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Abstract. The main objective of this research paper is to introduce the concept of nigh Lindelöfness in topological spaces

and nigh topological spaces. This has led us to establish several generalizations and properties of nigh Lindelöf space

that are related to the nearly nigh Lindelöf space, the nigh compactness in topological spaces, and their relations with

other spaces. Several examples are discussed, and many well-known theorems are generalized concerning the nigh

Lindelöf spaces.

1. Introduction

The Greek word topology means "the study of place". Although this well-defined field of

mathematics first appeared in the early 20th century, it has taken many decades before any distinct

conclusions were discovered [1–4]. Leonhard Euler is credited with being the first to apply

topology in practice when he published his first work on the Seven Bridges of Königsberg in 1736.

Augustin-Louis Cauchy, Johann Benedict Listing, Enrico Betti, Ludwig Schlafly, and Bernhard

Riemann all contributed extra. Listing first used the term "topology" in his 1847 German work

Vorstudien zur Topology. Listing’s Funerary in the journal Nature in 1883 distinguished between

"qualitative geometry and ordinary geometry" using the English term "topology."

Open cover is crucial in establishing a new class of sets in compact spaces, as well as certain key

topological properties of these new ideas [5, 6]. Tong defined and explored a new compact space

known as the nigh-compact space in 1982 by introducing the idea of the nigh sets employing open

sets. Later, in 1997, Caldas defined the notions of s-compact space using semi-open sets. We obtain

the implications of these new s-compact spaces with each other and with the standard s-compact

space. In 2001, Jafari defined p-compact space using p-open sets and provided an introduction to
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the ideas involved. It is obtained the relation between various kinds of tiny spaces. Using the

concept of α-open sets, the topologists Caldas et al. defined α-compact space in 2003.

This study aims to present the notion of nigh Lindelöfness in nigh topological spaces and

topological spaces. This has allowed us to develop a number of features and generalizations of

nigh Lindelöf space that have connections to nigh compactness in topological spaces, almost nigh

Lindelöf space, and their relationships with other spaces. In relation to the near Lindelöf spaces,

several well-known theorems are generalized and several examples are explored. The organization

of this paper is given as follows: In the second section, we study the compact space as well as

the locally compact space, studying their main theorems and examples of them. In section three,

we study nigh Lindelöf space, discuss theorems and examples on it, and study the relationship

between it and Lindelöf topological space. In section four, we include some theorems and several

examples of nigh-nearly Lindelöf space and study the relation between it and nigh-Lindelöf space.

Finally, we provide the conclusion of this work in the last section.

2. Preliminaries

We list the most crucial concepts and foundational theorems required for our investigation in

this section. We also extract some additional useful results to finish our investigation.

Definition 2.1. [7] Let ξ = (ξ,µ) be a topological space and V = {vµ : wµ ⊂ ξ} be a family of subset of
ξ. Then ξ is called a cover of ξ if ξ =

⋃
µ ∈ ξvµ. Also, we have:

• If vµ is an open set in ξ for all µ ∈ ξ and ξ =
⋃
µvξ, then v is called open cover of ξ.

• If µ ∈ v is a cover of ξ, then µ is called subcover of ξ.

Definition 2.2. A topological space ξ = (ξ,µ) is called compact if and only if every open cover of ξ has a
finite cover. Also, if v = {vµ : µ ∈ T, wµ ⊂ ξ} be an open cover of ξ, then ξ is compact.

Theorem 2.1. [8] Any closed bounded subset of R is compact.

Definition 2.3. [8] Given a topological space ξ = (ξ,µ) and a family of subsets A of k, we say that A has a
finite intersection property (f.i.p) if and only if the intersection of the set A with a finite number of members
is not empty.

Theorem 2.2. [8] Let ξ = (ξ,µ) be a topological space. Then ξ is compact if and only if every family of
closed subset of ξ with (f.i.p) has non empty intersection.

Remark 2.1. Let (W,µw) be a subspace of ξ = (ξ,µ). We say (W,µw) is compact if and only if every
open cover of w has a finite sub cover of w with respect to Tw. Observe that (W, Tw) is compact if and only
if every open cover of W has finite subcover in µ.

Theorem 2.3. [9] Let W be a compact subset of T2-space ξ. Then for all x < W, we can separate x and W
in two disjoint open sets.
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Theorem 2.4. [9] Let A and B be two disjoint compact subsets of a T2-space ξ. Then we can separate A
and B in two disjoint open sets in ξ.

