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Abstract. This paper compares analytical solutions for steady-state volatile organic compounds (VOC) and oxygen

concentrations in the context of bio-filtration modeling. Based on a set of nonlinear reaction/diffusion equations, this

model consists of the following components:

• A nonlinear term from Monod kinetics and Andrew kinetics.

• A Monod kinetics, interactive model.

• An Andrews kinetics, interactive model.

The theoretical findings are helpful in the design of bio-filters. The ability of two independent strategies, the Akbar Ganji

Method (AGM) and the Homotopy perturbation Method (HPM), to forecast steady-state concentrations is tested. The

study investigates the advantages and disadvantages of both techniques, shedding insight into their practical usefulness

in bio-filtration systems. The outcomes of this study lead to a better understanding of bio-filtration processes. They

could influence the design.

1. Introduction

Bio-filtration is a commonly used environmental method that employs microorganisms to biode-

grade pollutants such as VOCs in contaminated air or water streams. The efficacy of such systems

is determined by the amounts of pollutants and oxygen, making it critical to understand and

model their behavior precisely. To optimize the design and operating parameters, it is impera-

tive to model the nonlinear steady-state behaviour of oxygen and VOCs in biofiltration systems.

The intricate relationships and feedback mechanisms between substrate concentration, oxygen

availability, and microbial activity are considered by nonlinear models. Gaining insight into these

dynamics makes it possible to forecast how well biofilters will operate in different scenarios, which

contributes to removing VOCs with the highest possible efficiency and dependability.
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This study aims to evaluate the efficacy and precision of the AGM and HPM techniques [3] in

providing analytical solutions for the steady-state concentrations of oxygen and volatile organic

compounds in bio-filtration systems. Analytical approaches are helpful because they provide

insight into the system’s behavior without requiring laborious numerical simulations. The work

aims to advance knowledge of bio-filtration modeling by contrasting these two distinct analytical

methodologies and offering insights into each approach’s potential benefits and drawbacks. The

findings of this study may enhance and optimize the efficacy of bio-filtration systems used in

environmental remediation.

The Mixed-Solvent Removal Kinetics in a Biofilter for Waste Gas: Modeling and Experiments

analysis [2]. Biofiltration-Based Modeling for Air Contamination Removal [4]. Comparing and

Analyzing Biofilter Models [6]. Approximate Analytical Solutions [7] for Seepage Flow in Porous

Media Using Fractional Derivatives. How to Address Boundary Value Issues Using the Homotopy

Perturbation Method [9]. The Adomian Decomposition Method for Two-Point Boundary Value

was applied by B. Jang [11]. Nonlinear Stochastic Simulation of Changes in a Nuclear Reactor—A

Novel Approach by G. Adomian [13]. Solution of Parabolic Equations: Linear and Nonlinear

using the Decomposition Method, by A. Saufyane and M. Boulmalf [14]. Sivasankari et al. [16]

Analytical Expressions of Oxygen and VOC Concentrations in Steady-State Biofilteration Model

using Adomian Decomposition Method

However, no analytical formulas for the steady-state concentrations of oxygen, VOC, and efficacy

factor have been provided as of yet. This work aims to use the Homotopy Perturbation Method [18]

and the Akbar Ganji Method [5] to determine the oxygen and volatile organic compound (VOC)

content analytically for every parameter value and reaction process.

2. Mathematical formulation of the problem

A collection of mass balances within the biofilm makes up a steady-state biofilteration model.

The following mass balance equations apply to the biofilm [16]:

D1
d2m
dχ2 =

U
V
λ(m, a) (2.1)

D2
d2a
dχ2 =

U
V1
λ(m, a) (2.2)

With boundary conditions

m =
mh

k
and a =

mh1

k1
at χ = 0 (2.3)

dm
dχ

and
da
dχ

at χ = β (2.4)

The symbols for biofilm density are U, V, V1, D1, D2, where χ is the point in the biofilm where

the concentration of VOC and oxygen is between m and a and is the effective diffusion coefficient

of VOC and oxygen. These symbols also represent the cost per unit of oxygen used and the total
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amount of biomass generated for every unit of VOC used. The growth rate λ(m, a), for different

reaction kinetics in biological systems is provided as follows:

Monod kinetics:

λ(m) =
λmm

L + m
(2.5)

Andrews kinetics:

λ(m) =
λ∗m

L + m + m2

L1

(2.6)

The interactive model provides a growth rate when the biodegradation rate is limited by oxygen.

The following is the expression for equations (2.5) and (2.6) above:

From the interactive model, Monod kinetics.

