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Abstract. Time-local fractional approaches for nonlinear partial differential equations in fractal dimensions are essential

for capturing the complex, irregular behaviors found in fractal systems. In this paper, a new modification of the

local fractional Laplace variational iteration method (MLFLVIM) for obtaining analytical approximate solutions to the

fractional gas dynamics equation, fractional Stefan equation, and fractional Newell-Whitehead-Segel equation within

the context of fractal time space is presented. The proposed method (MLFLVIM) elegantly combines the local fractional

Laplace transform (LFLT) with modified variational iteration method. Specifically, we first apply the (LFLT) to the

given local fractional PDEs, yielding a transformed system of equations. We then apply modified variational iteration

to this system. Finally, we use the inverse of (LFLT) to obtain the desired solution. To demonstrate the effectiveness

of this approach, we implement it on three numerical physical problems. The results show that the (MLFLVIM) can

successfully handle these nonlinear LFPDEs and provide accurate analytical approximation solutions.

1. Introduction

Local fractional derivatives are a generalization of classical derivatives to non-integer, or frac-

tional, orders, providing a powerful tool for analyzing complex systems that exhibit non-standard

behaviors such as fractality and heterogeneity. Unlike traditional derivatives, which are defined

over integer orders, local fractional derivatives extend the concept of differentiation to fractional
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dimensions, offering a more nuanced description of changes in functions that vary irregularly or

discontinuously. This approach is particularly useful in fields such as physics, engineering, and

finance, where it aids in modeling phenomena like anomalous diffusion, viscoelastic materials,

and other processes that cannot be accurately captured using classical calculus. Moreover, Local

fractional derivatives have emerging applications in computer science and AI, particularly in fields

such as signal processing, image analysis, and machine learning. By extending the traditional con-

cept of differentiation to fractional orders, they allow for more accurate modeling of complex,

non-linear systems and irregular data patterns, see [1, 2].

In the 19th century, influential mathematicians like Liouville and Riemann established the foun-

dations for major advancements in the field of fractional calculus. This area of study has seen

significant progress and transformation since those early developments. Local fractional calculus,

a branch of this field, has found widespread applications across diverse domains such as anomalous

diffusion processes, signal processing techniques, biomechanical modeling, and financial analyses,

as highlighted in reference [3, 4]. One of the key properties of local fractional derivatives is their

non-locality. Unlike classical derivatives which are local operators (depending only on the values

of the function and its derivatives at a point), fractional derivatives incorporate a more global view

of the function, taking into account its behavior over a range of values. This property makes them

particularly well-suited for analyzing systems with memory or hereditary properties, see [5] This

innovative calculus has garnered the interest of mathematicians, prompting them to explore and

expand upon existing concepts while developing new results tailored to this calculus [6–14]. Over

the recent years, a diverse range of analytical and semi-analytical techniques have been proposed

and developed by researchers for solving many systems of fractional partial differential equations

(FPDEs) [15–17].

Generally, mathematicians have struggled to solve FPDEs, using both numerical and analytical

techniques. These types of equations are notoriously difficult to solve. This challenge motivated

the development of new methods to address FPDEs.

The primary goal of this work is to introduce and expand the application of the proposed modified

Laplace variational iteration method (MLVIM) [18], within the framework of fractal derivatives,

to obtain local fractional solutions for the following three nonlinear PDEs:

Throughout the paper, we use u = u(x, t)

I. Gas dynamics equation (GDE):

∂αu
∂tα
− u + u2 +

1
2
∂u2

∂x
= f (x, t), 0 ≤ x ≤ 1, t ≥ 0, (1.1)

with initial condition:

u(x, 0) = g(x). (1.2)

The gas dynamics equations are indeed mathematical formulations derived from the fun-

damental conservation laws in physics, such as the conservation of mass, momentum, and

energy. These nonlinear equations, specifically for ideal gases, are used to model three
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types of nonlinear waves: shock fronts, contact discontinuities, and rare factions. These

equations play a crucial role in understanding and analyzing the behavior of gases and the

propagation of waves within them. [19]. Different analytical and numerical methods have

been utilized to solve various types of gas dynamics equations in physics. For example,

in [20] the investigators carried out the several plans to solve nonlinear system of equations

of gas dynamic problems for a group of discontinuous functions. In the work [21], the

authors employed novel homotopy perturbation techniques and the Laplace transform to

derive an analytical solution for the gas dynamics equation.