Theorem 2.5. [10] Every compact T2-space is T4-space.

Theorem 2.6. [10] Every compact subset of T2-space is closed.

Theorem 2.7. [9] Every subset in compact T2-space is compact if and only if it is closed.

Theorem 2.8. [9] The compactness property is preserved under onto continuous function.

Corollary 2.1. [9] Compactness is topological property.

Theorem 2.9. [11] Let f : ξ → γ be a bijective continuous function and ξ be compact space and γ is a
T2-space. Then f is a homeomorphism function.

Definition 2.4. [11] The function f : ξ → γ is called perfect function if f is closed continuous function
and for all y ∈ γ, f−1(y) is compact in ξ.

Theorem 2.10. [11] If the function f : ξ → γ is a perfect function and γ is compact, then ξ is compact
(i.e. the compactness property is an inverse invert under perfect functions).

Definition 2.5. For all y ∈ γ, the set { f−1(y) : y ∈ γ} is called fibers of f . Hence, a function f : Γ→ δ is
called perfect if and only if f is closed and continuous with compact fibers.

Theorem 2.11. Let ξ be a compact space. Then the projection p : ξ× γ→ γ is closed.

Theorem 2.12. [12] Let ξ and γ be arbitrary spaces and f : ξ → γ be a function such that f is closed
subset of ξ× γ. If B ⊆ γ is compact, then f−1(B) is closed in ξ.

Theorem 2.13. [7] Let ξ be an arbitrary space and γ be a compact space. If f : ξ → γ is closed subset of
ξ× γ, then f is continuous.

Theorem 2.14. [7] Let ξ and γ be two compact spaces, then ξ× γ is compact.

Definition 2.6. [13] The locally compact space ξ is defined as for all γ ∈ ξ, there exists an open set uγ in
Γ containing γ such that ū is compact.

Theorem 2.15. Every locally compact T2-space is Tychonoff space.

Theorem 2.16. Let ξ be locally a compact space and A be a compact subset of ξ. If A ⊆ V for which V open
in ξ, then there exists an open set u in ξ such that A ⊆ u ⊆ ū ⊆ V and ū compact in ξ.

Theorem 2.17. [14] Let ξ be a locally compact space. Then any subspace of the form f ∩V of ξ is locally
compact in Γ, where f is closed and V open in ξ.

Theorem 2.18. Every locally compact subspace M of a T2-space ξ is open in M̄.
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3. Nigh Lindelöf Spaces

In this section, we aim to introduce the concept of nigh Lindelöf spaces, talk about other concepts

that relate to the concept of nigh Lindelöf spaces, and discuss some theories related to this concept.

Definition 3.1. A topological space ξ = (ξ,µ) is called a 2nd-countable space if ξ has a countable base.

Theorem 3.1. If a topological space ξ = (ξ,µ) is 2nd-countable space, then it is nigh Lindelöf space.

Proof. Let ξ be a nigh 2nd-countable space. Then ξ has a countable base B
∼

, say B
∼

= {Bi}
∞

i=1. Let

U
∼

= {uα : α ∈ Λ} be an open cover of ξ. Then uα=union of same members of B
∼

. Now, since B
∼

is a

base of ξ, then uα itself is a union of members of B
∼

. This union of B
∼

is countable subcover of U
∼

,

which covers ξ. Therefore, ξ is nigh Lindelöf. �

Remark 3.1. Every nigh compact space is a nigh Lindelöf space, but the converse need not necessarily be
true.

Proof. Let ξ be a nigh compact space. Then every open cover of ξ has a finite subcover of ξ. Thus,

each open cover of ξ has countable subcover of ξ. So, ξ is a nigh Lindelöf. On the other hand,

to prove that the converse need not be true, we may note that (R, τu) is a nigh Lindelöf space,

which is not nigh compact. Now, since B
∼

=
{
(a, b) : a < b in Q

}
is a countable base of R, then R is

a second countable. Hence, due to each second countable space is Lindelöf, then (R, τu) is nigh

Lindelöf. �

Theorem 3.2. A nigh Lindelöfness is preserved under onto nigh continuous function.

