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ABSTRACT. High-dimensional problems involve datasets or models characterized by a substantial number of variables 

or parameters prevalent across various domains such as statistics, machine learning, optimization, physics, and 

engineering. Challenges in these scenarios include computational complexity, data sparsity, over-fitting, and the curse 

of dimensionality. This study introduces two innovative techniques that combine the Random Forest machine learning 

approach with both the least absolute shrinkage and selection operator and the elastic net, which are statistical 

methodologies tailored to address high-dimensional challenges. We compared performance evaluations of these 

hybrid methods against traditional statistical approaches and standalone machine learning methods. The assessment 

is conducted using goodness-of-fit measures and involves both Monte Carlo simulation and a real-world application. 

The findings show that the strategies proposed in this study exhibit superior performance compared to conventional 

approaches when tackling high-dimensional challenges. 

 

1. Introduction 

According to the study conducted by [1], advancements in technology across many fields 

result in the generation of vast quantities of data, comprising millions of samples, instances, and 

features. The data used in this study are sourced from various domains, including bioinformatics, 

text mining, and microarray data. These types of data are typically represented as high-
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dimensional feature vectors. Predicting outcomes in these datasets poses a challenging task 

within the fields of pattern recognition, bioinformatics, statistical analysis, and machine learning. 

Computational time and space complexity are both impacted by high-dimensional data during 

data processing. Typically, most pattern recognition and machine learning methods handle low-

dimensional data, which has limitations when confronted with high-dimensional data. In 

addressing this problem, the utilization of feature selection (FS) assumes a critical role. FS 

identifies and picks the most relevant characteristics from a large pool of features in high-

dimensional data. This process aims to construct a more streamlined model that can achieve 

higher accuracy in classification. The FS method primarily aims to decrease and eliminate the 

multidimensional aspect of the data by eliminating irrelevant and redundant information. This 

process enhances predictive modeling by facilitating improved visualization and comprehension 

of the data. 

[2] proposed an interpretable meta-learning strategy for high-dimensional regression. The 

elastic net (Enet) algorithm achieves a trade-off between predicting minor effects for a large 

number of features and significant impacts for a selected selection of features. The proposed 

approach incorporates a hybrid regularization technique that combines ridge and lasso methods 

for achieving a balanced regularization effect. Instead of selecting a singular weighting by means 

of tuning, we aggregate several weightings by employing a stacking approach. The objective was 

achieved by a method that enhances the ability to make accurate predictions while maintaining 

the ability to be easily understood and interpreted. 

The study conducted by [3] focused on evaluating the predictive efficacy of several 

advanced multivariate regression techniques. The application utilized clinical and genomic data 

to make predictions for a wide range of motor and non-motor symptoms observed in patients 

diagnosed with Parkinson's disease. The researchers concluded that the utilization of stacked 

multivariate regression, along with their respective alterations, represents a feasible approach for 

forecasting interrelated outcomes. 

[4] proposed two approaches for analysis: the integration of neural networks (NN) with 

the least absolute shrinkage and selection operator (LASSO) and the coupling of NN with random 

forests (RF). The performance of conventional approaches, namely ordinary least squares and 

feed forward NN, was assessed alongside two developed methods through the utilization of 

Monte Carlo simulation and a real-world application using air quality data in Italy. The results 

indicated that the approaches provided in this study exhibited superior performance compared 

to the standard methods. 

[5] made enhancements to the random forest algorithm and introduced a novel technique 

referred to as post-selection boosting RF (PBRF). This technique integrates the RF and LASSO 

methods, allowing for the dynamic generation of decision trees based on input samples to 
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produce prediction results without requiring a predetermined number of decision trees for final 

prediction. In the interim, we ascertain the efficacy of the suggested algorithm in enhancing the 

performance of the model by conducting simulation tests and analyzing real-world data. 

A group of researchers explored the utilization of RF for handling imbalanced data. [6] 

conducted an extensive empirical assessment of RF concerning imbalanced data. Additionally, 

RF was employed for variable selection purposes. [7] suggested a heuristic approach for variable 

selection, relying on data-driven thresholds for decision-making. Meanwhile, [8] introduced a 

novel method rooted in permutation tests' theoretical framework, meeting specific statistical 

criteria. Addressing RF uncertainty emerged as a significant research area, with [9] using 

jackknife and infinitesimal jackknife methods to estimate RF predictors' variance, yielding 

practical insights. Furthermore, [10] utilized U-statistics to compute limiting distributions and 

confidence intervals for predictions. 

[11]. Several robust estimators were devised to mitigate the impact of atypical data and 

multicollinearity effects. Initially, a method called ridge least-trimmed squares was discussed. 

Subsequently, a nonlinear integer programming problem was proposed, utilizing a penalization 

approach. The tabu search heuristic algorithm was employed to solve the presented optimization 

problem, which was characterized by its complexity and difficulty. In addition, the robust 

generalized cross-validation criterion was utilized to identify the most suitable ridge parameter. 

Our theoretical talks were supported by computationally studying a simulated example and two 

real-world datasets. 

[12] proposed two mixed-integer nonlinear optimization models that can serve as reliable 

estimators in the presence of both outliers and multicollinearity in the dataset. The models are 

constructed using penalization methods that metaheuristic algorithms can successfully solve. 

These schemes can down-weight or disregard atypical data and multicollinearity effects. We 

confirm that our models offer computational advantages in terms of the flop count. We also 

employ a robust ridge methodology. Ultimately, three authentic data sets are scrutinized to 

evaluate the effectiveness of the suggested methodologies. 

[13] devised multiple penalized mixed-integer nonlinear programming models for 

application in high-dimensional regression analysis. The provided matrix approximations 

possess uncomplicated structures, resulting in reduced computational expenses for the models. 

Furthermore, the models can be efficiently solved using metaheuristic methods. Numerical tests 

are conducted to elucidate the performance of the suggested approaches on both simulated and 

real-world datasets with high dimensions. 

In their study, [14] discussed the limitations of classical methods when analyzing high-

dimensional data. They subsequently introduced and explained contemporary and widely used 

approaches for regression analysis of high-dimensional data, such as principal component 
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analysis and penalized methods. Ultimately, a simulation study and analysis of real-world data 

are conducted to implement and contrast the methodologies above in datasets with a large 

number of dimensions. 

[15] introduced a method for estimating high-dimensional multicollinear data that can be 

utilized as an alternative. This usage provides a continuous estimation, encompassing the ridge 

estimator as a specific instance. They analyzed the asymptotic performance of the system as the 

dimension, denoted by 𝑝, approaches infinity while keeping the value of n unchanged. Subject to 

some minor regularity criteria, the researchers establish the consistency of the proposed estimator 

and determine its asymptotic features. Several Monte Carlo simulation experiments are 

conducted to assess their performance, with the aim of analyzing a genetic dataset with high 

dimensionality. 

In their study, [16] sought to enhance the RF algorithm by incorporating suitable 

penalized regression techniques. Specifically, they aimed to refine the PBRF algorithm through 

the application of Enet regression. The most efficient method described in this study is referred 

to as Reducing and Aggregating RF Trees by Enet (RARTEN). The method that has been 

introduced comprises three distinct steps. The initial stage involves the utilization of the RF 

algorithm as a predictive model. In the subsequent stage, the Enet technique, which serves as a 

form of penalized regression, is employed to decrease the number of trees and enhance the 

performance of both the RF and PBRF models. In the final stage, the chosen trees are consolidated. 

The statistical performance criteria are utilized to evaluate the outcomes acquired from both the 

real data and the Monte Carlo simulation. The findings of the simulation study indicate that the 

Randomized Average Response Tree Ensemble (RARTEN) enhances the precision of both the 

conventional RF and Wang's proposed method. Specifically, the RARTEN achieves reductions of 

7%, 5%, and 8.5% in the linear, nonlinear, and noisy models, respectively. Furthermore, this 

approach exhibits a substantial decrease in comparison to alternative penalized regression 

techniques. Furthermore, the empirical findings of our study demonstrate that the strategy 

suggested herein yields a decrease of nearly 16%, thus affirming the soundness of the proposed 

model. 

The subsequent sections of this work are structured as follows: Section 2 presents the 

methodology employed in this study. Section 3 discusses the suggested approaches. Section 4 

provides an overview of the Monte Carlo simulation study. Section 5 presents the real-data 

application. Finally, Section 6 concludes this study. 

2. Methodology 

Firstly, the applicable shrinkage approach was utilized to handle the data. Subsequently, 

the selected variables were incorporated into the analysis. This paper will provide a brief 

discussion on the use of shrinkage methods and the RF regression framework for RF trees. 
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LASSO Regression 

One of the penalization techniques proposed by [17] is the LASSO method. It has gained 

significant popularity in the field of high-dimensional data analysis after the Ridge regression 

method. The LASSO method can be formulated as an optimization problem, where the optimal 

value is determined by including the sum of the absolute values of the regression coefficients in 

the loss function. This method is widely favored for its ability to do variable selection and 

shrinking simultaneously. The LASSO technique cannot only estimate the coefficients but also 

produces a coefficient vector with sparsity. LASSO can be characterized as a variant of Ridge 

regression that employs distinct penalized functions [18]. T& study employs the LASSO approach 

as a first step for selecting independent variables. The selected variables are subsequently utilized 

as inputs for the RF method. Additionally, LASSO is employed to reduce the number of RF trees. 

The accuracy of prediction is enhanced through the process of picking a subset of trees. 

 One limitation of this method is that the maximum number of trees that can be selected is 

constrained by the number of samples. It is not feasible to select more trees than the available 

samples. Suppose there is (𝑋, 𝑌) a dataset so that 𝑋 = (𝑥1, ⋯ , 𝑥𝑝)
′
is the independent variable and 

Y is the dependent variable. The LASSO estimator uses the ℓ1norm penalty to obtain an optimal 

b for the following optimization problem. 

                                                  �̂�(𝜆) = arg 𝑚𝑖𝑛
𝛽

(
‖𝑌−𝑋𝛽‖2

2

𝑛
+ 𝜆‖𝛽‖1)                                          (2.1) 

where ‖𝑌 − 𝑋𝛽‖2
2=∑ (𝑦𝑖 − (𝑋𝛽)𝑖)2,𝑛

𝑖=1  ‖𝛽‖1 = ∑ |𝛽𝑗|
𝑝
𝑗=1  and where 𝜆 ≥ 0 is a penalty parameter. 

The estimator has the property that it does variable selection in the sense that �̂�(𝜆) = 0 for some 

j’s (depending on the choice of 𝜆) and �̂�𝑗(𝜆)can be thought as a shrunken least squares estimator; 

hence, the name LASSO. LASSO estimator is available in the R package glmnet [19].  