λ(m, a) =
λmm

L + m
[

a
L0 + a

] (2.7)

From Andrew kinetics, an interactive model

λ(m, a) =
λ∗m

L + m + m2

L1

[
a

L0 + a
] (2.8)

A numerical solution for the model is obtained by transforming these equations into a dimension-

less form using dimensionless variables and groups. To generate those above non-linear partial

differential equations (2.1) and (2.2), the dimensionless form of the subsequent dimensionless

parameters is defined:

M =
mk
mh

, A =
ak1

ah1
, χ =

x
β

, π2 =
Uλmβ2

LD1V
, θ =

D1Vahah1
D2V1kk1

, P =
ah

L1k
, Q =

ah

L2k
R =

L0k1

ah1
(2.9)

In the biolayer, χ represents the dimensionless position, and M and A indicate the dimensionless

concentration of oxygen and VOC, respectively. The Thiele modulus is denoted by φ, while θ, P,

Q, and R are dimensionless constants. It is possible to swap Equations (2.1) & (2.2) into Equation

(2.9) to obtain the dimensionless non-linear Equation for Monod kinetics that follows:

d2M(χ)

dχ2 = φ2
[

M(χ)

1 + PM(χ)

]
(2.10)

d2A(χ)

dχ2 = φ2θ

[
M(χ)

1 + PM(χ)

]
(2.11)

Using (2.9), we may obtain the dimensionless Equation for Andrews kinetics, which is present in

the nonlinear Equations (2.1) and (2.2).

d2M(χ)

dχ2 = φ2
[

M(χ)

1 + PM(χ) + PQM(χ)2

]
(2.12)
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d2A(χ)

dχ2 = φ2θ

[
M(χ)

1 + PM(χ) + PQM(χ)2

]
(2.13)

Through the use of Equation (2.9), the interactive model of Monod kinetics dimensionless nonlinear

equation becomes

d2M(χ)

dχ2 = φ2
[

M(χ)

1 + PM(χ)

] [
A(χ)

R + A(χ)

]
(2.14)

d2A(χ)

dχ2 = φ2θ

[
M(χ)

1 + PM(χ)

] [
A(χ)

R + A(χ)

]
(2.15)

A dimensionless nonlinear equation can be obtained by combining the dimensionless nonlinear

equations (2.1) & (2.2) of the Andrews kinetics interactive model.

d2M(χ)

dχ2 = φ2
[

M(χ)

1 + PM(χ) + PQM(χ)2

] [
A(χ)

R + A(χ)

]
(2.16)

d2A(χ)

dχ2 = φ2θ

[
M(χ)

1 + PM(χ) + PQM(χ)2

] [
A(χ)

R + A(χ)

]
(2.17)

The boundary condition can now be expressed as follows in dimensionless form:

M = 1 and A = 1 at χ = 0 (2.18)

dM
dχ

= 0 and
dA
dχ

at χ = 1 (2.19)

3. Approximate analytical expressions for current and concentrations

Approximate analytical methods refer to mathematical techniques for solving complex problems

where exact solutions are difficult or impossible. These methods involve approximating and

simplifying the situation while still aiming to provide useful and accurate results. Some standard

approximate analytical methods are Variation Iterational Method [1], Homotopy Perturbation

Method [8], Adomian Decomposition Method [7], Differential Transform Method [21], Akbar

Ganji Method [15].

3.1. Approximate analytical responses of the concentrations were obtained using the Akbar
Ganji Method (AGM). The nonlinear differential equations controlling this system are solved in

this paper using the Akbar-Ganji technique developed by mathematicians Akbar and Ganji [10].

We can solve the nonlinear equations quickly using this method, which removes the requirement

for challenging mathematical processes. This method is appropriate and accessible for solving

nonlinear differential equations.

Although numerical approaches can yield accurate and economical approximate solutions for

nonlinear systems, they have notable limitations that should be considered. Significant difficulties

can arise when adjusting parameters to match the numerical data, and numerical stability is needed

to obtain numerical solutions. Because analytical solutions offer a more comprehensive grasp of

how model parameters affect analysis, researchers tend to favour them.
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The concentrations yield the approximate analytical expressions that follow, as shown in Appendix

A when the AGM technique is applied [12]: The VOC concentration for Monod kinetics can be

found by applying the following method to the solutions of Equations (2.10) & (2.11):

M(χ) = cosh(m1χ) −
sinh(m1)sinh(m1χ)

cosh(m1)
(3.1)

where m1 =
φ

√
P + 1

(3.2)

A(χ) = cosh(n1χ) −
sinh(n1)sinh(n1χ)

cosh(n1)
(3.3)

where n1 =

√
(P + Q)θφ

P + 1
(3.4)

The VOC concentration can be determined as follows: By using Andrews kinetics and solving

Equations (2.12) and (2.13),

M(χ) = cosh(m2χ) −
sinh(m2)sinh(m2χ)

cosh(m2)
(3.5)

where m2 =
φ

√
PQ + P + 1

(3.6)

A(χ) = cosh(n2χ) −
sinh(n2)sinh(n2χ)

cosh(n2)
(3.7)

where n2 =

√
(PQ + P + 1)θφ

PQ + P + 1
(3.8)

It is possible to determine the VOC concentration in the interactive Monod kinetics model as

follows by solving Equations (2.14) and (2.15):

M(χ) = cosh(m3χ) −
sinh(m3)sinh(m3χ)

cosh(m3)
(3.9)

where m3 =
φ

√
PR + P + R + 1

(3.10)

A(χ) = cosh(n3χ) −
sinh(n3)sinh(n3χ)

cosh(n3)
(3.11)

where n3 =

√
(PR + P + R + 1)θφ

PR + P + R + 1
(3.12)

Through the following procedure, the VOC concentration in the interactive model of Andrews

kinetics can be determined by solving Equations (2.16) and (2.17).