Proof. Let f : (ξ,µ) → (Y, ζ) be a surjective continuous function, and ξ be a Lindelöf space. To

show that Y is Lindelöf space, we assume that U
∼

= {uα : α ∈ Λ} is an open cover of Y. Then, uα

is open for each α ∈ Λ. Now, since f is continuous, then f−1(uα) is open in ξ, for each α ∈ Λ. As

a result, since f is surjective, then f−1(uα) = { f−1(uα)} : α ∈ Λ is an open cover of ξ. But, ξ is

Lindelöf space, and so we can reduce f−1(uα) to a countable subcover, say { f−1(uα) : α ∈ Λ}, where

Γ ⊂ Λ and |Γ| ≤ w0 = |N|. Hence, we have ξ ⊆ ∪
α∈Γ

f−1(; uα). Consequently, since f is onto, then

Y = f (ξ) ⊆ f ( ∪
α∈Γ

f−1(uα)) ⊆ ∪
α∈Γ

uα. Therefore, ∪
∼

has a countable subcover of Y, which implies

that Y is Lindelöf space. �

Remark 3.2. Every compact subset in a nigh Hausdorff space is closed, but a Lindelöf subset in a nigh
Hausdorff space need not be closed. For example, (R, τu) is a nigh Hausdorff space and (0, 1) is Lindelöf
subset of R. However, (0, 1) is not nigh closed in R.

Definition 3.2. A space (ξ,µ) is called nigh space if and only if a countable intersection of open sets is
open.

Theorem 3.3. Every Lindelöf subset of a T2-space is nigh closed.
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Proof. Let A be a Lindelöf subset of nigh T2-space ξ. To show that A is a nigh closed set, it is

enough to show that ξ\A is a nigh open set. For this purpose, we let x ∈ ξ\A. Then, x < ξ, and

so for each a ∈ A, we have x , a. Now, since ξ is T2-space, then there exist two open sets ua and

va in ξ such that x ∈ ua and a ∈ va with ua ∩ va = φ. Hence, V
∼

= {va : a ∈ A} forms an open cover

of A, and since A is nigh Lindelöf subset of ξ, then V
∼

can be reduced to a countable subcover, say

{vaα}α∈Λ0 . Hence, A ⊆ ∪
α∈Λ0

vaα . So, for each vaα and α ∈ Λ0, there is a corresponding uaα such that

x ∈ uaα and a ∈ vaα with uaα ∩ vaα = φ. Now, let v∗ = ∪
α∈Λ0

vaα and u∗ = ∩
α∈Λ0

uaα . Then, we have

A ⊆ v∗ and x ∈ u∗ with u∗ ∩ v∗ ⊆ uaα ∩ vaα = φ for all α ∈ Λ0. Hence, u∗ ∩ v∗ = φ, which implies

u∗ ∩ ∪
α∈Λ0

vaα = φ. Therefore, u∗ ∩ v∗ = φ. Now, since A ⊆ v∗, then u∗ ∩A ⊆ u∗ ∩ v∗ = φ. So, we have

u∗ ∩ v∗ = φ. Consequently, we conclude that x ∈ u∗ ⊂ x−A, where u∗ = ∩
α∈Λ0

uaα is open, since ξ is

nigh space. Therefore, x−A is nigh open, and hence A is nigh closed. �

Theorem 3.4. If A is a Lindelöf subset of a nigh Hausdorff space ξ. Then, for each x < A, we can separated
x and A in two disjoint open sets in ξ.

Proof. For each a ∈ A, we have a , x, since x < A. Due to ξ is a Hausdorff space, then there exist

nigh open sets ua(x) and v(a) in ξ such that x ∈ ua(x) and a ∈ v(a) with ua(x) ∩ v(a) = φ. Hence,

V
∼

= {v(a) : a ∈ A} forms an open cover of A, and since A is a nigh Lindelöf subset of ξ, then V
∼

can

be reduced to a countable subcover of A, say V
∼

= {v(aα) : α ∈ Λ0} A ⊆ ∪
α∈Λ

v(aα) = V. For all v(aα)

and α ∈ Λ0, there is corresponding nigh open sets uaα(x) containing ξ such that uaα(x)∩ v(aα) = φ.

Now, let u = ∩uaα(x). Then, u is open set because ξ is nigh space. Consequently, u ⊆ uaα(x),
for all α ∈ Λ0. So, we have u ∩ v(aα) ⊆ uaα ∩ v(aα) = φ. Hence, we obtain u ∩ v(aα) = φ. Thus,

u∩ ∪
α∈Λ0

v(aα) = φ, which implies that u∩ v = φ, so we have x ∈ u. Since x ∈ ua(α), then α ∈ Λ0

and A ⊆ v with u∩ v = φ. So, we can separate x and A in two disjoint nigh open set in ξ. �

Theorem 3.5. Every disjoint Lindelöf subset in nigh Hausdorff space can be separated by disjoint open sets
in ξ.