Enet regression 

While ridge regression is known for shrinking the coefficients of variables without 

eliminating any variables, and LASSO regression may both shrink variables and choose the most 

impactful ones simultaneously, it is important to note that these methods may not always be 

suitable, as discussed in the preceding sections. Thus, [20] proposed a robust approach known as 

Enet regression, which effectively combines the strengths of both the LASSO and Ridge methods. 

The Enet is a statistical regularization technique that combines the principles of Ridge regression, 

which utilizes the ℓ2-norm, and LASSO regression, which employs the ℓ1-norm, in order to 

minimize the loss function. The primary objective of Enet regression is to effectively minimize 
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the coefficients to zero while simultaneously constructing a model that is based on the non-zero 

coefficients. Certain regression coefficients exhibit a precise value of zero and can be eliminated 

from the model. The Enet addresses the constraints associated with the LASSO and Ridge 

methods, namely the restriction of features during variable selection and the risk of overfitting 

when dealing with a substantial number of predictor variables, respectively. The present study 

utilizes the Enet technique as a first stage in the process of choosing independent variables. The 

chosen variables are later employed as inputs for the RF technique. Moreover, the Enet technique 

is utilized in order to decrease the number of RF trees. The procedure of selecting a subset of trees 

contributes to the improvement of prediction accuracy. Despite picking a greater number of trees, 

it exhibits superior performance compared to the LASSO method. 

A double penalization using a combination of the 𝑙1and 𝑙2-penalties has been proposed by [20]: 

                                   �̂�(𝜆1, 𝜆2) = arg 𝑚𝑖𝑛
𝛽

(
‖𝑌−𝑋𝛽‖2

2

𝑛
+ 𝜆1‖𝛽‖1 + 𝜆2‖𝛽‖2

2),                                 (2.2) 

where 𝜆1, 𝜆2 > 0   are two regularization parameters and ‖𝛽‖2
2 = ∑ 𝛽𝑗

2𝑝
𝑗=1 . [20] called the estimator 

in (2.2) the “naive Enet”. Enet estimator is available in the R package “glmnet” [19], [21]. 

RF algorithm  

The RF algorithm is a type of ensemble learning method, originally proposed by [22], that 

involves the creation of M decision trees using the bagging technique. Parallel tree generation is 

a capability that distinguishes it from boosting, which necessitates sequential generation. The 

algorithm in question can be employed for both regression and classification tasks. In regression 

and classification, the prediction and classification tasks include utilizing the mean of trees and 

the majority of votes, respectively. The RF algorithm employs a framework that bears 

resemblance to decision trees, wherein the constituent decision trees within the RF are 

constructed by considering distinct random partitions. To clarify, the mtry predictor is chosen as 

a potential separator candidate with a value that is smaller than the total number of predictors, 

denoted as p. In regression tasks, it is commonly set as mtry = p/3, while in classification tasks, 

it is typically defined as mtry =√p. The R package “randomForest” [23] provides the 

implementation of RF regression.  Figure 1 displays the structure of the RF. The stages involved 

in constructing a RF, as depicted in the figure, are outlined as follows: [24] 

1. The process of generating Bootstrap datasets (𝐷1, ⋯ , 𝐷𝑀) employed to create multiple datasets 

from the original D dataset. 

2. Generate tree structures based on the Bootstrap dataset. 
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3. Produce a set of M trees. 𝑇1, ⋯ , 𝑇𝑀 

4. Retrieve M expected trees 𝑇1(𝑧), ⋯ , 𝑇𝑀(𝑧) 

5. The final prediction for the entire set of M trees is as follows: 

A. Regression �̅� =
1

𝑀
∑ 𝑇𝑖(𝑧)𝑀

𝑖=1  

B. Classification 𝑇(𝑧) = majority vote {𝑇𝑖(𝑧)}𝑖=1
𝑀  

 

 

Fig 1: Basic structure of RF 
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3. Proposed Methods 

This section presents two innovative approaches that combine the LASSO and Enet methods 

with the RF algorithms. The main aim of this integration is to improve the level of congruence, 

specifically for datasets with a high number of dimensions, in contrast to utilizing RF in isolation. 

The present study builds upon prior research conducted by [4], who put forth the integration of 

LASSONN as well as RFNN. Additionally, the work of [24] is referenced, wherein they 

introduced a novel methodology termed PBRF. The objective of this strategy is to enhance the 

efficacy of the RF algorithm through the integration of the LASSO method. 

Method 1: LASSOPBRF 

Step 1: Beginning with the LASSO model 

Step 2. The procedure for variable selection in the LASSO model entails the identification and 

retention of a subset of variables that are considered to be the most pertinent and impactful in 

forecasting the desired outcome. 

Step 3. The selected variables are entered into the RF algorithm. 

Step 4. The RF model is employed as a predictive tool. 

Step 5. The utilization of the LASSO aims to reduce the number of trees and improve the 

performance of the RF algorithm. 

Step 6. The selected trees are assembled collectively. 

 Method 2: EnetRARTEN 

Step 1. The discourse will begin by scrutinizing the Enet paradigm. 

Step 2. The procedure for variable selection in the Enet model entails the identification and 

retention of a subset of variables that are the most pertinent and impactful in forecasting the 

desired outcome. 

Step 3. The selected variables are entered into the RF algorithm. 

Step 4: The RF model is utilized as a prediction instrument. 

Step 5. The primary objective of utilizing Enet is to reduce the tree count and improve the 

efficacy of RF. 

Step 6. The selected trees have been combined. 
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                         Fig 2: The theoretical underpinning of the suggested methodology  

 

4. Monte Carlo Simulation Study  

The primary aim of this work was to conduct a comparative analysis of conventional 

statistical estimators, namely Enet and LASSO, and a machine learning approach called RF, 

along with newly introduced estimators such as LASSOPBRF and EnetRARTEN. The analysis 

was conducted using a Monte Carlo simulation like [25] and [26]. The simulation was conducted 

using R software version 4, and multiple simulation components were employed to assess the 

efficacy of the estimators under various conditions (see Table 1). The independent variables 

utilized in this study were obtained from previous works by [27], [28] and [29]. These variables 

were generated from a multivariate normal distribution with a mean vector of zero and a 

covariance matrix denoted as Σ_x. The diagonal elements of Σ_x were assigned a value of 1, 
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whereas the off-diagonal elements were assigned correlation coefficients ρx of 0.30, 0.80, 0.85, 

and 0.90 [30], which indicate the correlation between the independent variables. The errors 

observed in the study were obtained using a standard normal distribution with outlier rates 

(OR). Employing two OR, notably 10% and 15%, as reported by [31], [32], [33], [34], respectively. 

Furthermore, the random forest methodology was utilized, employing different numbers of 

trees (Ntree), specifically 200, 500, 800, and 1000. The simulation was performed with sample 

sizes of 58, 100, 250, and 500. It incorporated four independent variables: 100, 450, 500, and 1000. 

According to [35], it may be observed that. The regression parameters were assigned values of 

0.5 and 0.001, as reported by [36] in their reference. The present work aimed to create and employ 

the LASSOPBRF and EnetRARTEN techniques to provide a comparative analysis. The design of 

the simulation is depicted in Figure 3, which presents a flowchart. 

                                                                       Table 1 Simulation Factors 

Factors Values 

𝝆𝒙 0.30,0.80,0.85 and 0.90 

OR 0.10 and 0.15 

n 58,100,250 and 500 

P 100,450,500 and 1000 

Ntree 200,500,800 and 1000 

 

Simulation Process 

Step 1: Generating Independent Variables 

Generating independent variables from a multivariate normal distribution with a correlation 

between them. 

Step 2: Generating Error Terms. 

Generate an error term from a standard normal distribution with different ORs (see [37]) of 0.10 

and 0.15. 

Step 3: Initial Parameters for Regression Coefficients Set initial parameters for β₁ = 0.5 and β₂= 

0.001 Step 4: Constructing a High-Dimensional Regression Model (see [38], [39], [40], [41]) Build 

a regression model using the generated independent variables, error term, and initial parameters. 

Step 5: Estimation Methods Utilize various estimation methods such as LASSO, Enet, RF, 

LASSOPBRF, and EnetRARTEN. Each of these methods handles high-dimensional data and 

regression differently. 
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Step 6: Calculating criteria mean square error (MSE) and root mean square error (RMSE)  

After applying these estimation methods, MSE and RMSE were calculated for each method. These 

criteria assess the performance of the models in predicting the dependent variable, measuring the 

average squared differences between predicted and actual values. MSE measures the average 

squared difference between predicted values and true values. In a Monte Carlo simulation, you 

would typically have multiple iterations or simulated datasets. For each iteration, suppose you 

have n observations, and the predicted values are denoted as �̂�𝑖 and the true values are denoted 

as 𝑌𝑖  for 𝑖=1,2,⋯ ,𝑛. The MSE for a single simulation iteration is calculated as: 

           MSE = 
1

𝑛
(�̂�𝑖 − 𝑌𝑖 )

2
                                                  (4.1) 

To calculate the MSE over multiple iterations in a Monte Carlo simulation, you would sum 

up the MSE values obtained in each iteration and divide them by the total number of iterations. 

RMSE is the square root of MSE and gives a measure of the average magnitude of the error in the 

same units as the response variable. 