II. Stefan equation (SE):

∂αu
∂tα

=
∂2u
∂x2 0 ≤ x ≤ t(s), s ≥ 0, (1.3)

with initial conditions:

u(x, 0) = −1, s ≥ 0,

u(t(s), s) = 0, s ≥ 0,

∂u(x, t)
∂x

=
∂t(s)
∂s

.

(1.4)

The nonlinear Stefan problems, such as diffusion processes, melting, and freezing, consti-

tute a broad domain with extensive engineering and industrial applications. These complex

Stefan models represent heat-related phenomena involving state changes. They are defined

by heat spreading through materials and have been extensively studied [23]. Huntul and

Lesnic [26] investigated an inverse problem focused on determining the time-dependent

thermal conductivity and the transient temperature that satisfy the heat equation with given

boundary conditions. Many researchers have shown interest in studying the numerical and

analytical solutions of the Stefan problem [30, 31].

III. Newell-Whitehead-Segel equation (NWSE):

∂αu
∂tα

= k
∂2u

∂x2 + au− buq, (1.5)

with initial condition:

u(x, 0) = g(x), (1.6)

where a, b ∈ R, and k, q ∈N.

The NWSE is a nonlinear partial differential equation applied for modelling physical,

chemical and biological systems including material movement through an environment.

The NWSE has been widely used in diverse situations, such as astrophysics [24], plasma

physics [25], and Bernard-Rayleigh convection of a fluid mixture around a bifurcation points

[22]. Several scholars have focused their efforts on developing analytical and numerical

solutions to this particular equation. As an illustration, in the year 2013, Ezzati and

Shakibi derived solutions for two nonlinear forms of the NWS equations by employing
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a methodology that combined the ADM Method with the reduced differential transform

technique [29].

The remaining parts of this work are structured as follows: In Section 2, The fundamental

information on local fractional calculus is provided. In Section 3, the analysis of the (MLFLVIM)

is given. In Section 4, we demonstrate the method on three special numerical examples of well-

known physical problems and provide graphs of the proposed solutions to illustrate the accuracy

and effectiveness of this approach. To conclude, we summarize our findings in Section 5.

2. Local Fractional Calculus

In this section, the essential concepts of local fractional calculus that are necessary to understand

the original contributions that will be discussed later are presented. We direct the readers to the

references [27,28] which provide rigorous definitions and detailed mathematical proofs related to

the topics being discussed. Throughout this paper, let α ∈ (0, 1].

Definition 2.1. A map g : (a, b) → R is said to be continuous in the sense of Local fractional

derivative at a certain t0 if, for every ε > 0, there is a δ > 0 such that whenever t ∈ (a, b) and

|t− t0| < δ the following condition holds:∣∣∣g(t) − g(t0)
∣∣∣ < εα. (2.1)

Definition 2.2. local Fractional Partial Derivative(LFPD)
Let h(x, t) be local fractional continuous in t. The LFPD of h(x, t) of order α at a certain point (x, t0)

in terms of t is defined as

∂α

∂tα
h(x, t0) = lim

t→t0

∆α
[
h(x, t) − h(x, t0)

]
(t− t0)α

,

where

∆α
[
h(x, t) − h(x, t0)

]
� Γ(1 + α)

[
h(x, t) − h(x, t0)

]
.

Definition 2.3. The Local fractional Mittage-Leffler function is defined as: for every τ ∈ R,

EL
α(τ) =

∞∑
i=0

τiα

Γ(1 + iα)
. (2.2)

Lemma 2.1. Suppose g, h are partially local fractional differentiable in variable t of order α, then:

i. ∂α

∂tα g(x, t) = 0, if g is a constant function in t.;
ii. ∂α

∂tα (ag + bh) = a( ∂
α

∂tα g) + b( ∂
α

∂tα h) f or a, b ∈ R;

iii. ∂α

∂tα (gh) = g( ∂
α

∂tα h) + h( ∂
α

∂tα g);

iv. ∂α

∂tα
( g

h

)
=

h ∂α

∂tα g− g ∂α

∂tα h

h2 , given that h , 0;

v. ∂α

∂tα

(
tpα

Γ(1 + qα)

)
=

t(q−1)α

Γ(1 + (q− 1)α)
∀q ∈N;

vi. ∂α

∂tα (EL
α(t)) = EL

α(t);
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vii. ∂α

∂tα (EL
α(−t)) = −EL

α(−t);

Definition 2.4. Local Fractional Integral(LFI)
Let φ be local fractional continuous on [a, b]. The LFI of φ(t) of order α is given as:

LI(α) (φ) =
1

Γ(1 + α)

∫ b

a
φ(s)(ds)α (2.3)

=
1

Γ(1 + α)
lim

∆sk→0

M∑
k=1

φ(sk)(∆sk)
α, (2.4)

where, M ∈ N ∆sk = sk − sk−1, and [sk, sk−1] for k = 1, 2, ..., M, s1 = a < s1 < ... < sM−1 < sM = b
form a partition of [a, b].