Proof. Assume that A and B are two disjoint Lindelöf subsets of nigh Hausdorff. For each a ∈ A,

we have a < B because A ∩ B = φ. Thus, by Theorem (3.1.4), there exist two open sets ua and

va in ξ such that a ∈ ua and B ⊆ va with ua ∩ va = φ. Hence, U
∼

= {ua : a ∈ A} forms an open

cover of A, and since A is Lindelöf subset of ξ, then U
∼

can be reduced to a countable subcover, say

U
∼

= {uaα : α ∈ Λ0}, Λ0, which is countable. Thus, A ⊆ ∪
α∈Λ0

uaα = u, and so u is open set. So, for each

uaα and α ∈ Λ0, there are two corresponding open sets vaα and α ∈ Λ0 such that B ⊂ v, vaα ∩ uaα = φ.

Now, let v = ∩
α∈Λ0

vaα . Then, B ⊆ v and v is open in ξ. Since ξ is a nigh space, then A ⊆ u and

B ⊆ v for which u and v are two open sets in ξ. Consequently, due to v ⊂ vaα for all α ∈ Λ0, then

v∩ uaα ⊆ uaα ∩ vaα = φ. So, we have φ = v∩ uaα = v∩ ( ∪
α∈Λ0

uaα) = v∩ u. Hence, A and B can be

separated in two disjoint open sets in ξ, as required. �

Theorem 3.6. Let ξ be a Lindelöf space and Y be a nigh space. Then the projection P : ξ× ξ→ Y is closed.
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Proof. Let y ∈ Y and G be an open set in ξ× ξ such that P−1
∈ G. To show that there is an nigh open

set v containing y in a space Y such that P−1(v) ⊆ G, we should first notice that G is open in ξ× ξ.

Then for every (x, y) ∈ G, there exist two P-open basic sets ux and vx in ξ and Y respectively such

that x ∈ ux and y ∈ vx with (x, y) ∈ ux × vx ⊆ G, where (x, y) in ξ×Y. Hence, U
∼

= {ux : x ∈ ξ} forms

a λi-open cover of ξ. Now, since ξ is a Lindelöf space, then U
∼

can be reduced to a λ j-countable

subcover, say {uxα : α ∈ Λ0}, |Λ0| ≤ w0 = |N|. So, we have ξ ⊆ ∪
α∈Λ0

= u, and for all {uxα : α ∈ Λ0}

corresponding to {vxα : α ∈ Λ0} such that y ∈ vxα , we let v = ∩
α∈Λ0

vxα . Thus, due to Λ0 is countable

and Y is a nigh space, then v is open and P−1(v) ⊆ ξ× v ⊆ u× v ⊆ G, i.e. P−1(v) ⊆ G. Therefore, P
is closed, and this completes the proof. �

Theorem 3.7. Let f : ξ→ Y be a closed continuous surjective function and the fibers f−1(y) be a Lindelöf
space, for all y ∈ Y. If Y is Lindelöf, then ξ is so.

Proof. Let U
∼

= {uα : α ∈ Λ} be an open cover of ξ. Then for all y ∈ Y, f−1(y) ⊆ ξ. Thus, U
∼

is

an open cover of f−1(y). Since f−1(y) is a Lindelöf space, then U
∼

can be reduced to a countable

subcover, say {uαy}. Hence, we have f−1(y) ⊆ ∪
αy∈Λ0

uαy, which implies f−1(y)∩ (ξ− ∪
αy∈Λ0

uαy) = φ.

Consequently, we obtain y ∩ f (ξ − ∪
αy∈Λ0

uαy) = φ. Hence, we get y ∈ Oy = y − f (ξ − ∪
αy∈Λ0

uαy).

Now, due to uαy open inξ, then ∪
αy∈Λ0

uαy is open inξ. Thus, ξ− ∪
αy∈Λ0

uαy is closed inξ, which implies

that f (ξ− ∪
αy∈Λ0

uαy) is closed in Y because f is closed. So, Oy = Y− f (ξ− ∪
αy∈Λ0

uαy) is an open set in

Y. Therefore, for each y ∈ Y, we have y ∈ Oy. Thus, O
∼

= {Oy : y ∈ Y} is an open cover of Y, and since

Y is Lindelöf, then O
∼

can be reduced to a countable subcover, say {Oyr}r∈Γ0 , such that Γ0 is countable.