                                                               RMSE = √𝑀𝑆𝐸                                                                     (4.2) 

In this current study, two separate metrics for assessing the accuracy of the estimators were 

utilized: MSE and RMSE. In addition, each strategy yields data regarding the number of selected 

variables (#SVs) and the number of selected trees (#STs). The findings of the simulation study, 

denoted as the simulation results (SRs), were presented in Table 2-13 and Table S1-S12 in the 

appendix, which displayed data pertaining to a sample size of n = 58, 100, 250, and 500, as well 

as the number of independent variables p = 100, 450, 500, and 1000. The results comprised several 

correlation coefficients, two OR, and four Ntree: (0.30, 0.80, 0.85, and 0.90), (0.10 and 0.15), and 

(200, 500, 800, and 1000). 
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              Fig 3: The flowchart depicting the simulation process. 
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Table 2: SRs when n=58, P=450, 𝝆𝒙 = 𝟎. 𝟗𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR =10%      

200 

LASSO 297.188 17.239 - 139 

Enet 250.767 15.835 - 239 

RF 179.154 13.384 200 450 

LASSOPBRF 47.739 6.909 121 139 

EnetRARTEN 46.618 6.827 165 293 

500 

LASSO 308.384 17.56 - 139 

Enet 262.758 16.209 - 296 

RF 175.006 13.228 500 450 

LASSOPBRF 49.021 7.001 149 139 

EnetRARTEN 45.926 6.776 350 296 

800 

LASSO 305.128 17.467 - 137 

Enet 293.066 17.119 - 301 

RF 179.953 13.414 800 450 

LASSOPBRF 49.491 7.035 166 137 

EnetRARTEN 46.044 6.785 518 301 

1000 

LASSO 314.413 17.731 - 137 

Enet 297.79 17.256 - 300 

RF 181.144 13.459 1000 450 

LASSOPBRF 49.85 7.06 175 137 

EnetRARTEN 46.206 6.797 572 300 

OR=15%      

200 

LASSO 322.029 17.945 - 139 

Enet 263.456 16.231 - 295 

RF 178.763 13.37 200 450 

LASSOPBRF 48.302 6.95 123 139 

EnetRARTEN 47.157 6.867 168 295 

500 

LASSO 302.869 17.403 - 140 

Enet 248.826 15.774 - 295 

RF 182.89 13.523 500 450 

LASSOPBRF 48.834 6.988 151 140 

EnetRARTEN 46.612 6.827 347 295 

800 

LASSO 308.787 17.572 - 138 

Enet 305.66 17.483 - 306 

RF 183.696 13.553 800 450 

LASSOPBRF 49.497 7.035 167 138 

EnetRARTEN 46.708 6.834 475 306 

1000 

LASSO 332.73 18.24 - 140 

Enet 285.081 16.884 - 295 

RF 170.786 13.068 1000 450 

LASSOPBRF 49.819 7.058 175 140 

EnetRARTEN 46.329 6.806 608 295 
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Table 3: SRs when n=58, P=450, 𝝆𝒙 = 𝟎. 𝟖𝟓  

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 443.573 21.061 - 135 

Enet 327.542 18.098 - 288 

RF 230.59 15.185 200 450 

LASSOPBRF 53.899 7.341 121 135 

EnetRARTEN 51.685 7.189 163 288 

500 

LASSO 436.711 20.897 - 137 

Enet 361.911 19.023 - 287 

RF 227.865 15.095 500 450 

LASSOPBRF 54.768 7.4 147 137 

EnetRARTEN 50.412 7.1 348 287 

800 

LASSO 435.853 20.877 - 133 

Enet 402.219 20.055 - 299 

RF 225.712 15.023 800 450 

LASSOPBRF 55.673 7.461 162 133 

EnetRARTEN 50.835 7.129 472 299 

1000 

LASSO 402.715 20.067 - 135 

Enet 363.095 19.055 - 296 

RF 221.846 14.894 1000 450 

LASSOPBRF 55.885 7.475 173 135 

EnetRARTEN 50.946 7.137 545 296 

OR= 15%      

200 

LASSO 435.227 20.862 - 134 

Enet 411.981 20.297 - 297 

RF 239.156 15.464 200 450 

LASSOPBRF 53.903 7.341 122 134 

EnetRARTEN 51.516 7.177 165 297 

500 

LASSO 425.279 20.622 - 133 

Enet 393.555 19.838 - 294 

RF 234.53 15.314 500 450 

LASSOPBRF 54.914 7.41 147 133 

EnetRARTEN 51.222 7.157 338 294 

800 

LASSO 421.755 20.536 - 136 

Enet 348.322 18.663 - 290 

RF 232.517 15.248 800 450 

LASSOPBRF 55.437 7.445 159 136 

EnetRARTEN 50.8 7.127 495 290 

1000 

LASSO 434.959 20.855 - 135 

Enet 345.728 18.593 - 286 

RF 216.464 14.712 1000 450 

LASSOPBRF 56.072 7.488 167 135 

EnetRARTEN 51.173 7.153 594 286 
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Table 4: SRs when n=100, P=100, 𝝆𝒙 = 𝟎. 𝟗𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 8.732 2.955 - 34 

Enet 26.003 5.099 - 82 

RF 11.995 3.463 200 100 

LASSOPBRF 1.942 1.393 97 34 

EnetRARTEN 1.908 1.381 167 82 

500 

LASSO 8.54 2.922 - 34 

Enet 27.41 5.235 - 82 

RF 11.757 3.428 500 100 

LASSOPBRF 1.925 1.387 137 34 

EnetRARTEN 1.868 1.367 352 82 

800 

LASSO 8.586 2.93 - 34 

Enet 24.303 4.929 - 81 

RF 11.867 3.444 800 100 

LASSOPBRF 1.966 1.402 156 34 

EnetRARTEN 1.878 1.37 489 81 

1000 

LASSO 8.41 2.9 - 34 

Enet 24.964 4.996 - 82 

RF 11.761 3.429 1000 100 

LASSOPBRF 1.935 1.391 167 34 

EnetRARTEN 1.85 1.36 581 82 

OR=15%      

200 

LASSO 10.878 3.298 - 32 

Enet 32.974 5.742 - 82 

RF 13.614 3.689 200 100 

LASSOPBRF 2.249 1.499 98 32 

EnetRARTEN 2.193 1.48 167 82 

500 

LASSO 10.804 3.286 - 32 

Enet 31.732 5.633 - 80 

RF 13.496 3.673 500 100 

LASSOPBRF 2.197 1.482 138 32 

EnetRARTEN 2.135 1.461 368 80 

800 

LASSO 10.775 3.282 - 32 

Enet 32.181 5.672 - 81 

RF 13.663 3.696 800 100 

LASSOPBRF 2.217 1.489 161 32 

EnetRARTEN 2.145 1.464 506 81 

1000 

LASSO 11.048 3.323 - 32 

Enet 32.389 5.691 - 81 

RF 13.27 3.642 1000 100 

LASSOPBRF 2.205 1.485 171 32 

EnetRARTEN 2.136 1.461 587 81 
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Table 5: SRs when n=100, P=100, 𝝆𝒙 = 𝟎. 𝟖𝟓 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 9 3 - 38 

Enet 32.927 5.738 - 83 

RF 13.016 3.607 200 100 

LASSOPBRF 2.115 1.454 102 38 

EnetRARTEN 2.074 1.44 172 83 

500 

LASSO 8.971 2.995 - 38 

Enet 29.317 5.414 - 81 

RF 12.463 3.53 500 100 

LASSOPBRF 2.057 1.434 142 38 

EnetRARTEN 2.005 1.416 349 81 

800 

LASSO 9.016 3.002 - 38 

Enet 30.91 5.559 - 82 

RF 12.614 3.551 800 100 

LASSOPBRF 2.065 1.437 164 38 

EnetRARTEN 2.006 1.416 485 82 

1000 

LASSO 9.09 3.014 - 38 

Enet 31.745 5.634 - 84 

RF 12.826 3.581 1000 100 

LASSOPBRF 2.09 1.445 175 38 

EnetRARTEN 2.023 1.422 577 84 

OR=15%      

200 

LASSO 11.568 3.401 - 36 

Enet 37.133 6.093 - 82 

RF 15.273 3.908 200 100 

LASSOPBRF 2.377 1.541 102 36 

EnetRARTEN 2.337 1.528 171 82 

500 

LASSO 11.677 3.417 - 36 

Enet 36.706 6.058 - 80 

RF 15.12 3.888 500 100 

LASSOPBRF 2.346 1.531 145 36 

EnetRARTEN 2.311 1.52 348 80 

800 

LASSO 11.881 3.447 - 35 

Enet 40.665 6.376 - 83 

RF 14.906 3.86 800 100 

LASSOPBRF 2.367 1.538 166 35 

EnetRARTEN 2.308 1.519 517 83 

1000 

LASSO 12.076 3.475 - 35 

Enet 39.252 6.265 - 81 

RF 14.458 3.802 1000 100 

LASSOPBRF 2.333 1.527 179 35 

EnetRARTEN 2.293 1.514 555 81 
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Table 6: SRs  when n=100, P=500, 𝝆𝒙 = 𝟎. 𝟗𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 302.842 17.402 - 180 

Enet 481.547 21.944 - 344 

RF 241.34 15.535 200 500 

LASSOPBRF 36.09 6.007 156 180 

EnetRARTEN 35.776 5.981 170 344 

500 

LASSO 294.468 17.16 - 179 

Enet 438.314 20.935 - 324 

RF 242.021 15.557 500 500 

LASSOPBRF 35.683 5.973 201 179 

EnetRARTEN 34.498 5.873 352 324 

800 

LASSO 296.848 17.229 - 180 

Enet 473.245 21.754 - 343 

RF 235.379 15.342 800 500 

LASSOPBRF 35.682 5.973 220 180 

EnetRARTEN 34.621 5.884 511 343 

1000 

LASSO 308.037 17.55 - 181 

Enet 475.214 21.799 - 338 

RF 222.854 14.928 1000 500 

LASSOPBRF 35.547 5.962 229 181 

EnetRARTEN 34.656 5.886 601 338 

OR=15%      

200 

LASSO 307.703 17.541 - 180 

Enet 431.102 20.763 - 325 

RF 227.24 15.074 200 500 

LASSOPBRF 36.145 6.012 156 180 

EnetRARTEN 35.893 5.991 172 325 

500 

LASSO 306.76 17.514 - 180 

Enet 447.764 21.16 - 336 

RF 231.139 15.203 500 500 

LASSOPBRF 36.081 6.006 199 180 

EnetRARTEN 35.039 5.919 354 336 

800 

LASSO 295.663 17.194 - 178 

Enet 464.414 21.55 - 333 

RF 259.9 16.121 800 500 

LASSOPBRF 36.088 6.007 220 178 

EnetRARTEN 34.803 5.899 528 333 

1000 

LASSO 305.232 17.47 - 180 

Enet 462.902 21.515 - 335 

RF 237.77 15.419 1000 500 

LASSOPBRF 35.898 5.991 229 180 

EnetRARTEN 34.559 5.878 596 335 
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Table 7: SRs when n=100, P=500, 𝝆𝒙 = 𝟎. 𝟖𝟓 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 400.549 20.013 - 177 