M(χ) = cosh(m4χ) −
sinh(m4)sinh(m4χ)

cosh(m4)
(3.13)
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where m4 =
φ

√
QPR + QP + PR + P + R + 1

(3.14)

A(χ) = cosh(n4χ) −
sinh(n4)sinh(n4χ)

cosh(n4)
(3.15)

where n4 =

√
(QPR + QP + PR + P + R + 1)θφ

QPR + QP + PR + P + R + 1
(3.16)

3.2. Approximate analytical responses of the concentrations were obtained using the Homotopy
Perturbation Method (HPM). In many branches of science and engineering, non-linear phenom-

ena are fundamentally important. Solving most real-life problem models remains a challenging

task. As a result, rough analytical solutions like the Homotopy perturbation method (HPM) were

brought forth. For non-linear equations, the HPM is the most practical and efficient approach [17].

Assuming a small parameter is the foundation of the perturbation approach. Many authors in

the physical sciences and engineering have recently turned to the HPM for solutions to non-linear

problems. Some non-linear problems in the physical sciences can be solved by combining classical

perturbation techniques with topology’s homotopy [20]. The HPM is exceptional because it is

efficient, accurate, and applicable. The HPM only requires a small number of iterations in the

embedding parameters to find an asymptotic solution. The approximate analytical formulas of

concentrations that follow (Appendix B) are generated using the HPM approach [19]: By solving

the Equation (2.10) & (2.11), the VOC concentration for Monod kinetics can be determined as

follows:

M(χ) =
(χ2
− 2χ)φ2 + 2P + 2

2P + 2
(3.17)

A(χ) =
χθ(χ− 2)φ2 + 2P + 2

2P + 2
(3.18)

Andrews kinetics VOC concentration may be found by solving Equations (2.12) and (2.13).

M(χ) =
(2Q + 2)P + 2 + (χ2

− 2χ)φ2

2 + (2Q + 2)P
(3.19)

A(χ) =
(2Q + 2)P + 2 + (χ2

− 2χ)φ2θ

2 + (2Q + 2)P
(3.20)

Solving Equations (2.14) and (2.15) obtains the VOC concentration for the interactive model of

Monod kinetics.

M(χ) =
(2R + 2)P + 2R + 2 + (χ2

− 2χ)φ2

2(P + 1)(R + 1)
(3.21)

A(χ) =
(2R + 2)P + 2R + 2 + (χ2

− 2χ)φ2θ

2(P + 1)(R + 1)
(3.22)
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Equations (2.16) and (2.17) can be solved to determine the VOC concentration for the interactive

Andrews kinetics model.

M(χ) =
2(Q + 1)(R + 1)P + 2R + 2 + (χ2

− 2χ)φ2

2(R + 1)(1 + (Q + 1)P
(3.23)

A(χ) =
2(Q + 1)(R + 1)P + 2R + 2 + (χ2

− 2χ)φ2θ

2(R + 1)(1 + (Q + 1)P
(3.24)

4. Effectiveness factor

The natural reaction rate is divided by the reaction rate when the entire biofilm is exposed to

the concentration at the gas/biofilm interface. This ratio is known as the efficacy factor. These are

some of the different kinetics efficacy factors:

Monod Kinetics:

η =
−(1 + P)
φ2

(
dM
dχ

)
χ=0

=

√
1 + Psinh

(
φ
√

1+P

)
φcosh

(
φ
√

1+P

) (4.1)

Andrews kinetics:

η =
−(1 + P + PQ)

φ2

(
dM
dχ

)
χ=0

=

√
PQ + P + 1sinh

(
φ

√
PQ+P+1

)
φ2cosh

(
φ

√
PQ+P+1

) (4.2)

From Monod kinetics, an interactive model

η =
−(1 + P)(Q + 1)

φ2

(
dM
dχ

)
χ=0

=

(1 + P)(Q + 1)sinh
(

φ
√
(1+P)(Q+1

)
√
(1 + P)(Q + 1)φcosh

(
φ

√
(1+P)(N+1

) (4.3)

From Andrew kinetics, an interactive model

η = −
−(1 + P + PQ)(R + 1)

φ2

(
dM
dχ

)
χ=0

=

(QP + P + 1)(R + 1)sinh
(

φ
√
(R+1)(QP+P+1)

)
√
(R + 1)(QP + P + 1)φcosh

(
φ

(R+1)(QP+P+1

) (4.4)

