2).

Now, it is a time to observe that ξ1 ∩ ξ2 = ξ, which is an open set. Besides, ν1 ∩ ν2 = ν,

which is an open set as well (i.e., ξ ⊆ δ∩ ρ ⊆ Ext(ν) and δ∩ ρ is a nigh-open set).

(3) Let δ = {δα : α ∈ Γ} be a family of nigh-open sets. We observe that δα is a nigh-open set for

every α ∈ Γ. So, ∃ two open sets ξα and να for which ξα ⊆ δα ⊆ Ext(να), for every α ∈ Γ.

Consequently, we have⋃
α∈Γ

ξα ⊆
⋃
α∈Γ

δα ⊆
⋃
α∈Γ

Ext(να) ⊆ Ext(φ).

Therefore,
⋃
α∈Γ δα is a nigh-open set.

�

Definition 3.5. Assume that δ is a subset of κ and that (κ, η(n)) is a non-topological space. Then:
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(1) A nigh-limit point of a set δ is z ∈ Γ if, for any nigh-open set ν that contains v, we have:ν∩ δv , φ, if z < δ

ν∩ δv\{z} , φ, if z ∈ δ
.

(2) The definition of the nigh-derived set of δ, represented by δ′v, is

δ′v = {ν ∈ Γ : z is nigh-limite point of δ}.

(3) The definition of the nigh-closure set of δ, represented by CL(v)(δ), is CL(v)(δ) = δ∪ δ′
(v).

(4) The definition of the nigh-interior set of δ is Int(v)(δ) =
(
CL(v)(δ

c)
)c

.

(5) The definition of the nigh-exterior set of δ is Ext(v)(δ) and Ext(v)(δ) =
(
CL(v)(δ)

)c
.

(6) The definition of the nigh-boundary set of δ is Bd(v)(δ) and Bd(v) = CL(v)(δ)∩CL(v)(δ
c).

Theorem 3.4. Given a nigh-topological space (κ, η(v)), we have:

(1) φ′
(v) = φ.

(2) CL(v)(φ) = φ and CL(v)(κ) = κ.
(3) Int(v)(φ) = φ and Int(v)(κ) = κ.
(4) Ext(v)(φ) = κ, Ext(v)(κ) = φ.

Proof. (1) Suppose not! So, there is z ∈ κ for which z ∈ φ′
(v). This confirms that κ is a limit

point of φ(v). Then, for all nigh-open sets containing κ, we have ν ∩ φ , φ, which is a

contradiction. Thus, the result is hold.

(2) Observe that we can have CL(v)(φ) = φ ∪ φ′
(v) = φ ∪ φ = φ. This immediately gives

CL(v)(κ) = κ∪ κ′
(v) = κ.

(3) Here, we have Int(v)(φ) =
(
CL(v)(φ

c)
)c
=

(
CL(v)(κ)

)c
= κc = φ, which implies Int(v)(κ) =(

CL(v)(κ
c)
)c
=

(
CL(v)(φ)

)c
= φc = κ.

(4) We can obtain Ext(v)(φ) =
(
CL(v)(φ)

)c
= φc = κ. Accordingly, we get Ext(v)(κ) =(

CL(v)(κ)
)c
= κc = φ.

�

Theorem 3.5. Given a non-topological space (κ, η), let δ and ρ be two subsets of κ. Then:

(1) If δ ⊆ ρ, then δ′
(v) ⊆ ρ

′

(v).
(2) If δ ⊆ ρ, then CL(v)(δ) ⊆ CL(v)(ρ).
(3) If δ ⊆ ρ, then Int(v)(δ) ⊆ Int(v)(ρ).
(4) If δ ⊆ ρ, then Ext(v)(ρ) ⊆ Ext(v)(δ).

Proof. (1) Let z ∈ δ′
(v). So, Γ is a nigh-limit point of δ. Consequently, for all nigh-open set µ

containing v, we obtain: ν∩ δv , φ, if z < δ

ν∩ δv)\{z} , φ, if z ∈ δ.
.
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Now, since δ ⊆ ρ, then we have:ν∩ ρv , φ, if z < ρ

ν∩ ρv)\{z} , φ, if z ∈ ρ.
.

Thus, κ is a nigh-limit point of ρ, which implies z ∈ ρ′
(v), and hence the result hold.

(2) Due to δ ⊆ ρ, then we have δ′
(v) ⊆ ρ

′

(v) and δ∪ δ′
(v) ⊆ ρ∪ ρ

′

(v), (i.e., CL(v)(δ) ⊆ CL(v)(ρ)).

(3) Because of δ ⊆ ρ, then ρc
⊆ δc. So, by using Theorem 2, we can have

CL(v)(ρ
c) ⊆ CL(v)(δ

c),

and (
CL(v)(δ

c)
)c
⊆

(
CL(v)(ρ

c)
)c

.

As a result, we have Int(v)(δ) ⊆ Int(v)(ρ).
(4) Since δ ⊆ ρ, then we have

CL(v)(δ) ⊆ CL(v)(ρ),

and (
CL(v)(ρ

c)
)c
⊆

(
CL(v)(δ

c)
)c

.

This means that Ext(v)(ρ) ⊆ Ext(v)(δ).
�

Theorem 3.6. If δ ⊆ κ in which (κ, η) is a nigh-topological space, then:

(1) CLv)(δ) is a nigh-closed set.
(2) Int(v)(δ) is a nigh-open set.
(3) Ext(v)(δ) is a nigh-open set.
(4) Bd(v)(δ) is a nigh-closed set.

Proof. (1) In case z ∈
(
CL(v)(δ)

)c
, then z < δ∪ δ′

(v). Thus, we get z < δ and z < δ′
(v). Thus, there

is a nigh-open set ν for which ν∩ δ(v) = φ (say *). Then, we obtain

ν∩CL(v)(δ) = ν∩ (δ∩ δ′
(v))

= (ν∩ δ)∪ (ν∩ δ′
(v)

= φ∪ (ν∩ δ′
(v)).

This means that ν∩ CL(v)(δ) = ν∩ δ′
(v). Now, if z ∈ (ν∩ δ′

(v)), then z ∈ ν and ν∩ δ(v) , φ,

which is a contradiction with (*). So, we get (ν ∩ δ′
(v)) = φ, and hence ν ∩ CL(v)(δ) = φ.