Enet 688.353 26.236 - 344 

RF 275.189 16.588 200 500 

LASSOPBRF 39.74 6.303 158 177 

EnetRARTEN 39.367 6.274 173 344 

500 

LASSO 402.27 20.057 - 177 

Enet 684.351 26.16 - 345 

RF 256.635 16.02 500 500 

LASSOPBRF 39.648 6.297 202 177 

EnetRARTEN 38.086 6.171 367 345 

800 

LASSO 406.623 20.164 - 176 

Enet 604.228 24.581 - 328 

RF 265.181 16.284 800 500 

LASSOPBRF 39.697 6.3 220 176 

EnetRARTEN 37.951 6.16 497 328 

1000 

LASSO 412.425 20.308 - 177 

Enet 701.249 26.481 - 346 

RF 263.435 16.23 1000 500 

LASSOPBRF 40.123 6.334 231 177 

EnetRARTEN 38.359 6.193 632 346 

OR=15%      

200 

LASSO 402.133 20.053 - 177 

Enet 634.995 25.199 - 329 

RF 276.751 16.635 200 500 

LASSOPBRF 40.21 6.341 159 177 

EnetRARTEN 39.563 6.289 174 329 

500 

LASSO 393.016 19.825 - 176 

Enet 653.031 25.554 - 334 

RF 294.198 17.152 500 500 

LASSOPBRF 39.782 6.307 204 176 

EnetRARTEN 38.313 6.19 357 334 

800 

LASSO 405.292 20.131 - 176 

Enet 697.443 26.409 - 346 

RF 260.909 16.152 800 500 

LASSOPBRF 40.193 6.339 222 176 

EnetRARTEN 38.378 6.195 505 346 

1000 

LASSO 403.866 20.096 - 177 

Enet 665.138 25.79 - 342 

RF 276.042 16.614 1000 500 

LASSOPBRF 39.959 6.321 228 177 

EnetRARTEN 38.029 6.166 609 342 
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Table 8: SRs when n=100, P=1000, 𝝆𝒙 = 𝟎. 𝟗𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 3565.049 59.708 - 970 

Enet 1983.852 44.54 - 638 

RF 826.965 28.757 200 1000 

LASSOPBRF 166.249 12.893 195 970 

EnetRARTEN 167.698 12.949 173 638 

500 

LASSO 3683.887 60.695 - 975 

Enet 1928.831 43.918 - 623 

RF 914.308 30.237 500 1000 

LASSOPBRF 162.495 12.747 437 975 

EnetRARTEN 164.248 12.815 365 623 

800 

LASSO 3551.094 59.591 - 977 

Enet 1788.971 42.296 - 593 

RF 847.715 29.115 800 1000 

LASSOPBRF 161.643 12.713 608 977 

EnetRARTEN 164.368 12.82 509 593 

1000 

LASSO 3541.304 59.508 - 975 

Enet 1798.726 42.411 - 605 

RF 926.376 30.436 1000 1000 

LASSOPBRF 162.262 12.738 718 975 

EnetRARTEN 164.152 12.812 642 605 

OR=15%      

200 

LASSO 3632.82 60.272 - 977 

Enet 1938.682 44.03 - 620 

RF 927.066 30.447 200 1000 

LASSOPBRF 167.434 12.939 195 977 

EnetRARTEN 167.884 12.957 172 620 

500 

LASSO 3612.021 60.1 - 974 

Enet 1899.24 43.58 - 613 

RF 893.155 29.885 500 1000 

LASSOPBRF 163.123 12.771 437 974 

EnetRARTEN 165.236 12.854 360 613 

800 

LASSO 3581.256 59.843 - 975 

Enet 1939.093 44.035 - 631 

RF 863.664 29.388 800 1000 

LASSOPBRF 162.036 12.729 608 975 

EnetRARTEN 163.813 12.798 539 631 

1000 

LASSO 3622.049 60.183 - 977 

Enet 1988.673 44.594 - 651 

RF 853.157 29.208 1000 1000 

LASSOPBRF 162.553 12.749 693 977 

EnetRARTEN 164.986 12.844 594 651 
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Table 9: SRs when n=100, P=1000, 𝝆𝒙 = 𝟎. 𝟖𝟓 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 5040.912 70.999 - 975 

Enet 2820.093 53.104 - 639 

RF 1070.905 32.724 200 1000 

LASSOPBRF 180.204 13.424 196 975 

EnetRARTEN 181.78 13.482 174 639 

500 

LASSO 4975.152 70.534 - 978 

Enet 2624.633 51.231 - 607 

RF 1053.161 32.452 500 1000 

LASSOPBRF 176.089 13.269 419 978 

EnetRARTEN 177.555 13.324 367 607 

800 

LASSO 4976.801 70.546 - 976 

Enet 2600.776 50.997 - 607 

RF 1085.889 32.952 800 1000 

LASSOPBRF 175.429 13.244 573 976 

EnetRARTEN 176.479 13.284 553 607 

1000 

LASSO 5015.59 70.82 - 977 

Enet 2966.625 54.466 - 655 

RF 1005.624 31.711 1000 1000 

LASSOPBRF 175.8 13.258 666 977 

EnetRARTEN 176.694 13.292 636 655 

OR=15%      

200 

LASSO 5047.877 71.048 - 978 

Enet 2875.285 53.621 - 639 

RF 1039.723 32.244 200 1000 

LASSOPBRF 181.609 13.476 196 978 

EnetRARTEN 182.663 13.515 174 639 

500 

LASSO 5040.924 70.999 - 977 

Enet 2643.354 51.413 - 620 

RF 1117.461 33.428 500 1000 

LASSOPBRF 175.839 13.26 422 977 

EnetRARTEN 178.749 13.369 356 620 

800 

LASSO 5017.64 70.835 - 974 

Enet 2688.079 51.846 - 634 

RF 1039.473 32.24 800 1000 

LASSOPBRF 176.008 13.266 576 974 

EnetRARTEN 177.792 13.333 521 634 

1000 

LASSO 5078.959 71.266 - 976 

Enet 2704.21 52.002 - 616 

RF 1085.147 32.941 1000 1000 

LASSOPBRF 175.748 13.257 663 976 

EnetRARTEN 177.905 13.338 629 616 
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Table 10: SRs when n=250, P=500, 𝝆𝒙 = 𝟎. 𝟗𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 170.584 13.06 - 272 

Enet 343.623 18.537 - 366 

RF 80.386 8.965 200 500 

LASSOPBRF 10.811 3.288 141 272 

EnetRARTEN 10.48 3.237 174 366 

500 

LASSO 171.611 13.1 - 275 

Enet 351.667 18.752 - 379 

RF 75.056 8.663 500 500 

LASSOPBRF 10.055 3.171 256 275 

EnetRARTEN 9.715 3.116 387 379 

800 

LASSO 164.254 12.816 - 269 

Enet 355.199 18.846 - 376 

RF 75.989 8.717 800 500 

LASSOPBRF 9.99 3.16 295 269 

EnetRARTEN 9.551 3.09 563 376 

1000 

LASSO 172.983 13.152 - 273 

Enet 352.275 18.768 - 376 

RF 76.449 8.743 1000 500 

LASSOPBRF 9.95 3.154 324 273 

EnetRARTEN 9.51 3.083 673 376 

OR=15%      

200 

LASSO 138.612 11.773 - 245 

Enet 376.873 19.413 - 381 

RF 81.516 9.028 200 500 

LASSOPBRF 11.282 3.359 121 245 

EnetRARTEN 10.831 3.291 171 381 

500 

LASSO 143.316 11.971 - 250 

Enet 371.364 19.27 - 381 

RF 80.289 8.96 500 500 

LASSOPBRF 10.653 3.263 216 250 

EnetRARTEN 10.053 3.17 392 381 

800 

LASSO 139.938 11.829 - 247 

Enet 351.045 18.736 - 377 

RF 77.02 8.776 800 500 

LASSOPBRF 10.523 3.244 245 247 

EnetRARTEN 9.853 3.139 562 377 

1000 

LASSO 138.91 11.786 - 247 

Enet 346.992 18.627 - 366 

RF 78.729 8.872 1000 500 

LASSOPBRF 10.543 3.247 264 247 

EnetRARTEN 9.898 3.146 667 366 
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Table 11: SRs when n=250, P=500, 𝝆𝒙 = 𝟎. 𝟖𝟓 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 262.086 16.189 - 284 

Enet 465.346 21.571 - 371 

RF 109.735 10.475 200 500 

LASSOPBRF 14.719 3.836 157 284 

EnetRARTEN 14.485 3.806 178 371 

500 

LASSO 258.321 16.072 - 287 

Enet 495.85 22.267 - 381 

RF 107.287 10.357 500 500 

LASSOPBRF 13.867 3.723 295 287 

EnetRARTEN 13.573 3.684 390 381 

800 

LASSO 260.14 16.128 - 287 

Enet 503.395 22.436 - 382 

RF 109.264 10.452 800 500 

LASSOPBRF 13.698 3.701 345 287 

EnetRARTEN 13.275 3.643 569 382 

1000 

LASSO 256.947 16.029 - 285 

Enet 469.513 21.668 - 376 

RF 108.192 10.401 1000 500 

LASSOPBRF 13.727 3.705 364 285 

EnetRARTEN 13.132 3.623 702 376 

OR=15%      

200 

LASSO 225.359 15.011 - 267 

Enet 495.011 22.248 - 373 

RF 110.742 10.523 200 500 

LASSOPBRF 15.121 3.888 145 267 

EnetRARTEN 14.722 3.836 180 373 

500 

LASSO 218.924 14.796 - 266 

Enet 502.686 22.42 - 380 

RF 106.683 10.328 500 500 

LASSOPBRF 14.357 3.789 254 266 

EnetRARTEN 13.798 3.714 392 380 

800 

LASSO 224.083 14.969 - 268 

Enet 498.561 22.328 - 375 

RF 107.114 10.349 800 500 

LASSOPBRF 14.216 3.77 299 268 

EnetRARTEN 13.624 3.691 561 375 

1000 

LASSO 218.82 14.792 - 266 

Enet 459.676 21.44 - 368 

RF 110.782 10.525 1000 500 

LASSOPBRF 14.21 3.769 317 266 

EnetRARTEN 13.616 3.69 678 368 
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Table 12: SRs when n=500, P=1000, 𝝆𝒙 = 𝟎. 𝟗𝟎 