Definition 2.5. Let φ be local fractional continuous on [a, b]. The LF-Laplace transform of φ of

order α is given as

LL,α{φ}(s) =
1

Γ(1 + α)

∫ +∞

0
EL
α(−sαtα)φ(t)(dt)α, (2.5)

Denote the LFLT of φ by ΦL,α(s).

The LFLT of φ exists if the following inequality holds true:

1
Γ(1 + α)

∫
∞

0
|φ(t) |(dt)α < ∞.

Definition 2.6. The inverse of LFLT is defined as:

φ(t) = L −1
L,α{Φ

L,α(s) } (2.6)

Lemma 2.2. LF Laplace Transform’s Properties

i. LL,α{ c1 θ(t) ± c2 δ(t) } = c1LL,α{θ(t)} ± c2LL,α{δ(t)};
ii. LL,α {1} = 1

sα ;

iii. LL,α

{
tmα

Γ(1 + mα)

}
=

1
sα(m+1)

, m ∈N;

iv. LL,α

{
EL
α(aαt)

}
=

1
sα − aα

, provided that sα > aα;

Theorem 2.1. Suppose that LL,α[ψ(x, t)] = ΨL,α(x, s) exists and ψ(x, t) approaches 0 as t → ∞,

then

LL,α

[∂αψ(x, t)
∂tα

]
= sαΨL,α(x, s) −ψ(x, 0) (2.7)
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3. Analysis ofMLFLVIM

In this section, we describe the procedure of the introduced technique known as (MLFLVIM),

for the following general form of a nonlinear Local Fractional PDE:

∂αu
∂tα

+ N(x, u, t) = 0, (3.1)

with I.C.

u(x, 0) = f (x), (3.2)

where N represents a nonlinear operator that depends on the function u and its derivatives.

Apply LFLT on Eq. (3.1), we get

LL,α

[
∂αu
∂tα

+ N(x, u, t)
]
= 0, (3.3)

We multiply the equation Eq. (3.3) by a Local fractional Lagrange multiplier λα(s), we acquire:

λα(s)LL,α

[
∂αu
∂tα

+ N(x, u, t)
]
= 0. (3.4)

Rewrite Eq. (3.4) as follows:

UL,α(x, s) = UL,α(x, s) + λα(s)LL,α

[
∂αu
∂tα

+ N(x, u, t)
]

. (3.5)

Inspired by He’s Variational Iteration Method (VIM), we can formulate the following iterative

equation:

UL,α
n+1(x, s) = UL,α

n (x, s) + λα(s)LL,α

[
∂αun

∂tα
+ N(x, ũn, t)

]
. (3.6)

To determine the expression for λ(s), we take the variation of Eq. (3.6). Then, by applying the

restricted variations, δũn = 0 and δŨn(x, 0) = 0, we obtain the following result:

δUL,α
n+1(x, s) = sαλα(s)δUL,α

n (x, s) + δUL,α
n (x, s) = 0 (3.7)

This process leads to the stationary conditions:

1 + sαλα(s) = 0, or ˘(s) = −
1
sff

(3.8)

By substituting the derived expression for λ(s) into Eq. (3.6), we obtain the iteration equation

UL,α
n+1(x, s) = UL,α

n (x, s) −
1
sα

LL,α

[
∂αun

∂tα
+ N(x, un, t)

]
.. (3.9)

Now, by applying the inverse of the LFLT to the expression given in Eq. (3.9), we obtain the

following result:

un+1(x, t) = un −L −1
L,α

[
1
sα

LL,α

[
∂αun

∂tα
+ N(x, un, t)

]]
. (3.10)

We begin by considering the zeroth approximationu0(x, t), and by substituting this value into the

expression given in Eq. (3.10), we can iteratively compute u1, u2, · · · , un, · · · , and so forth. As
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a result, the proposed local fractional solution to the given Equations Eqs. (3.1) and (3.2) can be

obtained as follows:

u(x, t) = lim
n→∞

un(x, t). (3.11)

The convergence behavior of this iterative process is contingent upon the specific form of the

nonlinear term present in the equations. For more comprehensive insights and details regarding

the convergence analysis, one can refer to the reference [32]

4. Applications

In this section, we present three well-known partial differential equations with local fractional

derivatives in fractal dimension. These example problems were chosen because they possess

closed-form analytical solutions in sense of fractal derivative. Their closed-form analytical solu-

tions will facilitate analyzing and studying the accuracy assessment of numerical results.