Thus, we obtain

z ∈ νz ⊆
(
CL(v)(δ)

)c

, which consequently implies(
CL(v)(δ)

)c
=

⋃
z∈νz

νzis nigh-open set

νz.
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Thus, it follows that
(
CL(v)(δ)

)c
is a nigh-open set, and so CL(v)(δ) is a nigh-closed set.

(2) With the use if Theorem 1, we can notice that CL(v)(δ
c) is nigh-closed set. Hence,

(
CL(v)(δ)

)c

is a nigh-open set (i.e., Int(v)(δ) is a nigh-open set).

(3) Due to Ext(v)(δ) =
(
CL(v)(δ)

)c
. Then, we can assert that Ext(v)(δ) is a nigh-open set.

(4) Due to Bd(v)(δ) = CL(v)(δ) ∩ CL(v)(δ
c). Then, we can assert that Bd(v)(δ) is a nigh-closed

set.

�

Theorem 3.7. We have CL(v)(δ) = δ if and only if δ is a nigh-closed set.

Proof. ⇒) Trivial.

⇐) Consider δ is a nigh-closed set. It is clear that δ ⊆ CL(n) (say *). Now, we want to prove that

CL(n) ⊆ δ. To do so, we let z ∈ δ′. Now, to show z ∈ δ, we assume not, i.e. z < δ. Then, we have

z ∈ δc, which is a nigh-open set. In this regard, since z ∈ δ′, then δc
∩ δ , φ, which is contradiction.

So, we obtain z ∈ δ, i.e. δ′ ⊆ δ and δ ⊆ δ. Therefore, we get δ′ ∪ δ ⊆ δ, i.e. CL(n)(δ) ⊂ δ, and hence

the result hold. �

Theorem 3.8. Consider (κ, η) is a nigh-topological space for which δ ⊆ κ, then:

(1) CL(n)(δ) =
⋂
{ς; ς is nigh-closed set and δ ⊆ ς}, i.e. CL(n)(δ) is the smallest nigh-closed set

containing δ.
(2) Int(n)(δ) = ∪{T : T is nigh-open set and T ⊆ δ}.
(3) Ext(n)(δ) = ∪{W : W is nigh-open set and W ⊆ δc

}.

Proof. (1) Observe that δ ⊆ ς. By previous theorem, we can have CL(v)(δ) ⊆ CL(v)(ς) = ς for

which CL(v)(δ) is closed set. Therefore, CL(v)(δ) is one member of ς′s, which implies⋂
ς is nigh-closed set

δ⊆ς

{ς} ⊆ CL(v)(δ).

On the other hand, as δ ⊆ ς, we can obtain

CL(v)(δ) ⊆ CL(v)(ς),

which gives

CL(v)(δ) ⊆
⋂

ς is nigh-closed set
δ⊆ς

{CL(v)(ς)} =
⋂

ς is nigh-closed set
δ⊆ς

{ς}.

(2) Herein, we have Intn(δ) =
(
CL(n)(δ

c)
)c

= ∩{ς : ς is nigh-closed set and δc
⊆ ς}, which

implies
(
CL(n)(δ

c)
)c
= ∪{ςc : ςc is nigh-closed set and ςc

⊆ δ}. Now, by letting κc = T, we get

Int(n)(δ) = ∪{T : T is nigh-open set and T ⊆ δ}.
(3) By the previous part, one might have Ext(n)(δ) = Int(n)(δc) = ∪{W : W is nigh-open set and

W ⊆ δc
}.

�
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3.2. Nigh-compact space. The so-called nigh-compact space is described in this subsection, and

its properties are examined through the presentation of certain novel findings and theorems.

Definition 3.6. [15] Consider (κ, η) is a topological space and V = {vζ : ζ ∈ ω} is a family of subsets of
κ. Then V is said to be a cover of κ if κ =

⋃
ζ ∈ ωvζ. Furthermore, we have the following states:

(1) If vζ is a nigh-open set in κ for all ζ ∈ ω and κ =
⋃
ζ ∈ ωvζ, then V is called a nigh-open cover of

κ.
(2) If B ⊆ V is a cover of κ, then B is called a subcover of V for κ.

Definition 3.7. If there is a finite subcover for each nigh-open cover of κ, then (κ, η) is a nigh-compact
topological space.

Example 3.1. [11] It can be noticed that (R, ηu) is not a nigh-compact space.

Proof. It should be noted that there is a nigh-open cover ϕn = {(−n, n) : n ∈ N} of R that has no

finite subcover because if this is not true, i.e. ϕn has a finite subcover of R, say T, then T can be

expressed in the from T = {(−n1, n1), (−n2, n2), . . . , (−nk, nk)}. Thus, we have R =
⋃n

i=1, (−ni, ni).

Now, if we let M = max{n1, n2, n3, . . . , nk}, then ni ≤ M and −n ≥ −Mm for all i = 1, 2, . . . , k.

Therefore, we obtain R =
⋃ni=1(−n, n) ⊆

⋃n
i=1(−M, M) = (−M, M), and so we have R ⊆ (−M, M),

which is a contradiction. Thus, ∃ a nigh-open cover of R that has no finite subcover of R. Hence,

(R, ηu) is not a nigh-compact space. �

Example 3.2. Every [c, d] is a nigh-compact space in (R, ηu).

Proof. Suppose not! That is [c, d] is not nigh-compact. Then, there is a nigh-open cover of [c, d], say

U, for which it has no finite subcover of [c, d]. Due to [c, d] = [c, c+d
2 ] ∪ [ c+d

2 , d], then either [c, c+d
2 ]

or [ c+d
2 , d] can not be covered by finite members of U. Now, as [c1, d1] = [c1, c+d

2 ] ∪ [ c+d
2 , d1], then

either [c1, c+d
2 ] or [ c+d

2 , d1] can not be covered by finite members of U. Suppose that [c1, d1] is one

of these so that it can not be covered by finitely numbers of U. Then, we have b2 − a2 = 1
22 (c, d).