Tree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 1321.594 36.353 - 665 

Enet 1838.355 42.876 - 750 

RF 273.101 16.525 200 1000 

LASSOPBRF 38.595 6.212 178 665 

EnetRARTEN 39.191 6.26 169 750 

500 

LASSO 1307.498 36.159 - 669 

Enet 1611.448 40.142 - 722 

RF 282.13 16.796 500 1000 

LASSOPBRF 36.13 6.01 425 669 

EnetRARTEN 36.42 6.034 387 722 

800 

LASSO 1330.144 36.471 - 671 

Enet 2143.279 46.295 - 799 

RF 243.636 15.608 800 1000 

LASSOPBRF 35.628 5.968 618 671 

EnetRARTEN 35.833 5.986 600 799 

1000 

LASSO 1283.096 35.82 - 664 

Enet 2107.65 45.909 - 797 

RF 302.231 17.384 1000 1000 

LASSOPBRF 35.508 5.958 687 664 

EnetRARTEN 35.948 5.995 681 797 

OR=15%      

200 

LASSO 1160.754 34.069 - 639 

Enet 1995.808 44.674 - 756 

RF 275.029 16.584 200 1000 

LASSOPBRF 39.648 6.296 172 639 

EnetRARTEN 39.668 6.298 173 756 

500 

LASSO 1162.319 34.092 - 637 

Enet 1962.345 44.298 - 740 

RF 267.891 16.367 500 1000 

LASSOPBRF 36.78 6.064 399 637 

EnetRARTEN 36.796 6.066 401 740 

800 

LASSO 1142.438 33.799 - 635 

Enet 1971.459 44.401 - 762 

RF 241.095 15.527 800 1000 

LASSOPBRF 36.276 6.023 563 635 

EnetRARTEN 36.399 6.033 607 762 

1000 

LASSO 1192.556 34.533 - 644 

Enet 2008.23 44.813 - 752 

RF 260.158 16.129 1000 1000 

LASSOPBRF 36.121 6.01 631 644 

EnetRARTEN 36.365 6.03 671 752 
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Table 13: SRs when n=500, P=1000, 𝝆𝒙 = 𝟎. 𝟖𝟓 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 1861.055 43.139 - 670 

Enet 2655.342 51.53 - 755 

RF 360.52 18.987 200 1000 

LASSOPBRF 49.662 7.047 185 670 

EnetRARTEN 49.751 7.053 178 755 

500 

LASSO 1871.101 43.256 - 668 

Enet 2569.485 50.69 - 745 

RF 351.04 18.736 500 1000 

LASSOPBRF 45.742 6.763 450 668 

EnetRARTEN 46.027 6.784 409 745 

800 

LASSO 1909.951 43.702 - 671 

Enet 2522.624 50.225 - 744 

RF 329.483 18.151 800 1000 

LASSOPBRF 45.352 6.734 650 671 

EnetRARTEN 45.895 6.774 610 744 

1000 

LASSO 1880.454 43.364 - 668 

Enet 3072.312 55.428 - 821 

RF 369.11 19.212 1000 1000 

LASSOPBRF 45.169 c6.72 716 668 

EnetRARTEN 45.413 6.738 738 821 

OR=15%      

200 LASSO 1736.702 41.673 - 653 

Enet 2556.775 50.564 - 744 

RF 366.22 19.136 200 1000 

LASSOPBRF 50.055 7.075 180 653 

EnetRARTEN 50.511 7.107 175 744 

500 LASSO 1752.195 41.859 - 657 

Enet 2953.814 54.349 - 793 

RF 341.723 18.485 500 1000 

LASSOPBRF 46.456 6.815 440 657 

EnetRARTEN 46.715 6.834 407 793 

800 LASSO 1758.659 41.936 - 652 

Enet 2335.699 48.329 - 717 

RF 324.006 18 800 1000 

LASSOPBRF 45.682 6.758 627 652 

EnetRARTEN 46.049 6.785 617 717 

1000 LASSO 1802.231 42.452 - 665 

Enet 2826.899 53.168 - 772 

RF 341.067 18.468 1000 1000 

LASSOPBRF 45.646 6.756 712 665 

EnetRARTEN 45.756 6.764 742 772 
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Based on the data provided in tables 2 and 3, with a sample size of n = 58 and independent 

variables equal to 450 and considering different rates of correlation (0.85 and 0.90), rates of 

outliers (10% and 15%), and four different values for Ntrees (200, 500, 800, and 1000), the 

following conclusions can be drawn: 1. Enet selects more independent variables than LASSO. 2. 

Enet has a lower minimum MSE and RMSE than LASSO. 3. Random Forest (RF) cannot select 

independent variables, but it has a lower minimum MSE and RMSE than LASSO and Enet. 4. 

The two proposed methods are superior to LASSO, Enet, and RF in terms of MSE and RMSE. 5. 

EnetRARTEN selects a larger number of trees than LASSOPBRF and has a lower minimum MSE 

and RMSE than all other methods. 

Based on the data provided in tables 4 and 5, the study was conducted with a sample size 

of 100. The independent variables were set at 100, with correlation rates of 0.85 and 0.90. 

Additionally, two different rates of outliers were considered: 10% and 15%. The study also 

included four different values for the Ntrees: 200, 500, 800, and 1000. Enet is found to choose a 

greater number of independent variables compared to LASSO. Additionally, Enet exhibits 

greater values of MSE and RMSE than LASSO. RF, on the other hand, is unable to select 

independent variables but still achieves lower MSE and RMSE values than both LASSO and 

Enet. Therefore, the two proposed methods outperform LASSO, Enet, and RF. Furthermore, 

EnetRARTEN selects a larger number of trees than LASSOPBRF and demonstrates the lowest 

MSE and RMSE among all methods. 

Based on the data provided in tables 6 and 7, the analysis was conducted using a sample 

size of 100. The independent variables were set at 500, with correlation rates of 0.85 and 0.90. 

Additionally, two different rates of outliers were considered: 10% and 15%. The analysis was 

performed using four different values for Ntrees: 200, 500, 800, and 1000. Enet is found to choose 

a greater number of independent variables compared to LASSO. Additionally, Enet exhibits 

greater values of MSE and RMSE than LASSO. RF, on the other hand, is unable to select 

independent variables but still achieves lower values of minimum MSE and RMSE than both 

LASSO and Enet. Consequently, the two proposed methods outperform LASSO, Enet, and RF. 

Furthermore, EnetRARTEN selects a higher number of trees than LASSOPBRF and 

demonstrates lower values of minimum MSE and RMSE compared to all other methods. 

Based on the data provided in tables 8 and 9, the study was conducted with a sample size 

of 100. The independent variables were set at 1000, with correlation rates of 0.85 and 0.90. Two 
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different rates of outliers, 10% and 15%, were also considered. Additionally, four different values 

of Ntrees were used: 200, 500, 800, and 1000. Enet is found to choose a greater number of 

independent variables compared to LASSO. Additionally, Enet exhibits lower values of MSE 

and RMSE than LASSO. RF, on the other hand, is unable to select independent variables, but it 

still demonstrates lower MSE and RMSE than both LASSO and Enet. Therefore, the two 

proposed methods outperform LASSO, Enet, and RF. Furthermore, EnetRARTEN selects a 

higher number of trees than LASSOPBRF and achieves the lowest MSE and RMSE among all the 

methods. 

Based on the data provided in tables 10 and 11, the study was conducted with a sample size 

of 250. The independent variables were set at 500, with correlation rates of 0.85 and 0.90. 

Additionally, two different rates of outliers were considered, namely 10% and 15%. The analysis 

was performed using four different Ntrees values: 200, 500, 800, and 1000. Enet is found to 

choose a greater number of independent variables compared to LASSO. Additionally, LASSO 

exhibits lower minimum MSE and RMSE values than Enet. RF, on the other hand, is unable to 

select independent variables but still demonstrates lower minimum MSE and RMSE values than 

both LASSO and Enet. Consequently, the two proposed methods outperform LASSO, Enet, and 

RF. Furthermore, EnetRARTEN selects a higher number of trees than LASSOPBRF and achieves 

lower minimum MSE and RMSE values than all other methods. 

Based on the data from tables 12 and 13, with a sample size of 500 and independent variables 

set at 1000, we observed different rates of correlation (0.85 and 0.90) and two rates of outliers 

(10% and 15%). We also tested four different values for Ntrees: 200, 500, 800, and 1000. Our 

findings indicate that Enet selects more independent variables than LASSO. Additionally, 

LASSO has the lowest values for MSE and RMSE compared to Enet. RF, on the other hand, 

cannot select independent variables but still has lower MSE and RMSE than LASSO and Enet. 

Overall, the two proposed methods (Enet and RF) outperform LASSO, Enet, and RF in terms of 

MSE and RMSE. Furthermore, EnetRARTEN selects a larger number of trees compared to 

LASSOPBRF and also achieves the lowest MSE and RMSE among all the methods. 

Overall Conclusions: 

RF 

• Selected all independent variables regardless of correlation or outliers. 
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• Showed the minimum MSE and RMSE compared to classical statistical methods (LASSO 

and Enet). 

Enet: 

• Demonstrated higher selection of independent variables and numbers of trees than LASSO 

in various scenarios compared to other methods. 

• Had a higher selection of independent variables and trees than Random Forest in the 

EnetRARTEN case. 

• Showed better performance in terms of variable selection compared to LASSO but did not 

achieve the lowest MSE and RMSE compared to all methods. 

LASSO: 

• Had a lower selection of independent variables and numbers of trees compared to Elastic 

Net and Random Forest. 

• Did not achieve the lowest MSE and RMSE compared to all methods. 

EnetRARTEN: 

• Showed a high selection of independent variables and numbers of trees compared to 

LASSO, Enet, and RF in all cases. 

• Achieved minimum MSE and RMSE compared to all other methods. 

LASSOPBRF: 

• Showed a lower MSE and RMSE compared to RF, LASSO, and Enet. 

EnetRARTEN exhibited the lowest MSE and RMSE among all methods. 

RF performed consistently well, selecting all independent variables and showing minimal MSE 

and RMSE compared to classical statistical methods (LASSO and Enet). 

It is important to ensure the clarity of the conclusions, especially in terms of methodology and 

the specifics of the analysis, to maintain accuracy and avoid misinterpretation. 
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                             Fig 4: RMSE of methods at different levels of independent variable 

 

                                       Fig 5: RMSE of methods at different levels of sample size  
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                               Fig 6: RMSE of methods at different levels of percentage of correlation   

 

                                         Fig 7: RMSE of methods at two levels of percentage of outliers   
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                                  Fig 8: RMSE of methods at different levels of a number of trees  

Figure 4 shows that the AMSE of RF is less than that of LASSO and Enet, and the proposed 

methods EnetRARTEN and LASSOPBRF are better than the classical methods LASSO, Enet, and 

RF. Finally, EnetRARTEN is better than all methods at any level of independent variables. 

Figure 5 shows that the AMSE of RF is less than that of LASSO and Enet, and the proposed 

methods EnetRARTEN and LASSOPBRF are better than the classical methods LASSO, Enet, and 

RF. Finally, EnetRARTEN is better than all methods at any level of sample size. 

Figure 6 shows that the AMSE of RF is less than that of LASSO and Enet, and the proposed 

methods EnetRARTEN and LASSOPBRF are better than the classical methods LASSO, Enet, and 

RF. Finally, EnetRARTEN is better than all methods at any level of percentage correlation. 