5. Numerical Simulation

By using numerical techniques, Equations (2.10)–(2.17) in their dimensionless version, which

match the boundary conditions (2.18) and (2.19), were resolved. To solve differential equations’

initial boundary value problems, we employed pdex4, a function available in MATLAB. The

numerical solution to Equations (2.10) and (2.11) can be found using the Matlab program provided

in Appendix C. In Figures 1–16, the numerical solution is displayed and contrasted with our

analytical findings. A good agreement is seen for a range of Thiele modulus values and potentially

low reaction/diffusion parameter values.
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6. Result and Discussion

For all parameter values, the updated analytical formulas for the VOC concentration in the

kinetics of Monod, Andrews, Interactive Monod, and Interactive Andrews are represented by

equations (2.10)–(2.17). The concentrations of volatile organic compounds (VOC), denoted as

M(χ) and oxygen, denoted as A(χ) are influenced by various parameters including φ, P, Q, R

and θ Adjusting these parameters can lead to changes in the concentrations of M(χ) and A(χ) as

follows:

6.1. The Thiele Modulus. The Thiele modulus is a crucial indicator that contrasts the biodegrada-

tion rate against the diffusion rate. Two conditions cause variations in the concentration profiles:

• Enzyme kinetics control indicates that the total amount of active enzyme determines the

overall reaction rate when the Thiele modulus is small.

• Diffusion control takes over when the Thiele modulus is high. This condition occurs when

the diffusion coefficient or reaction rate constant is low or when there is vigorous catalytic

activity and increased membrane thickness.

6.2. Monod Kinetics. Monod kinetics VOC concentration in the biofilm is represented by equation

(2.10 & 2.11). Equation (3.1) & (3.17), the dimensionless concentration M(χ) against dimensionless

distance (χ) in Figures 1 & 2 is applied to a range of values of the Thiele modulus (φ) and the

dimensionless parameter (P). As the value of φ or the thickness of the biofilter diminishes, these

figures show that the concentration of VOCs at χ = 1 increases. In addition, the concentration

is constant for all values of M(χ) when φ ≤ 0.1 and all the values of P. For a range of values of

the dimensionless parameters, θ, P, and the Thiele modulus φ, the dimensionless concentration

plot, denoted by A(χ) (3.3) & (3.18), is displayed in Figures 3 & 4. These figures unequivocally

demonstrate that the oxygen content decreases as θ increases.

6.3. Andrew Kinetics. The concentration of volatile organic compounds under Andrews-type

kinetics is defined by equation (2.12 & 2.13). Equations (3.5) & (3.19), For various combinations of

dimensionless parameters, the dimensionless concentration M(χ) as a function of dimensionless

distance χ is represented in Figures 5 & 6. These graphs demonstrate that when P, Q, and φ rise,

the VOC concentration decreases. The dimensionless concentration A(χ), (3.7) & (3.20) is shown

in Figures 7 & 8 for different combinations of the dimensionless parameters θ, P, Q, and phi.

6.4. Interactive Monod Kinetics. The Interactive model’s VOC concentration, obtained using

Monod kinetics, is shown in equation (2.14 & 2.15). Equations (3.9) & (3.21), used for different

parameter configurations, shows the dimensionless concentration M(χ) vs dimensionless distance

χ in Figures 9 & 10. These graphs show that when θ ≤ 10, the VOC concentration is homogeneous.

Furthermore, when θ grows, A(χ) decreases. Figures 11 & 12 display the dimensionless concen-

tration A(χ) for different combinations of dimensionless parameters θ, P, R, and φ. These figures

suggest that when φ ≤ 0.5 for all parameter sets, M(χ) = 1.
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6.5. Interactive Andrew Kinetics. The VOC concentration in the Interactive model under An-

drews kinetics is represented by equation (2.16 & 2.17). For various values of the Thiele modulus

(φ, P, Q, R, and θ), Figures 13 & 14 plot the dimensionless concentration M(χ) against the dimen-

sionless distance (χ) using Equation (3.13) & (3.23). The dimensionless concentration A(χ) for

various combinations of dimensionless parameters is displayed in Figures 15 & 16. These numbers

show that when the bio-filter thickness φ drops, the VOC concentration M(χ) stays constant.

6.6. Effectiveness Factor. Equations (4.1)–(4.4) were used to compute the effectiveness factor η,

displayed against the Thiele modulus φ in Figures 17 and 18. These numbers clearly show that for

all methods, when φ ≤ 0.2, the efficacy factor η hits 1.