Hence, we have Y ⊆ ∪
r∈Γ0

Oyr , and thus ξ = f−1 (ξ) ⊆ ∪
r∈Γ0

f−1
(
Oyr

)
= ∪x−

r∈Γ0

(x − ∪
r∈Γ0

uαy) = ∪
αy∈Λ0
∈Γ0

uαyr
.

Therefore, U
∼

can be reduced to a countable subcover of ξ, and so ξ is Lindelöf space. �

Theorem 3.8. The product of two Lindelöf spaces one of them is P− T2-space is Lindelöf space.

Proof. Let ξ and Y be two Lindelöf spaces and Y be a P − T2-space. Then, by previous theorem,

the projection function P : ξ×Y→ Y is P-closed. Also, for all y ∈ Y, we have P−1(y) = ξ×Y = ξ.

Since ξ is Lindelöf space, then P−1(y) is Lindelöf space and P is continuous and onto. Thus, P is a

perfect function, and since Y is a Lindelöf space, then by the previous theorem, ξ×Y is so. �

Example 3.1. Let ξ = R be a set of real numbers, then
(
R2, τu

)
is a nigh Lindelöf topological space, where

τu is the usual topology defined on R as

τu =
{
A ⊂ R : ∀x ∈ A,∃(ax, bx) such that x ∈ (ax, bx) ⊂ A

}
.

Example 3.2. Let ξ = R be a set of real numbers, then
(
R2, τs × τs

)
is a nigh Lindelöf topological space,

where τs is the Sorgenfrey topology defined as

τs =
{
[a, b) : a < b in R

}
.
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This topology has a clopen set of the form [a, b), and it is clear that this represents an example of Lindelöfness
topological space.

4. On Nigh Nearly Lindelöf Space

We plan to present the notion of the near-neighbor Lindelöf space in this section. In light of this

goal, we present a few more ideas and theories that are connected to the notion of the near-Lindelöf

space as well as some instances for additional clarification.

Definition 4.1. Suppose that ξ = (ξ,µ) is a topological space. We say that A ⊂ ξ is a nearly open set if
A = (Ā)

◦.

Definition 4.2. Suppose that ξ = (ξ,µ) is a topological space. Then A ⊂ ξ is called a nigh nearly open set
if A = (Ā)

◦ in λ1 and A = (Ā)
◦ in λ2.

Definition 4.3. A family U
∼

= {uα : α ∈ Λ} is called nearly open cover if:

(1) uα is a nigh nearly open set for all α ∈ Λ.
(2)

⋃
α∈Λ

uα = ξ.

Definition 4.4. Suppose that ξ = (ξ,µ) is a topological space and U
∼

= {uα : α ∈ Λ} is a nigh nearly open

cover of ξ. Then S
λ
=

{
uαλ : λ ∈ Γ, Γ ⊂ Λ

}
is called nearly subcover of ξ if

⋃
α∈Γ

uαλ = ξ.

Definition 4.5. Suppose that ξ = (ξ,µ) is a topological space. Then, we say that ξ is nearly compact space
if every nearly open cover of ξ has a finite nearly subcover.

Definition 4.6. Suppose that ξ = (ξ,µ) is a topological space. Then ξ is called nigh nearly compact space
if every nigh nearly open cover has a finite nearly subcover.

Definition 4.7. Suppose that ξ = (ξ,µ) is a topological space. Then ξ is called nearly Lindelöf space if
every nearly open cover of ξ has a countably nearly subcover.

Definition 4.8. Suppose that ξ = (ξ,µ) is a topological space. Then ξ is called nigh nearly Lindelöf space
if every nigh nearly open cover has a countably nearly subcover.

Definition 4.9. A topological space ξ = (ξ,µ) is called S-nearly Lindelöf if it is nearly Lindelöf and nigh
nearly Lindelöf spaces.

Remark 4.1. Every nigh nearly compact space is a nigh nearly Lindelöf space, but the converse need not
necessarily true.