Figure 7 shows that the AMSE of RF is less than that of LASSO and Enet, and the proposed 

methods EnetRARTEN and LASSOPBRF are better than the classical methods LASSO, Enet, and 

RF. Finally, EnetRARTEN is better than all methods at two percentages of the outlier. 

Figure 8 shows that the AMSE of RF is less than that of LASSO and Enet, and the proposed 

methods EnetRARTEN and LASSOPBRF are better than the classical methods LASSO, Enet, and 

RF. Finally, EnetRARTEN is better than all methods at any value of the number of trees. 
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Overall Summary: 

EnetRARTEN Superiority: EnetRARTEN consistently displayed the minimum RMSE across 

various parameters, including the sample size, independent variable levels, correlation, outlier 

levels, and number of trees. This shows EnetRARTEN's robust performance and superiority 

compared to Enet, LASSO, RF, and LASSOPBRF across diverse conditions and factors in the 

analysis. 

5. Real data application 

The data pertaining to a production process were systematically observed during a specified 

period. [42] employed the data above in their analysis. Four hundred samples were collected for 

analysis, causing the inclusion of 468 unique independent variables to explain the resultant 

outcome. To guarantee the maintenance of confidentiality, the data accessible at the URL 

https://cstat.tuwien.ac.at/data is provided. R-Data has undergone a process of anonymization 

through the application of centering and scaling techniques. For the sake of simplicity, the time-

series nature of the data will not be taken into consideration in the subsequent analysis. A 

training set comprising randomly picked samples seventy percent of the sample size. Various 

methods were employed for fitting, and the evaluation was conducted on the remaining 30% of 

the test data. The primary aim of our investigation was to discover the independent variables 

that exerted the most substantial influence on the prediction of the dependent variable. In order 

to accomplish this aim, we used a model or variable-selection method.  

Suppose you have a dataset with actual observed values 𝑌𝑖  and corresponding predicted 

values �̂�𝑖 generated by a model. MSE is calculated by taking the average of the squared 

differences between predicted and actual values for all data points: 

                                                MSE = 
1

𝑛
(�̂�𝑖 − 𝑌𝑖 )

2
,                                                        (5.1) 

where n sample size of the dataset and 𝑌𝑖  are the observed values and �̂�𝑖 are the predicted values 

generated by a model. The RMSE is calculated as the square root of MSE, allowing for 

interpretation in the same units as the dependent variable: 

                                                           RMSE = √𝑀𝑆𝐸                                                            (5.2) 
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Table 14 Goodness fit measure for real data application 

Ntree Algorithm MSE RMSE #ST #SV 

200 

LASSO 0.545 0.738 - 33 

Enet 0.543 0.737 - 78 

RF 0.475 0.689 200 468 

LASSOPBRF 0.077 0.277 125 33 

EnetRARTEN 0.073 0.27 198 78 

500 

LASSO 0.576 0.759 - 33 

Enet 0.543 0.737 - 78 

RF 0.483 0.695 500 468 

LASSOPBRF 0.073 0.27 122 33 

EnetRARTEN 0.071 0.267 377 78 

800 

LASSO 0.571 0.755 - 33 

Enet 0.543 0.737 - 78 

RF 0.487 0.698 800 468 

LASSOPBRF 0.072 0.268 131 33 

EnetRARTEN 0.071 0.266 512 78 

1000 

LASSO 0.571 0.755 - 33 

Enet 0.543 0.737 - 78 

RF 0.487 0.698 1000 468 

LASSOPBRF 0.073 0.271 117 33 

EnetRARTEN 0.067 0.26 535 78 

 

The findings presented in Table 14 demonstrate that the Enet method outperforms both 

LASSO and RF in selecting independent variables. Specifically, Enet considers all independent 

variables and decision trees in its selection process. The proposed methodologies, namely 

LASSOPBRF and EnetRARTEN, exhibited superior performance compared to the conventional 

statistical approaches (Enet and LASSO) as well as the RF method, as evidenced by their lower 

MSE and RMSE values. Both the LASSOPBRF and EnetRARTEN methods were employed to 

determine the smallest number of independent variables and trees. Among the Enet, LASSO, RF, 

and LASSOPBRF models, EnetRARTEN had the lowest MSE and RMSE. The EnetRARTEN 

model incorporated a greater number of independent variables and trees compared to the 

LASSOPBRF method. 

 

 

 



Int. J. Anal. Appl. (2024), 22:187 33 

 

6. Conclusions  

The phenomenon known as the curse of dimensionality poses a substantial obstacle in the 

context of challenges characterized by a high number of dimensions. As the number of 

dimensions increases, the volume of the space experiences exponential growth, leading to a 

decrease in data density. The presence of sparsity in a dataset has the potential to result in 

overfitting, a phenomenon in which a model has strong performance on the training data but 

struggles to effectively generalize to unseen data. To accomplish this objective, the study 

conducted a comparative analysis of the performance of two proposed approaches, namely 

LASSOPBRF and EnetRARTEN, in comparison to conventional statistical methods (Enet and 

LASSO) and a machine learning method known as RF. This analysis was carried out using both 

a Monte Carlo simulation and a real-world application that utilized a production dataset. In 

summarizing the principal findings of the simulation study, it was seen that the EnetRARTEN 

approach had superior goodness of fit in comparison to the other methods. (2) EnetRARTEN had 

superior performance compared to all other methods, as evidenced by its attainment of the lowest 

values for MSE and RMSE. (3) In contrast to LASSOPBRF and EnetRARTEN, RF picked a greater 

number of variables and decision trees. Based on the obtained results, it can be inferred that the 

EnetRARTEN technique is the suggested approach due to its consistent demonstration of lower 

MSE and RMSE values in comparison to the Enet, LASSO, RF, and LASSOPBRF methods. This 

indicates the usefulness of the EnetRARTEN method in effectively addressing the challenges 

posed by multicollinearity and outlier influences. In conclusion, the research emphasizes the 

significance of employing high-dimensional methodologies, particularly EnetRARTEN, to 

enhance the precision of statistical models when confronted with intricate datasets that 

encompass multicollinearity and outlier effects. The analysis of the real-world application 

revealed several significant findings. Firstly, the RF method employed all independent variables 

in its analysis, utilizing what is known as the full model. In contrast, both LASSOPBRF and 

EnetRARTEN showed higher values for metrics such as MSE and RMSE. Moreover, the 

EnetRARTEN method demonstrated superior performance when compared to Enet, LASSO, RF, 

and LASSOPBRF, achieving the lowest values of MSE and RMSE. 
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Appendix 
 

Table S1: SRs when n=58, P=450, 𝝆𝒙 = 𝟎. 𝟖𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 499.858 22.357 - 129 

Enet 412.707 20.315 - 282 

RF 290.939 17.056 200 450 

LASSOPBRF 60.946 7.806 118 129 

EnetRARTEN 58.037 7.618 166 282 

500 

LASSO 508.441 22.548 - 129 

Enet 430.856 20.757 - 284 

RF 286.677 16.931 500 450 

LASSOPBRF 62.157 7.884 144 129 

EnetRARTEN 57.155 7.56 342 284 

800 

LASSO 532.312 23.071 - 129 

Enet 483.059 21.978 - 298 

RF 286.446 16.924 800 450 

LASSOPBRF 63.651 7.978 152 129 

EnetRARTEN 56.941 7.545 475 298 

1000 

LASSO 520.052 22.804 - 129 

Enet 445.454 21.105 - 291 

RF 261.52 16.171 1000 450 

LASSOPBRF 64.186 8.011 160 129 

EnetRARTEN 56.846 7.539 584 291 

OR=15%      

200 

LASSO 518.475 22.77 - 129 

Enet 446.275 21.125 - 288 

RF 298.954 17.29 200 450 

LASSOPBRF 60.914 7.804 117 129 

EnetRARTEN 58.185 7.627 165 288 

500 

LASSO 510.749 22.599 - 131 

Enet 482.137 21.957 - 303 

RF 275.894 16.61 500 450 

LASSOPBRF 61.954 7.871 143 131 

EnetRARTEN 56.994 7.549 325 303 

800 

LASSO 513.874 22.668 - 130 

Enet 443.485 21.059 - 290 

RF 280.345 16.743 800 450 

LASSOPBRF 63.159 7.947 156 130 

EnetRARTEN 57.117 7.557 473 290 

1000 

LASSO 532.79 23.082 - 130 

Enet 463.811 21.536 - 284 

RF 278.376 16.684 1000 450 

LASSOPBRF 64.413 8.025 159 130 

EnetRARTEN 58.164 7.626 533 284 
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Table S2: SRs when n=58, P=450, 𝝆𝒙 = 𝟎. 𝟑𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 411.447 20.284 - 107 

Enet 663.265 25.753 - 284 

RF 668.279 25.851 200 450 

LASSOPBRF 108.62 10.422 100 107 

EnetRARTEN 99.235 9.961 162 284 

500 

LASSO 413.63 20.337 - 106 

Enet 652.349 25.541 - 276 

RF 644.809 25.393 500 450 

LASSOPBRF 111.211 10.545 117 106 

EnetRARTEN 95.133 9.753 317 276 

800 

LASSO 406.022 20.15 - 107 

Enet 692.483 26.315 - 290 

RF 655.851 25.609 800 450 

LASSOPBRF 115.27 10.736 125 107 

EnetRARTEN 96.248 9.81 430 290 

1000 

LASSO 407.708 20.191 - 106 

Enet 677.662 26.031 - 289 

RF 658.888 25.668 1000 450 

LASSOPBRF 115.178 10.732 129 106 

EnetRARTEN 95.606 9.777 530 289 

OR=15%      

200 

LASSO 405.216 20.129 - 107 

Enet 608.675 24.671 - 274 

RF 701.013 26.476 200 450 

LASSOPBRF 108.193 10.401 100 107 

EnetRARTEN 99.009 9.95 162 274 

500 

LASSO 397.348 19.933 - 107 

Enet 699.823 26.454 - 296 

RF 683.089 26.135 500 450 

LASSOPBRF 112.61 10.611 117 107 

EnetRARTEN 96.908 9.844 325 296 

800 

LASSO 404.875 20.121 - 106 

Enet 668.65 25.858 - 280 

RF 684.866 26.169 800 450 

LASSOPBRF 115.53 10.748 125 106 

EnetRARTEN 94.837 9.738 459 280 

1000 

LASSO 408.296 20.206 - 106 

Enet 708.982 26.626 - 290 

RF 681.828 26.111 1000 450 

LASSOPBRF 115.58 10.75 129 106 

EnetRARTEN 95.103 9.752 519 290 
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Table S3: SRs when n=100, P=100, 𝝆𝒙 = 𝟎. 𝟖𝟎 
Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 10.038 3.168 - 41 