If we continue by the argument, we get {[cn, dn]}n=1∞ , which is a sequence of intervals for which

[cn, dn] can not be covered by finitely number members of U, for all n = 1, 2, . . .. Consequently,

we have dn − cn = c−d
2n → 0 as n→ ∞. Therefore, by the cantor nested intervals theorem, we have

Γp ∈
⋂
∞

i=1[cn, dn], and so p ∈ [cn, dn], for all n = 1, 2, . . .. Since p ∈ [a, b], then O is a nigh-open

interval for which p ∈ O ⊆ [c, d], where O ∈ U and O = (p − t, p + t) for which t > 0. Hence, we

obtain p ∈ (p− t, p + t), and by taking n as large as enough for which 1
2n < t, we get p ∈ [cn, dn] by

one of member of U, which is a contradiction! Frorm this discussion, the desired result hold. �

Corollary 3.1. Every finite space is nigh-compact.

Proof. Let (κ, η) be a finite topological space and let W = {wξ}ξ∈δ be a nigh-open cover of κ. Then,

for all x in κ, ∃ Γξ ∈ δ for which x ∈ wξ. Define O = {wξt : t = 1, 2, . . . , n, ξ ∈ δ}. Then, O is finite

and κ =
⋃n

t=1 Wξt . Hence, O is a finite subcover of κ, and so κ is nigh-compact. �

Example 3.3. (κ, ηco f ) is a nigh-compact space.
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Proof. Let U = {uξ}ξ∈δ be a nigh-open cover of κ. Then, uξ is a nigh-open in κ for every ξ ∈ δ.

Consequently, uξ is a nigh-open set in κ. Thus, κ − uξ is a finite set, and hence, by the previous

corollary, it is nigh-compact. So, every nigh-open cover of κ − uξ has a finite subcover of κ − uξ.

But U is a nigh-open cover of κ, and so U is a nigh-open cover of κ− uξ, say {ui}
m
i=1. Hence, κ− uξ

as κ− uξ ⊆ κ. Therefore, U has a finite subcover that covers κ− uξ, say {ui}
m
i=1. Therefore, we have

κ−uξ =
⋃m

i=1 ui, which implies κ = (
⋃m

i=1 ui)∪uξ. Therefore, κ has a subcover B = {u1, . . . , um, uξ},
and so κ is nigh-compact. �

Corollary 3.2. Every subspace of (κ, ηco f ) is nigh-compact.

Proof. Since every subspace of (κ, ηco f ) is a co-finite topological space, then by previous theorem,

we can infer that every subspace of a co-finite topological space is compact. �

Example 3.4. (R, ηdis) is not nigh-compact.

Proof. Let V = {{x} : x ∈ R}. Due to R is defined by ηdis, then {x} is nigh-open in R. Therefore, V is

a nigh-open cover of R. Now, let V́ ⊂ V, i.e. V́ is proper in V, then Γy ∈ R and y < V́. Therefore,

V́ is not a nigh-cover of R, and so V́ is not a subcover of V. Thus, V has no finite subcover which

contradicts 1! Therefore, (R, ηdis) is not nigh-compact. �

Theorem 3.9. The set E of real numbers is nigh-closed and bounded if and only if the set E is nigh-compact.

Proof. Consider E ⊆ R is nigh-compact, then, for all e ∈ E, we get e ∈ (e − 1, e + 1) = ue : ue is

nigh-open in R. Then, {ue : e ∈ E) is a nigh-open cover of E, and because of E is nigh-compact,

then E ⊆
⋃n

i=1 uei . As a result, Γe1, e2, . . . , en ∈ E for which ei ∈ uei , for all i = 1, 2, . . . , n. Now, let

M = max{e1, e2, . . . , en} and m = min{e1, e2, . . . , en}. Then, we have E ⊆
⋃n

i=1 uei ⊆ [m − 1, m + 1],

and so E is bounded. In this regard, since E is nigh-compact in T2-space, then E is nigh-closed.

Conversely, suppose E is nigh-closed and bounded in R for which E is bounded, then E ⊆ [a, b] for

some a ≺ b in R. Due to E is closed in nigh-compact subset [a, b], then E is nigh-compact. �

Definition 3.8. [8] Let A be a family of subsets of κ and (κ, η) be a topological space. If the intersection of
the finite number of members set A is not empty, we say that A has a finite intersection property ( f .i.p.).

Theorem 3.10. [1] If (κ, η) is a topological space, then κ is a nigh-compact space if and only if ( f .i.p) has
a non-empty intersection for every family of a nigh-closed subset of κ.

Proof. ⇒) Consider κ is a nigh-compact space. If we assume that ∃ a family of closed subsets of κ,

say F = {Fα : α ∈ β}, with f .i.p for which
⋂
α∈β Fα = φ, then we have⋃

α∈β

(κ− Fα) = κ−
⋂
α∈β

(Fα) = κ.

Due to Fα is a nigh-closed set in κ for all α ∈ β, then κ − Fα is a nigh-open set in κ for all α ∈ β.

Thus, U = {κ− Fα : α ∈ β} is a nigh-open cover of κ, and hence by compactness of κ, U has a finite

subcover of κ. As a result, we have κ =
⋃n

i=1(κ − Fi) = κ −
⋂n

i=1 Fi, and so φ =
⋂n

i=1 Fi, which is
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a contradiction with F has f .i.p. Therefore, we can assert that every family of closed subsets of κ

with f .i.p has non empty intersection.

⇐) Suppose that every family of closed subsets of κ with f .i.p has non empty intersection. Now,

if we assume κ is not a nigh-compact space, then ∃ a nigh-open cover of κ, say U = {uα : α ∈ β},

that can not be reduced to a finite subcover of κ. Therefore, we obtain

φ = κ−
⋃
α∈β

uα =
⋂
α∈β

(κ− uα).

Consequently, due to uα is open for all α ∈ β, then {κ− uα : α ∈ β} is a family of nigh-closed subsets

of κ. Consequently, we have the following claim.

Claim: f has f .i.p.

To demonstrate the above statement, we assume it is not true. Then, ∃ u1, u2, . . . , un for which⋂n
i=1(κ − ui) = φ. Thus, we have κ =

⋃n
i=1 ui, and so U has a finite subcover of κ, which is a

contradiction. Hence, F = {κ − uα} has f .i.p, and thus by the assumption
⋂
α ∈ βuα , φ, we can

obtain

κ , κ−
⋂
α∈β

(κ− uα) =
⋃
α∈β

(κ− (κ− uα)) =
⋃
α∈β

uα.