Example 4.1. Consider the following NWSE in sense of local fractional derivative with k = 1, a =

−2, and b = 0:
∂αu
∂tα

= −2u +
∂2u
∂x2 , (4.1)

subject to I.C.

u(x, 0) = ex. (4.2)

By employing the proposed methodology, we can derive a recurrence relationship as follows:

UL,α
n+1(x, s) = λα(s)LL,α

[
∂αun

∂tα
−
∂2un

∂x2 + 2un

]
+ UL,α

n . (4.3)

Performing the variational operation on the equation Eq. (4.3), we obtain the subsequent expres-

sion:

δUL,α
n+1(x, s) = λα(s)δLL,α

[
∂αun

∂tα
+ 2ũn −

∂2ũn

∂x2

]
+ δUL,α

n . (4.4)

By applying the constrained variations δũn = 0, we reach at the following result:

δUL,α
n+1(x, s) = sαλα(s)δUL,α

n + δUL,α
n = 0. (4.5)

This process yields the stationary condition 1+ sαλ(s) = 0, which consequently leads toλ(s) = − 1
sα .

Substituting this expression for λ(s) into Eq. (4.3), we obtain the following result:

UL,α
n+1(x, s) = UL,α

n −
1
sα

LL,α

[
∂αun

∂tα
+ 2un −

∂2un

∂x2

]
. (4.6)

Performing the inverse Laplace transform operation on Eq. (4.6), we obtain:

un+1(x, s) = un −L −1
L,α

[
1
sα

LL,α

[
∂αun

∂tα
−
∂2un

∂x2 + 2un

]]
. (4.7)

By selecting the initial condition u0(x, t) = ex, and substituting it in Eq. (4.7), we can derive the

following sequence of successive approximations:
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For n = 0 :

u1(x, t) = u0 −L −1
L,α

[
1
sα

LL,α

[
∂u0

∂t
−
∂2u0

∂x2 + 2u0

]]
,

= ex
−L −1

L,α

[
1
sα

LL,α

[
−
∂2u0

∂x2 + 2u0

]]
,

= ex
−L −1

L,α

[ ex

s2α

]
,

= ex
(
1−

tα

Γ(1 + α)

)
.

(4.8)

For n = 1 :

u2(x, t) = u1 −L −1
L,α

[
1
sα

LL,α

[
∂u1

∂t
−
∂2u1

∂x2 + 2u1

]]
,

= ex
(
1−

tα

Γ(1 + α)

)
−L −1

L,α

[[
ex

s3α

]]
,

= ex
(
1−

tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)

)
.

(4.9)

For n = 2 :

u3(x, t) = u2 −L −1
L,α

[
1
sα

LL,α

[
∂u2

∂t
−
∂2u2

∂x2 + 2u2

]]
,

= ex
(
1−

tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)

)
−L −1

L,α

[
ex

s4α

]
,

= ex
(
1−

tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
−

t3α

Γ(1 + 3α)

)
.

(4.10)

Continuing with this iterative process, we obtain the general formulation for un as follows:

un(x, t) = ex
(
1−

tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
−

t3α

Γ(1 + 3α)
+ · · ·+

tnα

Γ(1 + nα)

)
, ∀ n ≥ 0. (4.11)

Hence, the approximate local fractional analytical solution is:

u(x, t) = lim
n→∞

un(x, t)

= ex lim
n→∞

n∑
j=0

(−1) jt jα

Γ(1 + jα)

= exEL
α(−t).

(4.12)

This solution aligns perfectly with the exact solution of the given problem in the sense of local

fractional derivative.