Proof. Let ξ be a nigh nearly compact space. Then every nearly open cover of ξ has a finite subcover

of ξ. Thus, each nearly open cover of ξ has a countable subcover of ξ. So, ξ is a nigh nearly Lindelöf

space. Now, to show that the converse need not be true, we need to provide an example of a space

that is a nigh nearly Lindelöf space, but it is not nigh nearly compact space. This space is (R, τu)

for which τu is a usual topology. Now, because of B =
{
(a, b) : a < b ∈ Q

}
is a countable base of
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(R, τu), then (R, τu) is a second countable space. Since each 2nd-countable space is Lindelöf space,

then (R, τu) is a Lindelöf space, and so (R, τu) is a nigh Lindelöf space. Besides, it is also nigh

nearly Lindelöf space. Now, due to (R, τu) is not compact space because U
∼

=
{
(−n, n) : n ∈N

}
is an open cover of R that has no finite subcover, then (R, τu) is not a nigh compact space, and

therefore it is not a nigh nearly compact space. �

Theorem 4.1. Let ξ = (ξ,µ) be a topological space. Then we have a hereditary nearly Lindelöf space, and
so ξ is an S-nearly Lindelöf space.

Proof. Assume that U
∼

= {uα : α ∈ Λ} ∪ {vβ : β ∈ Γ} is a nearly λ1,λ2-open cover of (ξ,µ) such that

uα ∈ λ1 and vβ ∈ λ2, for every α ∈ Λ and β ∈ Γ. Because of U = ∪{uα : α ∈ Λ} is a λ1-nearly

Lindelöf, then there is a countable set Λ1 ⊂ Λ for which U = ∪{uα : α ∈ Λ1}. In the same way,

since V = ∪{vβ : β ∈ Γ} is a λ2-nearly Lindelöf, then there is a countable set Γ1 ⊂ Γ for which

V = ∪{vβ : β ∈ Γ1}. Hence, it clear that {uα : α ∈ Λ1} ∪ {vβ : β ∈ Γ1} is a countable subcover of U
∼

for

ξ. �

Theorem 4.2. A nigh nearly Lindelöf space is preserved under onto nigh continuous function.

Proof. Let f : (ξ,µ)→ (Y, ζ) be a surjective continuous function and ξ be a nearly Lindelöf space.

To show that Y is a nearly Lindelöf space, we assume that U
∼

= {uα : α ∈ Λ} is a nearly open cover

of Y. Then uα is an open set, for all α ∈ Λ. Now, due to f is continuous function, then f−1(uα) is

an open set in ξ, for each α ∈ Λ. Also, since f is surjective, then f−1(uα) = { f−1(uα) : α ∈ Λ} is an

open cover of ξ. But ξ is nearly Lindelöf space, which allows us to reduce f−1(uα) to a countable

subcover, say { f−1(uα) : α ∈ Λ}, where Γ ⊂ Λ and |Γ| ≤ w0 = |N|. Hence, we have ξ ⊆ ∪
α∈Γ

f−1(uα).

Now, since f is onto, then Y = f (x) ⊆ F( ∪
α∈Γ

f−1(uα)) ⊆ ∪
α∈Γ

uα, which implies that∪
∼

has a countable

subcover of Y. Therefore, Y is a nearly Lindelöf space. �

Remark 4.2. Every compact subset in a nigh nearly T2-space is closed. However, the nearly Lindelöf subset
in a nigh nearly T2-space need not be closed. For example, we can assert that (R, τu) is a nigh nearly
T2-space such that (0, 1) is a nearly Lindelöf subset of R, however (0, 1) is not a nigh nearly closed in R.

Definition 4.10. A space (ξ,µ) is called a nigh nearly nigh space if the countable intersection of nearly
open sets is open.

Theorem 4.3. Every nearly Lindelöf subset of nearly T2-nigh space is closed.

Proof. Let A be a nearly Lindelöf subset of a nearly P− T2-space ξ. To show that A is a nigh nearly

closed set, it is enough to show that ξ\A is nigh nearly open. For this purpose, we let x ∈ ξ\A.

Then x < ξ, and so we have x , a, for each a ∈ A. Now,since ξ is a T2-space, then there exist two

nearly open sets ua and va in ξ such that x ∈ ua and a ∈ va with ua ∩ va = φ. Hence, V
∼

= {va : a ∈ A}

forms a nearly open cover of A, and since A is a P-nearly Lindelöf subset of ξ, then V
∼

can be

reduced to a countable subcover, say {vaα}α∈Λ0 . Consequently, we have A ⊆ ∪
α∈Λ0

vaα . So, for each
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vaα , α ∈ Λ0, there is a corresponding uaα such that x ∈ uaα and a ∈ vaα with uaα ∩ vaα = φ. In

this regard, we let V∗ = ∪
α∈Λ0

vaα and U∗ = ∩
α∈Λ0

uaα . Then, we obtain A ⊆ V∗ and x ∈ U∗ such that

U∗∩V∗ ⊆ uaα ∩vaα = φ, for allα ∈ Λ0. Hence, we have U∗∩V∗ = φ, and therefore U∗∩ ∪
α∈Λ0

vaα = φ.