This means that we have κ ,
⋃
α∈β uα, which is contradiction. Therefore, κ is a nigh-compact

space. �

Remark 3.2. Consider a subspace of (κ, η) to be (W, ηw). If there is a finite subcover of W with respect
to Tw for every nigh-open cover of W, then (W, ηw) is a nigh-compact space. Furthermore, (W, Tw) is a
nigh-compact space if and only if each nigh-open cover of W in η has a finite subcover.

Theorem 3.11. Every nigh-closed subset of a nigh-compact space is nigh-compact.

Proof. Suppose that W is a nigh-closed subset in a nigh-compact space κ. Let U = {uα : α ∈ β}

ba a nigh-open cover of W. Then κ = W ∪ (κ −W) =
⋃
α∈β uα ∪ (κ −W) is a nigh-open cover of

κ. Due to κ is a nigh-compact space, then W ∪ (κ −W) can be reduced to a finite subcover, say

κ = (
⋃n

i=1 uαi) ∪ (κ −W). Therefore, we have W =
⋃n

i=1 uαi . Consequently, {uαi : i = 1, . . . , n}
forms a finite subcover of W. Therefore, W is nigh-compact. �

Theorem 3.12. Let W be a nigh-compact subset in T2-space κ. Then for all x < W, we can separate x and
W into two disjoint open sets.

Proof. For all w ∈ W, we have w , x with x < W. Since κ is a T2-space, then ∃ two open subset

uw(x) and v(w) in κ for which x ∈ uw(x) and w ∈ v(w) for which uw(x) ∩ v(w) = φ. Hence,

v = {v(w) : w ∈ W} forms a nigh-open cover of W. But W is nigh-compact. So, V can be reduced

to a finite subcover of W, say {v(w1), v(w2), . . . , v(wn)}. Hence, we obtain W ⊆
⋃n

i=1 V(wΓ) (say

(1)). Therefore, for all V(wk), Γ = 1, . . . , n, there is corresponding open sets uwk(Γ) condoling Γ for

which uwk(Γ) ∩ v(wk) = φ (since κ is a T2 − space). Now, let u =
⋂n

k=1 uwk , then Γ ∈ u for which

u is an open set in κ and u∩V(wΓ) = φ, for all k = 1, . . . , n. Also, for all Γ = 1, . . . , n, we obtain
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u ⊆ uwΓ(Γ). Thus, we have u ∩Uv ⊆ uwk(Γ) ∩ v(wΓ) = φ, which implies u ∩V(wk) = φ, for all

k = 1, . . . , n. Hence, we get (u ∩Uv(w1)) ∪ (u ∩Uv(w2)) ∪ . . . ∪ (u ∩Uv(wn)) = φ, which gives

u
⋃n

k=1 V(ak) = φ. Now, we let V =
⋃k

n=1 v(wk). Then, V is a nigh-open set as it is a union of finite

nigh-open sets in Γ. Now, with the use of (1), we get A ⊆ V, and so Γ has two nigh-open sets u and

v in κ for which Γ ∈ u and W ⊆ v with u∩ v = φ. �

Theorem 3.13. Given a T2-space κ, let A and B be two disjoint nigh-compact subsets. After that, A and B
can be divided into two disjoint near-open sets in κ.

Proof. For all x ∈ A, we have x < B. Due to A∩ B = φ, then by the previous theorem, ∃ two nigh-

open sets uΓ and vΓ in κ for which x ∈ uΓ and B ⊆ vΓ with uΓ ∩ vΓ = φ. Hence, U = {uΓ : Γ ∈ A}
forms a nigh-open cover of A. But A is compact, then U can be reduced to a finite subcover, say

{uΓ1 , uΓ2 , . . . , uΓn}. Thus, we obtain A ⊆
⋃n

i=1 uΓi . Now, let u =
⋃n

i=1 uΓi . Then, u is a nigh-open

set in κ with A ⊆ u (say (1). In this regard, there is a corresponding set VΓi for which B ⊆ VΓi , for

all uΓi with i = 1, 2, . . . , n. Thus, we have B ⊆
⋂n

i=1 VΓi , which implies that V is a nigh-open set

and B ⊆ V (say (2)). Now, due to uΓi ∩ vΓi = φ, for all i = 1, 2, . . . , n, then
⋃n

i=1 uΓi ∩VΓi = φ, for

all i = 1, 2, . . . , n. Thus, we get u ∩ vΓi = φ, for all i = 1, 2, . . . , n. But V =
⋂n

i=1 VΓi ⊆ VΓi , for all

i = 1, 2, . . . , n. This consequently implies that u ∩ v ⊆ VΓi ∩ u = φ. Hence, v ∩ u = φ (say (3)).

Therefore, by (1), (2) and (3), we can infer that Γ is a nigh-open set for which u and v are in Γ for

which A ⊆ u and B ⊆ v with u∩ v = φ. �

Theorem 3.14. Every nigh-compact T2-space is a T4-space.

Proof. Consider κ is a nigh-compact T2-space. Then, κ is a T1-space (say (1)). Assume that A and

B are two nigh-closed disjoint subsets of κ. Due to κ is a nigh-compact space, then A and B are

nigh-compact. This implies that A and B are two nigh-compact subsets of T2-space. Hence, by

the previous theorem, we can separate A and B into two disjoint nigh-open sets. So, κ is normal.

Consequently, by (1) and (2), we can confirm that κ is a T4-space. �

Theorem 3.15. Every nigh-compact subset of a T2-space is nigh-closed.

Proof. Suppose that A is a nigh-compact subset of a T2-spaceκ. Let x < A, then by previous theorem,

∃ two nigh-open sets U and V in κ for which x ∈ U and A ⊆ V with U ∩ V = φ. So, we have

U ⊆ κ −V, and since A ⊆ V, we can obtain κ −V ⊆ κ −A. Thus, we have x ∈ U ⊆ κ −V ⊆ κ −A,

which means that x ∈ U ⊆ k − A. Consequently, due to U is a nigh-open set, then κ − A is a

nigh-open set, and so A is nigh-closed. �

Theorem 3.16. [9] Every subset of a nigh-compact T2-space is nigh-compact if and only if it is nigh-closed.

Proof. ⇒) Suppose that A is a nigh-compact set in a nigh-compact T2-space κ. Then, A is a nigh-

compact in a T2-space κ. So by previous theorem, A is nigh-closed.