7. Conclusion

In conclusion, this study has looked into how to improve indoor air quality by biofiltration

modeling using asymptotic approaches. We have created new analytical formulas for oxygen and

VOC concentrations by examining various kinetic models, including Monod, Andrews, Interac-

tive Monod, and Interactive Andrews. These formulas provide essential information about how

several parameters affect the efficiency of biofilters, including the Thiele modulus phi, catalytic

activity, membrane thickness, and reaction rate constants K. We found that a small Thiele mod-

ulus (φ) denotes a dominance of enzyme kinetics, in which the availability of active enzymes

predominantly controls the reaction rate. Conversely, greater (φ) values indicate diffusion control,

which is impacted by elements like membrane thickness and catalytic activity. The effectiveness

factor (η) research revealed that when φ ≤ 0.2, it stays high (η = 1), showing successful removal

of contaminants across different biofiltration processes. Changes in φ, P, Q, R and θ parameters

considerably affected the concentration profiles of oxygen and VOCs, highlighting the complex

link between pollutant removal effectiveness and biofilter configuration.

The mathematical modeling of nonlinear reaction/diffusion at steady-state concentrations of oxy-

gen and volatile organic compounds (VOCs) in bio-filtration has given us a critical new under-

standing of the complex dynamics of these systems. We have proven that these approximate

analytical methods help solve the governing equations of the bio-filtration process by applying

mathematical solid techniques such as the AGM (Akbar Ganji Method) and HPM (Homotopy

Perturbation Method).

Our results emphasize how crucial it is to consider diffusion effects and nonlinearities when

simulating the breakdown of volatile organic compounds and the distribution of oxygen within

biofilters. The created models help design and manage effective VOC removal processes by pro-

viding a way to forecast and maximize the performance of bio-filtration systems. Overall, our

research establishes a platform for future investigation and development in this vital area of en-

vironmental engineering and emphasizes the value of mathematical modeling in deepening our

understanding of bio-filtration processes.
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φ = 0.1 φ = 0.3 φ = 0.5

χ
AGM HPM NUM

Error
%

using (3.1)

Error
%

using (3.17)

AGM HPM NUM
Error

%
using (3.1)

Error
%

using (3.17)

AGM HPM NUM
Error

%
using (3.1)

Error
%

using (3.17)

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

0.2 0.9982 0.9982 0.9982 0 0 0.9843 0.9837 0.9843 0 0.0609 0.9584 0.9546 0.9584 0 0.3964

0.4 0.9968 0.9968 0.9968 0 0 0.9721 0.971 0.9721 0 0.1131 0.9265 0.9195 0.9261 0.0431 0.7126

0.6 0.9958 0.9958 0.9958 0 0 0.9636 0.962 0.9636 0 0.1660 0.9042 0.8945 0.9029 0.1439 0.9303

0.8 0.9952 0.9952 0.9952 0 0 0.9585 0.9567 0.9585 0 0.1877 0.891 0.8797 0.8885 0.2813 0.9904

1 0.995 0.995 0.995 0 0 0.957 0.955 0.957 0 0.2089 0.8869 0.8751 0.8829 0.4530 0.8834

Average Error % 0 0 0 0.1228 0.1535 0.6522

Table 1. Comparison of analytical solutions, with different φ values, and fixed

parameter values P from numerical simulation

θ = 10 θ = 50 θ = 100

χ
AGM HPM NUM

Error
%

using (3.3)

Error
%

using (3.18)

AGM HPM NUM
Error

%
using (3.3)

Error
%

using (3.18)

AGM HPM NUM
Error

%
using (3.3)

Error
%

using (3.18)

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

0.2 0.9818 0.9818 0.9818 0 0 0.8657 0.8184 0.8184 5.7795 0 0.8657 0.8184 0.8184 5.7795 0

0.4 0.9677 0.9677 0.9677 0 0 0.7668 0.6775 0.6775 13.1808 0 0.7668 0.6775 0.6775 13.1808 0

0.6 0.9577 0.9577 0.9577 0 0 0.6992 0.5773 0.5773 21.1155 0 0.6992 0.5773 0.5773 21.1155 0

0.8 0.9518 0.9518 0.9518 0 0 0.6603 0.5177 0.5177 27.5449 0 0.6603 0.5177 0.5177 27.5449 0

1 0.9499 0.9499 0.9499 0 0 0.6483 0.4987 0.4987 29.9979 0 0.6483 0.4987 0.4987 29.9979 0

Average Error % 0 0 16.2698 0 16.2698 0

Table 2. Comparison of analytical solutions, with different θ values, and fixed

parameter values of P and φ from numerical simulation

φ = 0.1 φ = 0.3 φ = 0.5

χ
AGM HPM NUM

Error
%

using (3.5)

Error
%

using (3.19)

AGM HPM NUM
Error

%
using (3.5)

Error
%

using (3.19)

AGM HPM NUM
Error

%
using (3.5)

Error
%

using (3.19)

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

0.2 0.99 0.99 0.99 0 0 0.9843 0.9843 0.9843 0 0 0.9587 0.9551 0.9584 0 0

0.4 0.99 0.99 0.99 0 0 0.9721 0.9721 0.9721 0 0 0.9272 0.9202 0.9261 0 0

0.6 0.99 0.99 0.99 0 0 0.9636 0.9636 0.9636 0 0 0.9049 0.8955 0.9029 0 0

0.8 0.99 0.99 0.99 0 0 0.9585 0.9585 0.9585 0 0 0.8919 0.8808 0.8886 0 0

1 0 0 0 0 0 0.957 0.957 0.957 0 0 0.8878 0.8762 0.883 0 0

Average Error % 0 0 0 0 0 0

Table 3. Comparison of analytical solutions, with different φ values, and fixed

parameter values P and Q from numerical simulation
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θ = 10 θ = 50 θ = 100