It is worth to mention that, in case of α = 1, the current solution becomes u(x, t) = ex−t which is

the exact solution of the ordinary problem with classical derivatives. The plot of this solution is

depicted in Figure 1, generated using Python for four distinct values of α.
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Figure 1. The graph represents the local fractional solution of NWSE Eq. (4.1) with

four distinct values of α

Example 4.2. Consider the local fractional SE in fractal dimension as follows:

∂αu
∂tα

=
∂2u
∂x2 , (4.13)

subject to I.C.

u(x, 0) = cosh (x) − x. (4.14)

By employing the proposed methodology, we can derive a recurrence relationship as follows:

UL,α
n+1(x, s) = λα(s)LL,α

[
∂αun

∂tα
−
∂2un

∂x2

]
+ UL,α

n . (4.15)

Performing the variational operation on the equation Eq. (4.15), we obtain the subsequent expres-

sion:

δUL,α
n+1(x, s) = λα(s)δLL,α

[
∂αun

∂tα
−
∂2ũn

∂x2

]
+ δUL,α

n . (4.16)
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By applying the constrained variations δũn = 0, we reach at the following result:

δUL,α
n+1(x, s) = sαλα(s)δUL,α

n + δUL,α
n = 0. (4.17)

This process yields the stationary condition 1+ sαλ(s) = 0, which consequently leads toλ(s) = − 1
sα .

Substituting this expression for λ(s) into Eq. (4.15), we obtain the following result:

UL,α
n+1(x, s) = UL,α

n −
1
sα

LL,α

[
∂αun

∂tα
−
∂2un

∂x2

]
. (4.18)

Performing the inverse Laplace transform operation on Eq. (4.18), we obtain:

un+1(x, s) = un −L −1
L,α

[ 1
sα

LL,α

] [
∂αun

∂tα
−
∂2un

∂x2

]
. (4.19)

By selecting the initial condition u0(x, t) = u(x, 0) = cosh (x) − x, and substituting it in Eq. (4.19),

we can derive the following sequence of successive approximations:

For n = 0 :

u1(x, t) = u0 −L −1
L,α

[ 1
sα

LL,α

] [
∂αu0

∂tα
−
∂2u0

∂x2

]
.

= −x + cosh(x) −L −1
L,α

[ 1
sα

LL,α

] [
cosh (x)

]
.

= −x + cosh(x) − cosh(x)L −1
L,α

[ 1
s2α

]
.

= −x + cosh(x)
[
1−

tα

Γ(1 + α)

]
.

(4.20)

For n = 1 :

u2(x, t) = u1 −L −1
L,α

[ 1
sα

LL,α

] [
∂αu1

∂tα
−
∂2u1

∂x2

]
.

= −x + cosh(x)
[
1−

tα

Γ(1 + α)

]
−L −1

L,α

[ 1
sα

LL,α

] [
−2 cosh(x) + cosh(x)

tα

Γ(1 + α)

]
.

= −x + cosh(x)
[
1 +

tα

Γ(1 + α)
−

t2α

Γ(1 + 2α)

]
.

(4.21)

For n = 2 :

u3(x, t) = u2 −L −1
L,α

[ 1
sα

LL,α

] [
∂αu2

∂tα
−
∂2u2

∂x2

]
.

= −x + cosh(x)
[
1 +

tα

Γ(1 + α)
−

t2α

Γ(1 + 2α)

]
− cosh(x)L −1

L,α

[ 1
sα

LL,α

] [
−2

tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)

]
= −x + cosh(x)

[
1 +

tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
−

t3α

Γ(1 + 3α)

]
.

(4.22)

Continuing with this iterative process, we obtain the general formulation for un as follows:

un(x, t) = −x + cosh(x)
[
1 +

tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
−

t3α

Γ(1 + 3α)
+ · · ·+

tnα

Γ(1 + nα)

]
, ∀ n ≥ 0.

(4.23)
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Hence, the approximate local fractional analytical solution is:

u(x, t) = lim
n→∞

un(x, t).

= −x + cosh(x) lim
n→∞

n∑
j=0

t jα

Γ(1 + jα)
.

= −x + cosh(x)EL
α(t).

(4.24)

This solution aligns perfectly with the exact solution of the given problem in the sense of local

fractional derivative.

It is worth to mention that, in case of α = 1, the current solution becomes u(x, t) = −x + cosh(x)et

which is the exact solution of the ordinary problem with classical derivatives. The plot of this

solution is depicted in Figure 2, generated using Python for four distinct values of α.