⇐) Suppose that A is nigh-closed in a nigh-compact T2-space. Then, A is nigh-closed in a nigh-

compact space κ. Thus by previous theorem, A is nigh-compact. �
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Theorem 3.17. Let (κ, η) be a T3-space κ. If A is a nigh-compact subset of κ for which A ⊆ u, for some
nigh-open set u, then ∃ a nigh-open set V ∈ κ for which A ⊆ V ⊆ V̄ ⊆ u.

Proof. For all x ∈ A, we have x ∈ u. Since κ is a regular space, then by the previous theorem, there

is a nigh-open set Vx for which A ⊆ V ⊆ V̄ ⊆ u (say (1)). Hence, V = {VX : X ∈ A} is a nigh-open

cover of A, Consequently, due to A is nigh-compact, then we can reduce V to a finite subcover of

A, say {uΓ1 , uΓ2 , . . . , uΓn . Therefore, we obtain A ⊆
⋃n

i=1 u = u. Now, let V =
⋃n

i=1 VΓi , then we

have A ⊆ V ⊆ V̄ ⊆ u. Also, if we let V =
⋃n

i=1 VΓi , then we get A ⊆ V ⊆ V̄ ⊆ u as required. �

Theorem 3.18. [9] The nigh-compactness property is preserved under onto continuous function.

Proof. Consider κ is a nigh-compact space and f : κ → γ is onto continuous function. To prove

that γ is nigh-compact, we first assume U = {uα : α ∈ β} is a nigh-open cover of γ. Then, uα is

a nigh-open set in γ, for all α ∈ β. Due to f is continuous, then f−1(U) = { f−1(uα) : α ∈ β} is a

nigh-open cover of κ. Since κ is nigh-compact, then f−1(U) can be reduced to a finite subcover of

κ. Therefore, we have

γ = f (κ) = f (
n⋃

i=1

f−1(uαi)) =
n⋃

i=1

uαi .

Hence, {uα1 , . . . , uαn} is a finite subcover of U, which consequently implies that γ is nigh-compact.

�

Corollary 3.3. The nigh-compactness is a topological property.

Proof. Consider f : κ→ γ is a homomorphism function and κ is a nigh-compact space. Then, f is

continuous and onto function. Thus by the above theorem, we can assert that γ is nigh-compact,

and this proves that the compactness is a topological property. �

Example 3.5. The set (0, 1) is not nigh-compact in (R, ηu).

Proof. Since (0, 1) � (−1, 1) by a function f : (0, 1)→ (−1, 1) for which f (Γ) = 2Γ− 1, ( f is bijection

homeomorphism f : (−1, 1)→ R for which f (Γ) = tan(π2 Γ)), then by the transitive of the relation

�, we conclude that (0, 1) � R. Now, due to (R, ηu) is not nigh-compact, then (0, 1) with the usual

topology is not a nigh-compact set. �

Theorem 3.19. [2] Let f : κ→ γ be a bijective continuous function and κ is a nigh-compact γ T2-space,
then f is a homeomorphism function.

Proof. Consider F is a nigh-closed subset of κ. Because of κ is a nigh-compact space, then by the

previous theorem, F is nigh-compact in κ. Due to f is continuous and onto, then f preserves the

compactness property. Hence, f (F) is nigh-compact in γ, and since γ is a T2-space, then f (F) is

nigh-closed in γ. As a result, f is nigh-closed. Consequently, due to f is continuous, then f is a

homeomorphism function. �

Definition 3.9. [3] A function f : κ → γ is called a perfect function if f is a nigh-closed continuous
function and f−1(y) is nigh-compact in κ, for all y ∈ γ.
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Theorem 3.20. [11] If f : κ→ γ is a perfect function and γ is nigh-compact, then κ is nigh-compact (i.e.,
the compactness property is an inverse invert under a perfect function).

Proof. Consider U = {uα : α ∈ β} is a nigh-open set of κ. Since we have f−1(y) ⊆ κ, then U is a nigh-

open cover of f−1(y), f orally ∈ γ. But f−1(y) is nigh-compact. Thus, U can be reduced to a finite

subcover of f−1(y), say {uα}α, for which βy ⊆ β and βy is finite. Hence, we obtain f−1(y) ⊆
⋃
α∈β uα,

and so f−1(Y) ∩ (K −
⋃
α∈β uα) = φ is nigh-open in Y. Due to

⋃
α∈β uα is a union of finite members

of U, then U a nigh-open cover of κ. Thus, F(Γ −
⋃
α∈β uα) is nigh-closed. Now, we have for all

y ∈ γ, y ∈ Oy for which Oy can be reduced to a finite subcover of γ, say {Oy1 , Oy2 , . . . , Oyn}. Hence,

we obtain γ ⊆
⋃n

i=1 Oyi , which implies that

k ⊆ f−1(γ) =
n⋃

i=1

f−1(Oyi =
n⋃

i=1

f−1(γ− f (k−
n⋃

i=1

uαi =
n⋃

i=1

uαi

for which 1 ≤ i ≤ n. Thus, {uΓi} is a subcover of a nigh-open cover Γ that covers Γ, and hence Γ is

nigh-compact. �

Definition 3.10. For all y ∈ γ, the set { f−1(y) : y ∈ γ} is called filter of f . Hence, the function f : Γ→ δ

is called perfect if and only if f is nigh-closed and continuous with nigh-compact filter.

Theorem 3.21. Let κ be a nigh-compact space. Then, the projection p : κ× γ→ γ is nigh-closed.

Proof. Let y ∈ γ and O be a nigh-open set in κ× γ for which p−1(y) = κ× {γ} ⊆ O. By the previous

theorem, there is a nigh-open set v in γ that contains y for which f−1(V) ⊆ O. Due to O is a

nigh-open set of κ × γ, then for all (x, y) ∈ κ × {γ}, there are two nigh-open basic sets uκΓ and vyκ

in κ and γ respectively for which (x, y) ∈ uκ ×Vyκ ⊆ O. Hence, U = {ux : x ∈ κ} forms a nigh-open

cover of κ. But κ is nigh-compact, so U can be reduced to a finite subcover, say {ux1 , ux2 , . . . , uxn}.

Hence, for all uxi , i = 1, 2, . . . , n, there is a corresponding Vyx for which y ∈ V. Therefore, we

have p−1(V) = κ × {γ} ⊆ u × V ⊆ O. As a result, we have p−1(V) ⊆ O, which implies that p is

nigh-closed. �

Theorem 3.22. Let κ and γ be two arbitrary spaces and f : κ→ γ be a function for which f is a nigh-closed
subset of κ× γ. If B ⊆ γ is nigh-compact, then f−1(B) is nigh-closed in κ.