χ
AGM HPM NUM

Error
%

using (3.7)

Error
%

\using (3.20)

AGM HPM NUM
Error

%
using (3.7)

Error
%

using (3.20)

AGM HPM NUM
Error

%
using (3.7)

Error
%

using (3.20)

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

0.2 0.9825 0.9819 0.9818 0.07129 0.0101 0.923 0.9094 0.9092 1.5178 0.0219 0.8657 0.8189 0.8184 5.7795 0.0610

0.4 0.969 0.9679 0.9677 0.1343 0.0206 0.8649 0.8395 0.8387 3.1238 0.0953 0.6668 0.6789 0.6775 1.5793 0.2066

0.6 0.9594 0.958 0.9577 0.1775 0.0313 0.8044 0.7899 0.7886 2.0035 0.1648 0.5992 0.5798 0.5773 3.7935 0.4330

0.8 0.9538 0.9521 0.9518 0.2101 0.0315 0.7508 0.7606 0.7589 1.0673 0.2240 0.5003 0.5212 0.5177 3.3610 0.6760

1 0.952 0.9503 0.9499 0.2210 0.0421 0.7534 0.7515 0.7494 0.5337 0.2802 0.5083 0.503 0.4987 1.9250 0.8622

Average Error % 0.1357 0.0226 1.0186 0.1310 1.0929 0.3731

Table 4. Comparison of analytical solutions, with different θ values, and fixed

parameter values of P, Q and φ from numerical simulation

φ = 0.1 φ = 0.3 φ = 0.5

χ
AGM HPM NUM

Error
%

using (3.9)

Error
%

using (3.21)

AGM HPM NUM
Error

%
using (3.9)

Error
%

using (3.21)

AGM HPM NUM
Error

%
using (3.9)

Error
%

using (3.21)

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

0.2 0.9991 0.9991 0.9991 0 0 0.9842 0.9837 0.9918 0.7662 0.8166 0.9584 0.9547 0.9783 2.0341 2.4123

0.4 0.9984 0.9984 0.9984 0 0 0.972 0.971 0.9854 1.3598 1.4613 0.9566 0.9596 0.9616 0.5199 0.2079

0.6 0.9979 0.9979 0.9979 0 0 0.9634 0.9621 0.9808 1.7740 1.9066 0.9343 0.9346 0.9498 1.6319 1.600

0.8 0.9976 0.9976 0.9976 0 0 0.9583 0.9567 0.9779 2.0042 2.1679 0.9011 0.9098 0.943 4.4432 3.5206

1 0.9975 0.9975 0.9975 0 0 0.9567 0.9551 0.9769 2.0677 2.2315 0.917 0.9152 0.941 2.5504 2.7417

Average Error % 0 0 1.3287 1.4306 1.8632 1.7471

Table 5. Comparison of analytical solutions, with different φ values, and fixed

parameter values of P, R and θ from numerical simulation

θ = 10 θ = 50 θ = 100

χ
AGM HPM NUM

Error
%

using (3.11)

Error
%

using (3.22)

AGM HPM NUM
Error

%
using (3.11)

Error
%

using (3.22)

AGM HPM NUM
Error

%
using (3.11)

Error
%

using (3.22)

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

0.2 0.9819 0.9819 0.9909 0 0.9082 0.9231 0.9094 0.9524 3.0764 4.5149 0.8658 0.8187 0.8993 3.7251 8.9625

0.4 0.9678 0.9678 0.9839 0 1.6363 0.865 0.8391 0.9149 5.4541 8.2850 0.7669 0.6782 0.82 6.4756 17.2926

0.6 0.9578 0.9578 0.9789 0 2.1554 0.8325 0.7892 0.8875 6.1971 11.0760 0.6994 0.5784 0.7632 8.3595 24.2138

0.8 0.9519 0.9519 0.976 0 2.4692 0.8009 0.7597 0.8706 8.0059 12.7383 0.6605 0.5194 0.7296 9.4709 28.8103

1 0.9501 0.9501 0.9751 0 2.5638 0.7936 0.7505 0.8642 8.1694 13.1566 0.6485 0.501 0.7195 9.8679 30.3683

Average Error % 0 1.6221 5.1505 8.2951 6.3165 18.2746

Table 6. Comparison of analytical solutions, with different θ values, and fixed

parameter values of P, R and φ from numerical simulation

φ = 0.1 φ = 0.3 φ = 0.5

χ
AGM HPM NUM

Error
%

using (3.13)

Error
%

using (3.23)

AGM HPM NUM
Error

%
using (3.13)