As a result, we get U∗ ∩V∗ = φ. Now, due to A ⊆ V∗, then we have U∗ ∩A ⊆ U∗ ∩V∗ = φ. So,

we can obtain U∗ ∩V∗ = φ. Thus, we get x ∈ U∗ ⊂ x −A, where U∗ = ∩
α∈Λ0

uaα is open as ξ is a

nigh nearly space. Therefore, ξ−A is a nigh nearly open set, which implies that A is a nigh nearly

closed set. �

Theorem 4.4. Let A be a nearly Lindelöf subset of a nigh nearly T2-space ξ. Then for each x < A, we can
separate x and A into two disjoint nearly open sets in ξ.

Proof. For each a ∈ A, we have a , x. Due to x < A and ξ is a T2-space, then there exist two

nigh nearly open sets ua(x) and v(a) in ξ such that x ∈ ua(x) and a ∈ v(a) with ua(x) ∩ v(a) = φ.

Hence, V
∼

= {v(a) : a ∈ A} forms an open cover of A. Since A is a nigh nearly Lindelöf subset

of ξ, then V
∼

can be reduced to a countable subcover of A, say V
∼

= {v(aα) : α ∈ Λ0}. Thus, we

have A ⊆ ∪
α∈Λ

v(aα) = V. In this regard, for all v(aα) and α ∈ Λ0, there is a corresponding nigh

nearly open set uaα(x) containing ξ such that uaα(x) ∩ v(aα) = φ. Now, we let U = ∩uaα(x). Then,

it is clear that u is an open set because of ξ is a nigh nearly space. Thus, we have u ⊆ uaα(x), for

all α ∈ Λ0. So, we obtain u ∩ v(aα) ⊆ uaα ∩ v(aα) = φ, and hence u ∩ v(aα) = φ. In light of this

discussion, we have u ∩ ∪
α∈Λ0

v(aα) = φ. This implies that u ∩ v = φ, and so x ∈ u. Now, since

x ∈ ua(α), then we have α ∈ Λ0 and A ⊆ v with u∩ v = φ. So, we can separate ξ and A into two

disjoint P-nearly open sets in ξ. �

Theorem 4.5. Every disjoint nearly Lindelöf subset od a nigh nearly Hausdorff space can be separated by
disjoint open sets in ξ.

Proof. Assume A and B are two disjoint nearly Lindelöf subsets of a nigh nearly Hausdorff space.

For each a ∈ A, we have a < B as A∩ B = φ. Thus, by the previous theorem, there exist two nearly

open sets ua and va in ξ such that a ∈ ua and B ⊆ va with ua ∩ va = φ. Hence, U
∼

= {ua : a ∈ A}

forms an open cover of A. Due to A is a nearly Lindelöf subset of ξ, then U
∼

can be reduced to a

countable subcover, say U
∼

= {uaα : α ∈ Λ0} for which Λ0 is countable. Therefore, A ⊆ ∪
α∈Λ0

uaα = U,

and hence U is open. So for each uaα , we have α ∈ Λ0. Then, there is a corresponding open set vaα

for which α ∈ Λ0 such that B ⊂ v and vaα ∩ uaα = φ. Now, let v = ∩
α∈Λ0

vaα . Then, we have B ⊆ v

for which v is open in ξ. Since ξ is a nigh nearly space, then A ⊆ u and B ⊆ v such that u and v
are open sets in ξ. Now, due to v ⊂ vaα , for all α ∈ Λ0, then v ∩ uaα ⊆ uaα ∩ vaα = φ. As a result,

we have φ = v∩ uaα = v∩ ( ∪
α∈Λ0

uaα) = v∩ u. Hence, A and B can be separated into two disjoint

nearly open sets in ξ. �

Theorem 4.6. Let ξ be a nearly Lindelöf space and Y be a nigh nearly space. Then the projection
P : ξ× ξ→ Y is closed.
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Proof. Let y ∈ Y, and G be an open set in ξ× ξ such that P−1
∈ G. To show that there is a nigh nearly

open set v containing y in the space Y such that P−1(v) ⊆ G, we assume that G is open in ξ× ξ. So,

for each (x, y) ∈ G, there exist two nigh nearly open basic sets ux and vx in ξ and Y respectively

such that x ∈ ux and y ∈ vx with (x, y) ∈ ux × vx ⊆ G, where (x, y) in ξ×Y. Hence, U
∼