Enet 36.314 6.026 - 83 

RF 14.416 3.796 200 100 

LASSOPBRF 2.286 1.512 104 41 

EnetRARTEN 2.257 1.502 172 83 

500 

LASSO 9.733 3.119 - 41 

Enet 33.462 5.784 - 83 

RF 14.822 3.85 500 100 

LASSOPBRF 2.228 1.492 145 41 

EnetRARTEN 2.213 1.487 349 83 

800 

LASSO 9.78 3.127 - 41 

Enet 38.882 6.235 - 85 

RF 14.437 3.799 800 100 

LASSOPBRF 2.236 1.495 165 41 

EnetRARTEN 2.187 1.479 508 85 

1000 

LASSO 9.893 3.145 - 41 

Enet 38.079 6.17 - 84 

RF 14.476 3.804 1000 100 

LASSOPBRF 2.207 1.485 181 41 

EnetRARTEN 2.175 1.474 579 84 

OR=15%      

200 

LASSO 12.285 3.505 - 38 

Enet 42.738 6.537 - 83 

RF 16.895 4.11 200 100 

LASSOPBRF 2.536 1.592 105 38 

EnetRARTEN 2.507 1.583 174 83 

500 

LASSO 11.9397 3.4554 - 38 

Enet 31.5659 5.6183 - 82 

RF 15.7006 3.9624 500 100 

LASSOPBRF 2.4726 1.5724 148 38 

EnetRARTEN 2.472 1.5722 349 82 

800 

LASSO 11.762 3.429 - 38 

Enet 44.823 6.695 - 83 

RF 16.063 4.007 800 100 

LASSOPBRF 2.486 1.576 170 38 

EnetRARTEN 2.48 1.575 498 83 

1000 

LASSO 12.153 3.486 - 39 

Enet 44.905 6.701 - 85 

RF 16.705 4.087 1000 100 

LASSOPBRF 2.447 1.564 178 39 

EnetRARTEN 2.439 1.561 582 85 
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Table S4: SRs when n=100, P=100, 𝝆𝒙 = 𝟎. 𝟑𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 13.647 3.694 - 51 

Enet 41.696 6.457 - 85 

RF 31.679 5.628 200 100 

LASSOPBRF 3.953 1.988 93 51 

EnetRARTEN 4.512 2.124 171 85 

500 

LASSO 13.386 3.658 - 52 

Enet 45.061 6.712 - 84 

RF 31.864 5.644 500 100 

LASSOPBRF 3.484 1.866 114 52 

EnetRARTEN 4.362 2.088 330 84 

800 

LASSO 14.075 3.751 - 51 

Enet 43.173 6.57 - 83 

RF 32.391 5.691 800 100 

LASSOPBRF 3.315 1.82 121 51 

EnetRARTEN 4.339 2.083 434 83 

1000 

LASSO 14.219 3.77 - 51 

Enet 44.939 6.703 - 83 

RF 32.036 5.66 1000 100 

LASSOPBRF 3.228 1.796 126 51 

EnetRARTEN 4.3 2.073 490 83 

OR=15%      

200 

LASSO 16.703 4.087 - 48 

Enet 45.286 6.729 - 82 

RF 34.168 5.845 200 100 

LASSOPBRF 4.042 2.01 89 48 

EnetRARTEN 4.739 2.176 175 82 

500 

LASSO 16.386 4.048 - 48 

Enet 47.939 6.923 - 81 

RF 34.499 5.873 500 100 

LASSOPBRF 3.548 1.883 106 48 

EnetRARTEN 4.591 2.142 323 81 

800 

LASSO 16.855 4.105 - 48 

Enet 47.998 6.928 - 81 

RF 33.106 5.753 800 100 

LASSOPBRF 3.408 1.846 116 48 

EnetRARTEN 4.534 2.129 433 81 

1000 

LASSO 16.43 4.053 - 48 

Enet 47.786 6.912 - 82 

RF 33.828 5.816 1000 100 

LASSOPBRF 3.324 1.823 119 48 

EnetRARTEN 4.578 2.139 478 82 
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Table S5: SRs when n=100, P=500, 𝝆𝒙 = 𝟎. 𝟖𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 478.391 21.872 - 172 

Enet 786.95 28.052 - 332 

RF 325.412 18.039 200 500 

LASSOPBRF 45.733 6.762 159 172 

EnetRARTEN 44.707 6.686 176 332 

500 

LASSO 468.2 21.638 - 171 

Enet 859.176 29.312 - 341 

RF 331.965 18.22 500 500 

LASSOPBRF 45.526 6.747 202 171 

EnetRARTEN 43.646 6.606 350 341 

800 

LASSO 478.857 21.882 - 172 

Enet 884.055 29.733 - 347 

RF 318.795 17.854 800 500 

LASSOPBRF 45.997 6.782 220 172 

EnetRARTEN 43.609 6.603 519 347 

1000 

LASSO 485.505 22.034 - 172 

Enet 805.106 28.374 - 337 

RF 313.992 17.719 1000 500 

LASSOPBRF 45.941 6.777 229 172 

EnetRARTEN 43.256 6.576 599 337 

OR=15%      

200 

LASSO 487.27 22.074 - 173 

Enet 818.441 28.608 - 334 

RF 319.499 17.875 200 500 

LASSOPBRF 45.318 6.732 159 173 

EnetRARTEN 44.997 6.708 175 334 

500 

LASSO 479.443 21.896 - 172 

Enet 780.243 27.932 - 332 

RF 318.116 17.835 500 500 

LASSOPBRF 45.776 6.765 203 172 

EnetRARTEN 43.724 6.612 372 332 

800 

LASSO 479.339 21.893 - 172 

Enet 765.38 27.665 - 327 

RF 325.634 18.045 800 500 

LASSOPBRF 45.882 6.773 221 172 

EnetRARTEN 43.521 6.597 502 327 

1000 

LASSO 473.195 21.753 - 171 

Enet 829.763 28.805 - 338 

RF 330.61 18.182 1000 500 

LASSOPBRF 46.03 6.784 228 171 

EnetRARTEN 43.383 6.586 594 338 
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Table S6: SRs when n=100, P=500, 𝝆𝒙 = 𝟎. 𝟑𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 419.378 20.479 - 137 

Enet 1046.329 32.347 - 327 

RF 755.306 27.483 200 500 

LASSOPBRF 99.946 9.997 144 137 

EnetRARTEN 96.741 9.836 175 327 

500 

LASSO 422.718 20.56 - 137 

Enet 1043.168 32.298 - 329 

RF 763.128 27.624 500 500 

LASSOPBRF 102.699 10.134 179 137 

EnetRARTEN 94.553 9.723 350 329 

800 

LASSO 430.728 20.754 - 137 

Enet 1112.722 33.357 - 330 

RF 757.185 27.517 800 500 

LASSOPBRF 103.826 10.189 194 137 

EnetRARTEN 93.149 9.651 494 330 

1000 

LASSO 410.599 20.263 - 138 

Enet 1081.133 32.88 - 329 

RF 743.289 27.263 1000 500 

LASSOPBRF 104.952 10.244 200 138 

EnetRARTEN 93.278 9.658 566 329 

OR=15%      

200 

LASSO 419.173 20.474 - 136 

Enet 1110.111 33.318 - 328 

RF 771.038 27.768 200 500 

LASSOPBRF 100.17 10.009 144 136 

EnetRARTEN 97.453 9.872 175 328 

500 

LASSO 426.02 20.64 - 137 

Enet 994.529 31.536 - 319 

RF 765.572 27.668 500 500 

LASSOPBRF 101.989 10.099 180 137 

EnetRARTEN 94.171 9.704 350 319 

800 

LASSO 426.26 20.646 - 137 

Enet 1089.636 33.009 - 327 

RF 750.056 27.387 800 500 

LASSOPBRF 104.263 10.21 194 137 

EnetRARTEN 93.26 9.657 476 327 

1000 

LASSO 424.593 20.605 - 137 

Enet 1074.683 32.782 - 333 

RF 765.614 27.669 1000 500 

LASSOPBRF 104.827 10.238 201 137 

EnetRARTEN 92.705 9.628 576 333 

 

 



40 Int. J. Anal. Appl. (2024), 22:187 

 

Table S7: SRs when n=100, P=1000, 𝝆𝒙 = 𝟎. 𝟖𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 6339.119 79.618 - 975 

Enet 3723.027 61.016 - 668 

RF 1187.731 34.463 200 1000 

LASSOPBRF 198.352 14.083 196 975 

EnetRARTEN 198.988 14.106 174 668 

500 

LASSO 6456.204 80.35 - 976 

Enet 3394.143 58.259 - 610 

RF 1264.367 35.557 500 1000 

LASSOPBRF 192.066 13.858 409 976 

EnetRARTEN 194.318 13.939 371 610 

800 

LASSO 6289.279 79.304 - 976 

Enet 3405.385 58.355 - 632 

RF 1173.856 34.261 800 1000 

LASSOPBRF 193.627 13.915 543 976 

EnetRARTEN 194.018 13.929 540 632 

1000 

LASSO 6281.299 79.254 - 976 

Enet 3312.643 57.555 - 611 

RF 1271.024 35.651 1000 1000 

LASSOPBRF 193.536 13.911 610 976 

EnetRARTEN 194.238 13.936 628 611 

OR=15%      

200 

LASSO 6398.12 79.988 - 977 

Enet 3473.805 58.938 - 630 

RF 1260.374 35.501 200 1000 

LASSOPBRF 197.709 14.06 196 977 

EnetRARTEN 199.248 14.115 177 630 

500 

LASSO 6336.328 79.601 - 975 

Enet 3329.283 57.699 - 621 

RF 1210.776 34.796 500 1000 

LASSOPBRF 193.803 13.921 405 975 

EnetRARTEN 195.165 13.97 367 621 

800 

LASSO 6426.608 80.166 - 977 

Enet 3530.922 59.421 - 626 

RF 1233.966 35.127 800 1000 

LASSOPBRF 192.879 13.888 536 977 

EnetRARTEN 195 13.964 514 626 

1000 

LASSO 6290.025 79.309 - 975 

Enet 3253.726 57.041 - 603 

RF 1266.156 35.583 1000 1000 

LASSOPBRF 193.714 13.918 622 975 

EnetRARTEN 195.585 13.985 617 603 
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Table S8: SRs when n=100, P=1000, 𝝆𝒙 = 𝟎. 𝟑𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 8345.816 91.355 - 714 