Error
%

using (3.23)

AGM HPM NUM
Error

%
using (3.13)

Error
%

using (3.23)

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

0.2 0.9982 0.9982 0.9982 0 0 0.9843 0.9843 0.9837 0.0609 0.0609 0.9584 0.9547 0.962 0.3742 0.7588

0.4 0.9968 0.9968 0.9968 0 0 0.9721 0.9721 0.971 0.1132 0.1132 0.9266 0.9196 0.9327 0.6540 1.4045

0.6 0.9958 0.9958 0.9958 0 0 0.9636 0.9636 0.9621 0.1559 0.1559 0.9043 0.8946 0.9119 0.8334 1.8971

0.8 0.9952 0.9952 0.9952 0 0 0.9585 0.9585 0.9567 0.1881 0.1881 0.8911 0.8799 0.8993 0.9118 2.1572

1 0.9954 0.9954 0.9954 0 0 0.957 0.957 0.9551 0.1989 0.1989 0.887 0.8753 0.8951 0.9049 2.2120

Average Error % 0 0 0.1195 0.1195 0.6130 1.4049

Table 7. Comparison of analytical solutions, with different φ values, and fixed

parameter values of P, Q, R and θ from numerical simulation
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θ = 10 θ = 50 θ = 100

χ
AGM HPM NUM

Error

%

using (3.15)

Error

%

using (3.24)

AGM HPM NUM
Error

%

using (3.15)

Error

%

using (3.24)

AGM HPM NUM
Error

%

using (3.15)

Error

%

using (3.24)

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

0.2 0.9825 0.9819 0.982 0.0509 0.0101 0.9231 0.9092 0.9092 1.5288 0 0.8158 0.8184 0.8184 0.3176 0

0.4 0.969 0.9678 0.9682 0.0826 0.0413 0.835 0.8387 0.8387 0.4411 0 0.7069 0.6775 0.6775 4.3394 0

0.6 0.9595 0.9578 0.9583 0.1252 0.0521 0.8045 0.7887 0.7887 2.0032 0 0.6094 0.5773 0.5773 5.5603 0

0.8 0.9538 0.9519 0.9526 0.1259 0.0734 0.7609 0.7589 0.7589 0.2635 0 0.5005 0.5178 0.5178 3.3410 0

1 0.9521 0.9501 0.9509 0.1261 0.0841 0.7936 0.7494 0.7494 5.8980 0 0.5085 0.4989 0.4989 1.9242 0

Average Error % 0.0851 0.0435 1.5420 0 1.3608 0

Table 8. Comparison of analytical solutions, with different θ values, and fixed

parameter values of P, Q, R and φ from numerical simulation

Figure 1. Plotting the dimensionless concentration M(χ) against the dimensionless

distance χ for different Thiele moduli φ and P values using equations (3.1) and

(3.17)
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Figure 2. Plotting the dimensionless concentration M(χ) against the dimensionless

distance χ for different Thiele moduli φ and P values using equations (3.1) and

(3.17)

Figure 3. Plotting the dimensionless concentration A(χ) against the dimensionless

distance χ for different Thiele moduli θ, P & φ values using equations (3.3) and

(3.18)



14 Int. J. Anal. Appl. (2024), 22:155

Figure 4. Plotting the dimensionless concentration A(χ) against the dimensionless

distance χ for different Thiele moduli θ, P & φ values using equations (3.3) and

(3.18)

Figure 5. Plotting the dimensionless concentration M(χ) against the dimensionless

distance χ for different Thiele moduli φ, P and Q values using equations (3.5) and

(3.19)
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Figure 6. Plotting the dimensionless concentration M(χ) against the dimensionless

distance χ for different Thiele moduli φ, P and Q values using equations (3.5) and

(3.19)

Figure 7. Plotting the dimensionless concentration A(χ) against the dimensionless

distance χ for different Thiele moduli φ, P, Q & θ values using equations (3.7) and

(3.20)
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Figure 8. Plotting the dimensionless concentration A(χ) against the dimensionless

distance χ for different Thiele moduli φ, P, Q & θ values using equations (3.7) and

(3.20)

Figure 9. Plotting the dimensionless concentration M(χ) against the dimensionless

distance χ for different Thiele moduli φ, P, R & θ values using equations (3.9) and

(3.21)
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Figure 10. Plotting the dimensionless concentration M(χ) against the dimension-

less distance χ for different Thiele moduli φ, P, R & θ values using equations (3.9)

and (3.21)

Figure 11. Plotting the dimensionless concentration A(χ) against the dimensionless

distance χ for different Thiele moduli φ, P, R & θ values using equations (3.11) and

(3.22)
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Figure 12. Plotting the dimensionless concentration A(χ) against the dimensionless

distance χ for different Thiele moduli φ, P, R & θ values using equations (3.11) and

(3.22)

Figure 13. Plotting the dimensionless concentration M(χ) against the dimension-

less distance χ for different Thiele moduli φ, P, Q, R & θ values using equations