Figure 2. The graph represents the local fractional solution of SE Eq. (4.13) with

four distinct values of α.
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Example 4.3. Consider the local fractional NGDE in fractal dimension as follows:

∂αu
∂tα

= u−
1
2
∂u2

∂x
− u2, 0 ≤ x ≤ 1, t ≥ 0, (4.25)

subject to I.C.

u(x, 0) = e−x. (4.26)

By employing the proposed methodology, we can derive a recurrence relationship as follows:

UL,α
n+1(x, s) = λα(s)LL,α

[
∂αun

∂tα
− un + u2

n +
1
2
∂u2

n

∂x

]
+ UL,α

n . (4.27)

Performing the variational operation on the equation Eq. (4.27), we obtain the subsequent expres-

sion:

δUL,α
n+1(x, s) = λα(s)δLL,α

[
∂αun

∂tα
− ũn(x, t) +

1
2
∂ũ2

n

∂x
+ ũ2

n

]
+ δUL,α

n (4.28)

By applying the constrained variations δũn = 0, we reach at the following result:

δUL,α
n+1(x, s) = sαλα(s)δUL,α

n + δUL,α
n = 0. (4.29)

This process yields the stationary condition 1+ sαλ(s) = 0, which consequently leads toλ(s) = − 1
sα .

Substituting this expression for λ(s) into Eq. (4.27), we obtain the following result:

UL,α
n+1(x, s) = UL,α

n −
1
sα

LL,α

[
∂αun

∂tα
− un + u2

n +
1
2
∂u2

n

∂x

]
. (4.30)

Performing the inverse Laplace transform operation on Eq. (4.30), we obtain:

un+1(x, s) = un −L −1
L,α

[
1
sα

LL,α

[
∂αun

∂tα
− un + u2

n +
1
2
∂u2

n

∂x

]]
. (4.31)

By selecting the initial condition u0(x, t) = u(x, 0) = e−x, and substituting this value into Eq. (4.31),

we can derive the following sequence of successive approximations:

For n = 0 :

u1(x, t) = u0 −L −1
L,α

 1
sα

LL,α

[
∂αu0

∂tα
− u0 + u2

0 +
1
2

∂u2
0

∂x

] .

= e−x + e−xL −1
L,α

[ 1
s2α

]
.

= e−x[1 +
tα

Γ(1 + α)
].

(4.32)

For n = 1 :

u2(x, t) = u1 −L −1
L,α

 1
sα

LL,α

[
∂αu1

∂tα
− u1 + u2

1 +
1
2

∂u2
1

∂x

] . (4.33)

= e−x[1 +
tα

Γ(1 + α)
] + e−xL −1

L,α

[ 1
s3α

]
. (4.34)

= e−x[1 +
tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
]. (4.35)
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Continuing with this iterative process, we obtain the general formulation for un as follows:

un(x, t) = e−x
[
1 +

tα

Γ(1 + α)
+

t2α

Γ(1 + 2α)
+ · · ·+

tnα

Γ(1 + nα)

]
, ∀ n ≥ 0. (4.36)

Therefore, the approximate local fractional analytical solution is:

u(x, t) = e−x lim
n→∞

n∑
j=0

t jα

Γ(1 + jα)

= e−xEL
α(t).

(4.37)

This solution aligns perfectly with the exact solution of the given problem in the sense of local

fractional derivative.

It is worth to mention that, in case of α = 1, the current solution becomes u(x, t) = e−x+t which is

the exact solution of the ordinary problem with classical derivatives. The plot of this solution is

depicted in Figure 3, generated using Python for four distinct values of α.

Figure 3. The graph represents the local fractional solution of NGDE Eq. (4.25) with

four distinct values of α
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5. Conclusion

In this paper, we effectively applied the proposed method to derive approximate local fractional

analytical solutions for the Nonlinear Gas Dynamics Equations (NGDE), the Stefan Equation (SE),

and Newell-Whitehead-Segel equation (NWSE) involving local fractional derivatives. The above

applications demonstrate that the proposed technique is a straightforward, effective, and precise

technique that rapidly approaches the closed-form solution in the neighborhood of the initial

point, providing an accurate power series solution. Furthermore, it operates without the need

for variable discretization, substantial machine memory, or the computational time required by

other methods. This method is sufficiently qualified to reduce the computational size and time.

Its advantages make it a more efficient and practical approach compared to traditional methods.

As perspective of this work, we plan to explore the use of local fractional derivatives in image

processing and machine learning to enhance performance. By applying this method, we aim

to improve edge detection and texture analysis in images. In machine learning, it can offer a

new approach to feature extraction, helping to model complex, non-linear patterns in data. This

technique could lead to more accurate and efficient algorithms for various applications.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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