Proof. To show that f−1(B) is nigh-closed in κ, it is enough to show that κ− f−1(B) is open in κ. To

this end, we let x ∈ (κ − f−1(B)). Then, we have f (x) ∈ (γ − B), and so we obtain f (x) < B. This

implies x < f−1(B) (say (1)). Now, for all b ∈ B, we have (x, b) < f . Due to f is a nigh-closed subset

of κ × γ, then (x, b) ∈ (κ × γ) − f is a nigh-open set of κ × γ. Also, since f is a nigh-closed subset

of κ × γ, then there are two nigh-open basic sets ub(x) and v(b) in κ and γ respectively for which

(x, b) ∈ ub(x) × v(b) ⊆ (κ× γ) − f . Consequently, for all z ∈ κ, we have (z, f (z)) < ub(x), because if

this is not hold, then (z, f (z)) ∈ (κ×γ)− f . Therefore, we get (z, f (z)) < f , which is a contradiction.

Now, V = {v(b) : b ∈ B} is a nigh-open cover of B, and since B is nigh-compact, then it can be

reduced to a finite subcover, say {v(b1), v(b2), . . . , v(bn)}. Also, for all v(bi), i = 1, 2, . . . , n, there is
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a corresponding ubi(x) for which x ∈ Ubi(x). In this regard, we let U(x) =
⋃n

i=1 ubi , and so U(x)
is a nigh-open set in κ with x ∈ U(x). Therefore, we have U(x) ∩ f−1(B) = φ, and consequently

x ∈ u(x) ⊆ κ − f−1(B). Hence, due to u(x) is nigh-open in κ, then κ − f−1(B) is nigh-open. Thus,

f−1(B) is nigh-closed in κ. �

Theorem 3.23. [7] Let κ be an arbitrary space and γ be a nigh-compact space. If f : κ→ γ is a nigh-closed
subset of κ× γ, then f is continuous.

Proof. Let B be a nigh-closed subset in γ. Due to γ is nigh-compact, then by the previous theorem,

B is nigh-compact in γ (ad any nigh-closed subset of a nigh-compact space is nigh-compact).

Therefore, by the previous theorem, f−1(B) is nigh-closed, and hence f is continuous. �

Theorem 3.24. [7] Let κ and γ be two nigh-compact spaces. Then, κ× γ is a nigh-compact space.

Proof. Define a projection function py : κ × γ → γ as py(x, y) = y. Then, it is clear that py is

continuous and surjective function. Since κ is nigh-compact, then py is a nigh-closed function.

Consequently, due to for all y ∈ γ, we have p−1(y) = κ× {y} � κ and κ is compact, then py is a nigh-

closed continuous function with nigh-compact fibers. Therefore, f is perfect function, and since

γ is nigh-compact, then by the previous theorem, κ × γ is nigh-compact too (as the compactness

property is an inverse inerrant under perfect function). �

3.3. Nigh-locally compact space. This subsection describes the so-called nigh-locally compact

space and examines its features by presenting some new results and theorems.

Definition 3.11. A topological space (κ, η) is said to be a nigh-locally compact space if for all γ ∈ κ, ∃ a
nigh-open set uγ in κ containing γ for which ūγ is nigh-compact.

Example 3.6. The topological space (R, ηu) is a nigh-locally compact space, but it is not nigh-compact.

Proof. To prove this example, we should consider the following states:

• Observe that R is a nigh-locally compact space as for all Γ ∈ R, we have open intervals

u = (Γ − 1, Γ + 1) for which ū = [Γ − 1, Γ + 1] is nigh-compact.

• On the other hand, one may notice that R is not nigh-compact, as there is a nigh-open cover

ϕn = {(−n, n) : n ∈ N} of R that has no finite subcover, because if this is not true (i.e., ϕn

has a finite subcover of R, say %), then % forms σ = {(−n1, n1), (−n2, n2), . . . , (−nk, nk)}, and

thus R =
⋃n

i=1(−n, n).

�

Theorem 3.25. Every nigh-locally compact T2-space is Tychonoff space.

Theorem 3.26. Let κ be a nigh-locally compact T2-space and A be a nigh-compact subset of κ. If A ⊆ V
for which V is a nigh-open set in κ, then ∃ a nigh-open set u in κ for which A ⊆ u ⊆ ū ⊆ V and ū is
nigh-compact in κ.
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Proof. Assume that κ is a nigh-locally compact T2-space. Then, κ is a Tychonoff space, and so it is

a T3-space. Consequently, κ is a regular space. Thus, for all x ∈ A, we have x ∈ v. Consequently,

since V is an open set, then ∃ a nigh-open set VX in κ for which x ∈ vx ⊆ v̄x ⊆ V. Now, due to κ

is a nigh-locally compact space, then there is a nigh-open set wx for which x ∈ wx for which w̄x is

nigh-compact. Thus, we have x ∈ vx ∩wx = ux, which is a nigh-open set in κ. Hence, {ux : x ∈ A}
forms a nigh-open cover of A. As a result, since A is nigh-compact, then A ⊆

⋃n
i=1(uxi) = u for

which u is a nigh-open set in κ. Therefore, we obtain uxi = vxi ∩wxi , for all i = 1, 2, . . . , n. Thus, we

have ūxi ⊆ w̄xi . Now, due to every nigh-closed set in a nigh-compact space is nigh-compact, then

uxi is nigh-compact as w̄xi . Because of any finite union of a nigh-compact space is nigh-compact,

then
⋃n

i=1(ūxi =
⋃n

i=1(uxi) = ū is compact. Hence, we have A ⊆ u ⊆ ū. But uxi = vxi ∩wxi , and so

ūxi ⊆ v̄xi . Therefore, ¯uxi ⊆ vxi , for all i = 1, 2, . . . , n. Thus, we get

ū =
¯n⋃

i=1

(uxi) =
n⋃

i=1

¯(uxi) ⊆

n⋃
i=1

(v̄xi) ⊆ V,

as v̄xi ⊆ V. �

Theorem 3.27. Let κ be a nigh-locally compact space. Then, any subspace of the form f ∩ V of κ is
nigh-locally compact in κ, where f is nigh-closed and V is a nigh-open set in κ.