(3.13) and (3.23)
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Figure 14. Plotting the dimensionless concentration M(χ) against the dimension-

less distance χ for different Thiele moduli φ, P, Q, R & θ values using equations

(3.13) and (3.23)

Figure 15. Plotting the dimensionless concentration A(χ) against the dimensionless

distance χ for different Thiele moduli φ, P, Q, R & θ values using equations (3.15)

and (3.24)
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Figure 16. Plotting the dimensionless concentration A(χ) against the dimensionless

distance χ for different Thiele moduli φ, P, Q, R & θ values using equations (3.15)

and (3.24)

Figure 17. Effectiveness factor η against the Thiele modulus φ using the Equations

(4.1) & (4.2)
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Figure 18. Effectiveness factor η against the Thiele modulus φ using the Equations

(4.3) & (4.4)

NOMENCLATURE

Symobols Definitions Units

mh Concentration of VOC in the gas phase at a height, h, along the column. kg * m-3

mh1 Concentration of oxygen in the gas phase at a height, h, along the column. kg * m-3

L0 Kinetic constant kg * m-3

L1 Kinetic constant kg * m-3

L2 Kinetic constant kg * m-3

U Biofilm density defined as the dry weight of cell per volume of biofilm kg * m-3

V Amount of biomass produced per amount of VOC consumed kg * kg-1

V1 Amount of biomass produced per amount of oxygen consumed kg * kg-1

D1 Effective diffusion coefficient of VOC in the biofilm m2 * s-1

D2 Effective diffusion coefficient of oxygen in the biofilm m2 * s-1

χ Distance in the biofilm m

β Active biofilm thickness m

β2 Active biofilm thickness m

λ Specific growth rate of the biomass on VOC h-1

λm Maximum specific growth rate h-1

λ∗ Kinetic constant h-1

K Air/biofilm distribution coefficient for the VOC as dictated by Henry’s law No unit

K1 Air/biofilm distribution coefficient for the oxygen as dictated by Henry’s law No unit

M(χ) Dimensionless position in the bio layer concentration of VOC No unit

A(χ) Dimensionless position in the bio layer concentration of oxygen No unit

P Dimensionless quantity No unit

Q Dimensionless quantity No unit

R Dimensionless quantity No unit

θ Dimensionless quantity No unit

η Effectiveness factor No unit

φ2 Square of Thiele modulus based on methanol No unit
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APPENDIX A

Apply the approximate analytical solutions for Equations (2.10) and (2.11) using the AGM tech-

nique, keeping in mind the boundary conditions (2.18) and (2.19). Make the relevant modifications

as needed

M(χ) = A1cosh(mχ) + B1sinh(mχ) (7.1)

A(χ) = A2cosh(nχ) + B2sinh(nχ) (7.2)

where

A1 = 1, B1 =
−sinh(m)

cosh(m)
, A2 = 1, B2 =

−sinh(m)

cosh(m)
(7.3)

Substitute equation (7.3) in (7.1) & (7.2), we obtain

m =
φ

√
P + 1

& n =

√
(P + 1)θφ

P + 1
(7.4)

sub. Eqn (7.4) in Eqns. (2.10) & (2.11), we get

M(χ) = cosh(mχ) −
sinh(m)sinh(mχ)

cosh(m)
(7.5)

A(χ) = cosh(nχ) −
sinh(n)sinh(nχ)

cosh(n)
(7.6)

Equations (3.1) and (3.3) are obtained by replacing Equations (2.10) and (2.11) with Equations (7.5)

and (7.6), respectively, and setting χ = 0. We derive Equations (2.12) and (2.13), (2.14) and (2.15),

and lastly (2.16) and (2.17), via this iterative approach. Make any necessary adjustments.

APPENDIX B

After implementing the HPM method, take into account the boundary conditions (2.18) & (2.19)

and evaluate the approximate analytical solutions for Equations (2.10) and (2.11).

(1− p)
(

d2M (χ)

dχ2

)
+ p

(
d2M (χ)

dχ2 −φ2
[

M(χ)

1 + PM(χ)

])
= 0 (7.7)

(1− p)
(

d2A (χ)

dχ2

)
+ p

(
d2A (χ)

dχ2 −φ2θ

[
M(χ)

1 + PM(χ)

])
= 0 (7.8)

Presented next is an approximate solution for Equation (7.7):

M (χ) = M0 + pM1 + p2M2 + p3M3 + ... (7.9)

We can obtain the following differential equation by replacing Equation (7.9) and comparing the

coefficient of p0.

p0 :
d2M0 (χ)

dχ2 = 1 (7.10)
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p1 :
d2M1 (χ)

dχ2 −φ2
[

M0(χ)

1 + PM0(χ)

]
= 0 (7.11)

The final equation (3.17) can be obtained by solving equations (7.10) and (7.11), providing that the

boundary conditions specified in equations (2.18) and (2.19) are satisfied.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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