Enet 4428.716 66.548 - 610 

RF 3039.101 55.128 200 1000 

LASSOPBRF 406.205 20.154 176 714 

EnetRARTEN 399.146 19.978 168 610 

500 

LASSO 8290.178 91.05 - 715 

Enet 4555.003 67.49 - 619 

RF 3092.877 55.613 500 1000 

LASSOPBRF 413.709 20.339 212 715 

EnetRARTEN 391.164 19.777 356 619 

800 

LASSO 8257.499 90.87 - 726 

Enet 4291.87 65.512 - 585 

RF 2953.834 54.349 800 1000 

LASSOPBRF 417.997 20.444 230 726 

EnetRARTEN 387.653 19.688 496 585 

1000 

LASSO 8382.053 91.553 - 730 

Enet 4565.024 67.564 - 613 

RF 2938.105 54.204 1000 1000 

LASSOPBRF 419.922 20.492 240 730 

EnetRARTEN 386.632 19.662 586 613 

OR=15%      

200 

LASSO 8315.567 91.189 - 723 

Enet 4550.122 67.454 - 613 

RF 2974.945 54.543 200 1000 

LASSOPBRF 403.265 20.081 177 723 

EnetRARTEN 399.295 19.982 169 613 

500 

LASSO 8409.82 91.705 - 717 

Enet 4580.982 67.682 - 604 

RF 3041.809 55.152 500 1000 

LASSOPBRF 414.515 20.359 211 717 

EnetRARTEN 390.629 19.764 357 604 

800 

LASSO 8322.242 91.226 - 725 

Enet 4513.337 67.181 - 599 

RF 2919.553 54.032 800 1000 

LASSOPBRF 420.007 20.494 231 725 

EnetRARTEN 388.114 19.7 503 599 

1000 

LASSO 8427.911 91.803 - 720 

Enet 4246.089 65.162 - 586 

RF 2971.641 54.512 1000 1000 

LASSOPBRF 420.139 20.497 238 720 

EnetRARTEN 382.262 19.551 605 586 
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Table S9: SRs when n=250, P=500, 𝝆𝒙 = 𝟎. 𝟖𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 328.647 18.128 - 290 

Enet 605.426 24.605 - 378 

RF 144.281 12.011 200 500 

LASSOPBRF 18.949 4.353 168 290 

EnetRARTEN 18.576 4.31 182 378 

500 

LASSO 336.229 18.336 - 291 

Enet 621.573 24.931 - 389 

RF 141.136 11.88 500 500 

LASSOPBRF 17.852 4.225 321 291 

EnetRARTEN 17.574 4.192 390 389 

800 

LASSO 338.211 18.39 - 289 

Enet 663.803 25.764 - 389 

RF 140.009 11.832 800 500 

LASSOPBRF 17.838 4.223 368 289 

EnetRARTEN 17.435 4.175 561 389 

1000 

LASSO 340.175 18.443 - 292 

Enet 656.827 25.628 - 390 

RF 137.616 11.731 1000 500 

LASSOPBRF 17.789 4.217 394 292 

EnetRARTEN 17.229 4.15 689 390 

OR=15%      

200 

LASSO 298.767 17.284 - 278 

Enet 555.842 23.576 - 369 

RF 146.505 12.103 200 500 

LASSOPBRF 19.419 4.406 158 278 

EnetRARTEN 19.094 4.369 180 369 

500 

LASSO 306.787 17.515 - 278 

Enet 591.305 24.316 - 373 

RF 145.428 12.059 500 500 

LASSOPBRF 18.356 4.284 289 278 

EnetRARTEN 17.924 4.233 403 373 

800 

LASSO 299.441 17.304 - 278 

Enet 606.153 24.62 - 379 

RF 139.938 11.829 800 500 

LASSOPBRF 18.301 4.278 339 278 

EnetRARTEN 17.646 4.2 570 379 

1000 

LASSO 299.006 17.291 - 278 

Enet 623.189 24.963 - 381 

RF 138.078 11.75 1000 500 

LASSOPBRF 18.255 4.272 357 278 

EnetRARTEN 17.601 4.195 684 381 
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 Table S10: SRs when n=250, P=500, 𝝆𝒙 = 𝟎. 𝟑𝟎  

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 381.773 19.539 - 269 

Enet 781.938 27.963 - 374 

RF 525.887 22.932 200 500 

LASSOPBRF 68.781 8.293 180 269 

EnetRARTEN 68.154 8.255 192 374 

500 

LASSO 397.238 19.93 - 269 

Enet 824.353 28.711 - 377 

RF 515.563 22.706 500 500 

LASSOPBRF 67.691 8.227 330 269 

EnetRARTEN 66.164 8.134 416 377 

800 

LASSO 389.787 19.743 - 269 

Enet 839.53 28.974 - 377 

RF 507.419 22.525 800 500 

LASSOPBRF 67.82 8.235 378 269 

EnetRARTEN 65.649 8.102 582 377 

1000 

LASSO 387.977 19.697 - 269 

Enet 799.142 28.269 - 375 

RF 516.7 22.731 1000 500 

LASSOPBRF 67.882 8.239 397 269 

EnetRARTEN 65.173 8.073 693 375 

OR=15%      

200 

LASSO 393.698 19.841 - 268 

Enet 812.3 28.5 - 377 

RF 524.335 22.898 200 500 

LASSOPBRF 69.173 8.317 179 268 

EnetRARTEN 68.981 8.305 192 377 

500 

LASSO 394.781 19.869 - 268 

Enet 752.195 27.426 - 367 

RF 515.274 22.699 500 500 

LASSOPBRF 67.613 8.222 330 268 

EnetRARTEN 66.331 8.144 414 367 

800 

LASSO 390.689 19.765 - 268 

Enet 836.303 28.918 - 378 

RF 515.153 22.696 800 500 

LASSOPBRF 68.073 8.25 377 268 

EnetRARTEN 65.894 8.117 572 378 

1000 

LASSO 389.652 19.739 - 268 

Enet 859.782 29.322 - 381 

RF 510.658 22.597 1000 500 

LASSOPBRF 68.249 8.261 396 268 

EnetRARTEN 65.733 8.107 669 381 
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Table S11: SRs when n=500, P=1000, 𝝆𝒙 = 𝟎. 𝟖𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 2344.31 48.418 - 667 

Enet 3556.755 59.638 - 775 

RF 487.469 22.078 200 1000 

LASSOPBRF 62.275 7.891 188 667 

EnetRARTEN 62.54 7.908 180 775 

500 

LASSO 2359.815 48.577 - 664 

Enet 3768.472 61.387 - 807 

RF 473.777 21.766 500 1000 

LASSOPBRF 58.08 7.621 463 664 

EnetRARTEN 58.6 7.655 426 807 

800 

LASSO 2272.547 47.671 - 664 

Enet 3427.746 58.546 - 738 

RF 407.74 20.192 800 1000 

LASSOPBRF 57.04 7.552 670 664 

EnetRARTEN 57.413 7.577 652 738 

1000 

LASSO 2322.336 48.19 - 665 

Enet 3023.95 54.99 - 700 

RF 468.432 21.643 1000 1000 

LASSOPBRF 57.012 7.55 740 665 

EnetRARTEN 57.061 7.553 756 700 

OR=15%      

200 

LASSO 2221.654 47.134 - 656 

Enet 3217.188 56.72 - 737 

RF 484.344 22.007 200 1000 

LASSOPBRF 62.562 7.909 187 656 

EnetRARTEN 63.434 7.964 180 737 

500 

LASSO 2308.197 48.043 - 661 

Enet 3711.533 60.922 - 769 

RF 422.436 20.553 500 1000 

LASSOPBRF 58.493 7.648 459 661 

EnetRARTEN 58.993 7.68 419 769 

800 

LASSO 2318.551 48.151 - 662 

Enet 3160.647 56.219 - 720 

RF 466.171 21.59 800 1000 

LASSOPBRF 57.494 7.582 664 662 

EnetRARTEN 57.892 7.608 644 720 

1000 

LASSO 2297.004 47.927 - 659 

Enet 3334.79 57.747 - 754 

RF 461.022 21.471 1000 1000 

LASSOPBRF 57.448 7.579 726 659 

EnetRARTEN 57.521 7.584 747 754 
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Table S12: SRs when n=500, P=1000, 𝝆𝒙 = 𝟎. 𝟑𝟎 

Ntree Algorithm MSE RMSE #ST #SV 

OR=10%      

200 

LASSO 2121.678 46.061 - 575 

Enet 4105.331 64.072 - 744 

RF 1613.557 40.169 200 1000 

LASSOPBRF 216.679 14.72 192 575 

EnetRARTEN 216.186 14.703 197 744 

500 

LASSO 2154.761 46.419 - 574 

Enet 4154.013 64.451 - 745 

RF 1592.892 39.911 500 1000 

LASSOPBRF 208.717 14.447 468 574 

EnetRARTEN 208.667 14.445 450 745 

800 

LASSO 2125.489 46.103 - 574 

Enet 4276.956 65.398 - 746 

RF 1591.201 39.889 800 1000 

LASSOPBRF 209.461 14.472 645 574 

EnetRARTEN 207.58 14.407 686 746 

1000 

LASSO 2133.461 46.189 - 575 

Enet 4906.392 70.045 - 790 

RF 1578.005 39.724 1000 1000 

LASSOPBRF 209.051 14.458 706 575 

EnetRARTEN 205.481 14.334 784 790 

OR=15%      

200 

LASSO 2117.779 46.019 - 573 

Enet 4697.491 68.538 - 784 

RF 1581.203 39.764 200 1000 

LASSOPBRF 216.767 14.723 192 573 

EnetRARTEN 215.491 14.679 198 784 

500 

LASSO 2129.988 46.151 - 573 

Enet 4496.684 67.057 - 771 

RF 1597.818 39.972 500 1000 

LASSOPBRF 210.054 14.493 469 573 

EnetRARTEN 209.774 14.483 456 771 

800 

LASSO 2117.508 46.016 - 572 

Enet 4735.219 68.812 - 772 

RF 1599.241 39.99 800 1000 

LASSOPBRF 209.077 14.459 647 572 

EnetRARTEN 207.602 14.408 665 772 

1000 

LASSO 2083.419 45.644 - 572 

Enet 4709.021 68.622 - 780 

RF 1613.062 40.162 1000 1000 

LASSOPBRF 209.053 14.458 708 572 

EnetRARTEN 207.4 14.401 760 780 
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