Proof. To prove this result, we should consider the following states:

• To show that the nigh-locally compactness is hereditary with respect to a nigh-open set,

we let V be a nigh-open set in a nigh-locally compact space κ. Now, to show that V is

nigh-locally compact, we let x ∈ v. Then, we have x ∈ κ, and since κ is a T3-space, then

it is regular. Also, since V is a nigh-open set, then ∃ a nigh-open set u in κ for which

x ∈ u ⊆ ū ⊆ v. Consequently, since κ is a nigh-locally compact space, then ∃ a nigh-open

set W in κ for which x ∈ W for which W̄ is nigh-compact. Thus, we have x ∈ u∩W = M,

where M is a nigh-open set in V. Due to M ⊆ u and u ⊆ V, then M ⊆ V and M ⊆ W. Thus,

we have M̄ ⊆ W̄. Consequently, due to W̄ is nigh-compact for which M̄ is nigh-closed in

W̄, then M̄ is nigh-compact. Thus, for all x ∈ V, ∃ an open set M containing x for which M̄
is nigh-compact. Therefore, V is nigh-locally compact.

• To show that the locally compactness is hereditary with respect to the closed set, we let

F be a nigh-closed set in a nigh-locally compact space κ. Also, we let x ∈ F, then x ∈ κ.

Due to κ is nigh-locally compact, then F ∩W and ¯F∩WF
= ¯F∩W ∩ F = F ∩W ⊆ W̄. So,

∃ a nigh-open set F ∩W for which F ∩WF is nigh-compact. Therefore, F is nigh-locally

compact.

• To show that every subspace F∩V of a nigh-locally compact space is nigh-locally compact,

where F is a nigh-closed set and V is a nigh-open set in κ, we should note that due to F
is nigh-locally compact. Then, and by the previous part, we observe that the nigh-locally

compactness is hereditary with respect to nigh open sets. Therefore, F∩V is nigh-locally

compact in F, and so it is in κ.



Int. J. Anal. Appl. (2024), 22:146 17

�

Theorem 3.28. Every nigh-locally compact dense subspace M of aT2-space κ is nigh-open in M̄, (i.e., every
nigh-locally compact subspace M of a T2-space κ can be represented as M = F∩V, where F is nigh-closed
and V is nigh-open in κ).

Proof. To prove this result, it is enough to show that every nigh-locally compact dense subspace

M of κ is nigh-open in M = k. To this end, we let x ∈ M. Now, due to M is nigh-locally compact,

then ∃ a nigh-open set u in M for which x ∈ u for which u ∈ M is nigh-compact in M, and so it

is nigh-compact in κ. Now, since κ is a T2-space, then by the fact that asserts every nigh-compact

subset of T2-space is nigh-closed, we have ū ∈ M is nigh-closed in κ for which u ⊆ ū for which

u ⊆ M. Thus, we have u ⊆ ū∩M (say (1)). In the same regard, due to u is a nigh-open set in M,

then ∃ a nigh open W in κ for which u = W ∩M. But x ∈ u, and so x ∈ W. This implies that

x ∈ W ⊆ W̄ = ¯W ∩ κ = ¯W ∩ M̄ = ¯W ∩M (since W is a nigh-open set in κ). Thus, by the previous

theorem that says if T nigh-open in κ, then T ∩ Ā = ¯T ∩A, for all A ⊆ κ), we have x ∈ W ⊆ M.

Also, since W is nigh-open in κ, then M is nigh-open in k = M̄, which completes the proof of this

result. �

Corollary 3.4. Every subspace M of a nigh-locally compact space κ is nigh-locally compact if and only if
M can be written as M = V ∩ F, where V is nigh-open and F is nigh-closed in κ.

Corollary 3.5. A space κ is nigh-locally compact if and only if it is homomorphic to a nigh-open subspace
of a nigh-compact space.

Proof. ⇒) Suppose κ is a nigh-locally compact space. Then, κ is Tychonoff. As every Tychonoff

space is emendable in a nigh-compact space (i.e., every Tychonoff space is homomorphic to a

nigh-open subspace in a nigh compact space), then κ is homeomorphic to a nigh-open subspace

in a nigh compact space.

⇐) Suppose that κ is homeomorphic to a nigh-open subspace in a nigh compact space. Then, it is

clear that κ is a nigh-locally compact space. �

Theorem 3.29. Let f : κ→ γ be a continuous nigh-open function and γ be T2-space. If κ is a nigh-locally
compact space, then γ is nigh-locally compact.

Proof. Let y ∈ γ and Γ ∈ f−1(y). Then, we have Γ ∈ κ. Now, due to κ is a nigh-locally compact

space, then ∃ a nigh-open set u in κ for which Γ ∈ u for which ū is nigh-compact. Consequently,

as f : κ → γ is nigh-open, then f (U) is also nigh-open in γ for which y ∈ f (U) is continuous

in γ. In the same regard, due to the compactness is preserved under continuity, then f (ū) in γ.

Consequently, due to γ is a T2-space, then ¯f (u) is nigh-closed in γ. Thus, we obtain f (ū) = ¯f ( ¯ )u.

But u ⊆ ū, and so f (u) ⊆ (ū). Hence, ¯f (u) ⊆ bar f (ū = f (ū is nigh-compact in γ for which ¯f (u) is

nigh-compact. Therefore, for all y ∈ γ, we have Γ is a nigh-open set for which f (U) in γ and ¯f (u)
is nigh-compact. Hence, γ is nigh-locally compact. �
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Definition 3.12. A space κ is called κ-space if for all nigh-closed (open) subset in κ, we have A ∩ Z is a
subset in every nigh compact subspace Z of κ.

Theorem 3.30. Every nigh-locally compact space is a κ-space.

Proof. Suppose that κ is a nigh-locally compact space and A ∩ Z is an open set in every nigh-

compact subset Z of κ. To show that κ is κ-space, it is enough to show that A is a nigh-open set in

κ. For this purpose, we let a ∈ A, then we have a ∈ κ. Now, since κ is a nigh-locally compact space,

then ∃ a nigh-open set V in κ for which a ∈ V for which V̄ is nigh-compact. Hence, we obtain

A ∈ V̄, and hence it is nigh-open in κ. But A∩V = A∩ (V̄ ∩V) = (A∩V) ∩V is nigh-open in κ.