= {ux : x ∈ ξ}

forms an open cover of ξ, Now, since ξ is a nearly Lindelöf space, then U
∼

can be reduced to a

countable subcover, say {uxα : α ∈ Λ0} such that |Λ0| ≤ w0 = |N|. So, we obtain ξ ⊆ ∪
α∈Λ0

= u for

all {uxα : α ∈ Λ0} corresponding {vxα : α ∈ Λ0} such that y ∈ vxα . In this regard, we let v = ∩
α∈Λ0

vxα .

Due to Λ0 is countable and Y is a nigh nearly space, then v is open and P−1(v) ⊆ ξ× v ⊆ u× v ⊆ G,

i.e. P−1(v) ⊆ G. This consequently implies that P is closed. �

Theorem 4.7. Let f : ξ→ Y be a closed continuous surjective function and f−1(y) be nearly Lindelöf, for
all y ∈ Y. If Y is a v nearly Lindelöf, then ξ is so.

Proof. Let U
∼

= {uα : α ∈ Λ} be a nearly open cover of ξ. Then for all y ∈ Y, we have f−1(y) ⊆ ξ.

Thus, U
∼

is an open cover of f−1(y). Due to f−1(y) is nearly Lindelöf, then U
∼

can be reduced

to a countable subcover, say {uαy}. Hence, we have f−1(y) ⊆ ∪
αy∈Λ0

uαy, which implies f−1(y) ∩

(ξ − ∪
αy∈Λ0

uαy) = φ. So, we get y ∩ f (ξ − ∪
αy∈Λ0

uαy) = φ. As a result, we obtain y ∈ Oy =

y− f (ξ− ∪
αy∈Λ0

uαy). So, as uαy is open in ξ, then ∪
αy∈Λ0

uαy is open in ξ. Thus, ξ− ∪
αy∈Λ0

uαy is closed

inξ. This implies that f (ξ− ∪
αy∈Λ0

uαy) is closed in Y as f is closed. So, we obtain Oy = Y− f (ξ− ∪
αy∈Λ0

for which uαy) is open in Y. Therefore, for all y ∈ Y, we have y ∈ Oy. Thus, O
∼

= {Oy : y ∈ Y} is a

nearly open cover of Y. In this connection, due to Y is a Lindelöf space, then O
∼

can be reduced to

a countable subcover, say {Oyr}r∈Γ0 , such that Γ0 is countable. Hence, we obtain Y ⊆ ∪
r∈Γ0

Oyr . Thus,

we have ξ = f−1 (ξ) ⊆ ∪
r∈Γ0

f−1
(
Oyr

)
= ∪x−

r∈Γ0

(x − ∪
r∈Γ0

uαy) = ∪
αy∈Λ0
∈Γ0

uαyr
. Therefore, U

∼

is reduced to a

countable subcover of ξ, which implies that ξ is Lindelöf space. �

Theorem 4.8. The product of two nearly Lindelöf spaces one of them is nigh T2-space is nearly Lindelöf.

Proof. Let ξ and Y be two nearly Lindelöf spaces for which Y is a P-nearly T2-space. Then, by

previous theorem, the projection function P : ξ×Y→ Y is nigh closed, and for all y ∈ Y, we have

P−1(y) = ξ × Y = ξ. Now, due to ξ is Lindelöf space, then P−1(y) is nearly Lindelöf for which P
is continuous and onto. Thus, P is a perfect function, and because of Y is a nearly Lindelöf space,

then by the previous theorem, ξ×Y is also nearly Lindelöf space. �

Example 4.1. The two nigh Lindelöf topological spaces τu and τs defined, respectively, in Examples 3.1 and
3.2 are also examples on the nigh nearly Lindelöf topological space, as every nigh Lindelöf space is a nigh
nearly Lindelöf space.
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5. Conclusion

This paper has presented the idea of nigh Lindelöfness in nigh topological spaces and topological

spaces. As a result, we have established a number of generalizations and characteristics of nigh

Lindelöf space that are connected to nigh compactness in topological spaces, nearly nigh Lindelöf

space, and their relationships with other spaces. Numerous well-known theorems on the near

Lindelöf spaces have been generalized, and several examples have been discussed as well.
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