Therefore, we have a ∈ A, a ∈ V, and so a ∈ (A ∩V) ⊆ A. This implies that A is a nigh-open set,

and hence κ is κ-space. �

Definition 3.13. • A space κ is called Frechet space if and only if for all A ⊆ κ and for all a ∈ Ā, ∃
an ∈ A for which an → a.
• A space κ is called sequential space if and only if a subset A of κ is nigh-closed if and only if for all
(an) ∈ A for which A contains its limit.

Theorem 3.31. Every first countable space is a κ-space.

Proof. Suppose that κ is a first countable space. Let A ⊆ Z be nigh-closed in every nigh-compact

subset Z of κ. To show that κ is a κ-space, it is enough to show that A is nigh-closed in κ. For this

goal, we let a ∈ Ā. Now, due to every first countable space is a Frechet space, then ∃ (an) ∈ A for

which an → a. Hence, an ∪ a is a nigh-compact subset of κ. Thus, A∩ ((an)∪ a) is closed in (an)∪ a,

and so a ∈ A. This implies Ā ⊆ A. But A ⊆ Ā, and so Ā = A. Therefore, A is a nigh-closed set,

which means that κ is κ-space. �

Theorem 3.32. Every Frechet space is a sequential space.

Proof. Suppose that κ is a Frechet space. To show that κ is a sequential space, it is enough to show

that A is a nigh-closed set in κ if and only if for all (an) ∈ A, we have (an) → a, which implies

a ∈ A. So we have the following states: →) Suppose that A is a nigh-closed set in κ and (an) ∈ A
for which an → a. Then, for all nigh-open set u in κ containing a, we have Γm ∈N for which an ∈ u,

for all n ≥ m. Thus, we have an ∈ u for which an ∈ A, for all n ≥ m. This implies that A∩ u , φ,

and since a ∈ u for which u is a nigh-open set in κ, then a ∈ Ā = A as A is nigh-closed.

←) Suppose that the condition here is hold. To show that A is a nigh-closed, we let a ∈ Ā. Now,

since κ is a Frechet space, then ∃ an ∈ A for which an ∈ A for which an → a. Hence, by the condition

assumed, we conclude that a ∈ A, and so Ā ⊆ A. But A ⊆ Ā, and so Ā = A. Hence, A is a

nigh-closed set. �

Theorem 3.33. Every T2-sequential space is a κ− space.

Proof. Suppose that κ is a T2-sequential space. To show that κ is a γ-space, we suppose that A∩Z
is a nigh-closed set in every nigh-compact subset Z. Also, to show that κ is a γ-space, it is enough
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to show that A is a nigh-closed set. For this purpose, we assume not! (i.e., we assume that A is not

a nigh-closed set). Now, since κ is a sequential space, then ∃ (an) ∈ A for which an → a and a < A.

Thus, if we assume that z = {a, a1, a2, . . . , an} = (an) ∪ {a}, then Z is nigh-compact. Consequently,

we have A∩ ((an) ∪ {a}), which implies that z is nigh-closed (say (1)). In the same regard, due to

κ is a T2-space, then Z � A(w0). Therefore, a is a unique cluster point of (an). As a result, since

a < A, we obtain A∩ Z = A∩ (an) ∪ {a}, which is not a nigh-closed set, and this is a contradiction

with (1). Hence, A is a nigh-closed set, which implies that κ is a γ-space. �

Corollary 3.6. Let κ be a sequential space. Then, f : κ → Y is continuous function if and only if
f (lim xi) ⊆ lim f (xi).

Proof. Suppose that f : κ→ Y is a continuous function and x ∈ lim f (xi). To show that f (lim xi) ⊆

lim f (xi), it is enough to show that f (x) ∈ lim f (xi). For this goal, we let V be a nigh-open set γ for

which f (x) ∈ V. Then, x ∈ f−1(V) is a nigh-open set in κ. Due to f is continuous and x ∈ lim f (xi),

then∃m ∈N for which xi ∈ f−1(V), for all i , m. Also, since f (x) ∈ V for which V is a nigh-open set

in γ, then f (xi)→ f (x). Hence, we have f (x) ∈ lim f (xi), and so f (lim xi) ⊆ lim f (xi). Conversely,

we suppose that f (lim xi) ⊆ lim f (xi). Here, we want to show that f : κ → Y is continuous. To

this end, we let A be a nigh-closed set in γ. So, it is enough to show that f−1(A) is nigh-closed in

κ. Now, by using the definition of the sequential space that says "A space κ is sequential if T is

nigh-closed in κ if and only if for all (tn) ∈ T, tn → t, we have T ∈ t", we let xi ⊆ f−1(A)andxi → x
(i.e., x ∈ limxi). Thus, we have the following claim:

claim: x ∈ f−1(A).

To prove this claim, we should note that x ∈ lim xi. Then, by the assumption f (xi) → f (x), we

have f (x) ∈ f (lim xi) ⊆ lim f (xi). So, if we assume that u is nigh-open in γ, we obtain f (x) ∈ u.

Consequently, ∃ m ∈ N for which f (xi) ∈ u, for all i ≥ m. But xi ⊆ f−1(A), and so f (xi) ∈ A,

∀i = 1, 2, . . .. This implies u∩A , φ, and since f (x) ∈ u for which u is a nigh-open set in γ, then

f (x) ∈ Ā = A. Now, due to A is nigh-closed, then we have x ∈ f−1(A). As a result, since κ is a

sequential space, then f−1(A) is nigh-closed in κ. Therefore, f is continuous. �

Corollary 3.7. If every sequence in κ has at most one limit, then κ is a T1-space. Moreover, if κ is a first
countable space, then κ is a T2-space.

Proof. Assume that κ is not a T1-space. Then, if we assume that x , y implies that any open set u
can contain x, y ∈ u, we infer that yn = y, for n = 1, 2, . . .. Therefore, we have (yn)→ y, and so for

all nigh-open set u containing y, we have x ∈ u. Therefore, we have yn → x. Consequently, due to

every sequence in κ has at most one limit, then we have x = y, which is a contradiction with x , y.

Hence, κ is T1-space.

�
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4. Conclusion

This study has introduced the concept of a topological space that is nigh-locally compact. The

definitions of "nigh-compact space" and "nigh-topological space," as well as a number of other

deductions and theorems, have been presented in order to accomplish that goal.
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