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Abstract. Human immunodeficiency virus kind 1 (HIV-1) compromises the immune system by infecting and damaging

CD4+ T cells. Infection can progress to the ultimate stage, acquired immune deficiency syndrome (AIDS), if HIV-1

therapy is not received. People living with HIV/AIDS are more vulnerable to infections that they otherwise wouldn’t

develop. Opportunistic infections or malignancies are the terms used to describe them. Kaposi sarcoma (KS) is an AIDS-

related malignancy caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) (also known as human herpesvirus 8

(HHV-8)). HIV-1 and KSHV co-infection cases has been shown in several studies. Using a system of ODEs, we develop

a new mathematical model to study the co-dynamics of HIV-1 and KSHV in vivo. The model includes interactions

between healthy CD4+ T cells, HIV-1-infected CD4+ T cells, HIV-1 particles, healthy B cells, KSHV-infected B cells,

and KSHV particles. By analyzing the boundedness and nonnegativity of the solutions, we prove the mathematical

well-posedness and biological compatibility of the model. The existence and stability of the model’s steady states are

established by four threshold values that we identify. We prove that steady states are globally asymptotically stable by

using Lyapunov’s method and LaSalle’s invariance principle. Numerical simulations are used to display the results.

For both basic reproduction ratios of HIV-1 mono-infection (R1) and KSHV mono-infection (R2), sensitivity analysis

is carried out. A comparison between HIV-1 or KSHV mono-infections and co-infections with HIV-1 and KSHV is

given. Empirical evidence indicates that co-infection results in higher KSHV and HIV-1 concentrations compared to

mono-infection cases. This result is in line with a number of findings found in the literature.

1. Introduction

One of the biggest clinical challenges is persistent viral infections such as those caused by hep-

atitis B or C virus (HBV or HCV), human immunodeficiency virus kind 1 (HIV-1) and human

cytomegaly virus (HCMV). HIV-1 is harmful because it may damage several immune cell types,
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including monocytes, dendritic cells, macrophages, and CD4+ T cells [1], [2]. Nonetheless, CD4+ T

cells are thought to be HIV-1’s primary target. The immune system’s innate and adaptive compo-

nents work together to protect the body against outside invaders. Cellular immunity and humoral

immunity make up adaptive immunity [2]. B cells are the foundation of humoral immunity be-

cause they produce a specific antibody that directly neutralizes the virus. Cytotoxic T-lymphocytes

(CTLs) are the building blocks of cellular immunity; they eliminate the infected cells [3]. Single-

stranded RNA virus HIV-1 is a member of the Retroviridae family of viruses. In addition, HIV-1 is

a lentivirus, a kind of retrovirus that infects host cells over a long period of time by progressively

destroying them [2]. When the CD4+ T cell count of an HIV-1 infected individual falls below a cer-

tain threshold (200 cells/mm3), the condition is known as acquired immune deficiency syndrome

(AIDS) [4]. Then the body becomes vulnerable to many opportunistic infections including STDs

(sexually transmitted diseases), respiratory infections, and some tumors. Semen, Blood, vaginal

secretions and breast milk, are among the bodily fluids via which HIV-1 may transmit [5].

One of the AIDS-related diseases is Kaposi sarcoma (KS) which is a type of cancer [6]. KS is

caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) (also known as human herpesvirus 8

(HHV-8)). KSHV is first discovered by Chang et al. [7] which is a member of the Herpesviridae

family of DNA viruses. KSHV may infect a variety of cell types, such as macrophages, endothelial

cells, B cells, and epithelial cells [8]. But B cells are the main target of KSHV [9]. KSHV has

been shown to be transmissible by a variety of routes, such as blood products, sexual contact and

salivary shedding [10]. Healthy people who test positive for KSHV have a very low probability of

developing KS. The danger is substantially larger for those with impaired immune systems, though

[11]. According to a report in [12], individuals with HIV-1 have a higher likelihood of becoming

KSHV seropositive than those without HIV-1. Numerous studies documented occurrences of

co-infection between HIV-1 and KSHV (see e.g., [13], [14], [15], [16]. [17], [18]).

Our knowledge of viral dynamics has significantly increased thanks to rigorous mathematical

modeling and analysis, which can help us come up with workable and efficient management plans

to eradicate viral infections. One of the areas of mathematical immunology that is progressing

the fastest is the formulation of mathematical models of the dynamics of HIV-1 infection. Three

populations are included in the classic model of HIV-1 mono-infection [19]: healthy CD4+ T cells,

infected cells, and free HIV-1 particles. Later on, the model was extended in a great deal of

publications to include other biological elements such as time delay [20], [21], [22], [23], cell-to-cell

transmission [24], [25], [26], [27], reaction-diffusion [25], [28], latently infected cells [28], [29], [30],

cellular immune response [19], [26], [31], humoral immune response [24], [32], [33], both cellular

and humoral immune responses [34], [35], [36], age-structured [27], [37], [38] and antiretroviral

treatment [39], [40], [41].

Researchers haven’t paid much attention to modeling the dynamics of an KSHV mono-infection

in vivo. The three primary components of the KSHV infection model are healthy B cells, infected

B cells, and free KSHV particles. Chimbola et al. [42] formulated a KSHV mono-infection model.
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Only the healthy steady state’s stability was examined, though. A mathematical model developed

by Nani and Jin [43] depicts the progression of HIV-1 co-infection and KS under the influence of

highly active antiretroviral treatment (HAART). The same authors in [44] added adoptive cellular

immunotherapy to strengthen this model. However, these two publications omitted information

about the kinematics of free KSHV particles as well as B cells. In [10], [45] and [46], models were

developed to show how co-infection with HIV-1 and KSHV progresses. The healthy CD4+ T cells

and healthy B cells were not taken into consideration by the model in [10]. Except for examining

the positivity of the solutions, the model in [45] was not mathematically examined. In [10] and [46],

the investigation focused solely on the stability of the healthy steady state. We further observe

that the models shown in [10], [43], [44], [45] and [46] ignored the function of B cells in the fight

against HIV-1.

In this work, we present a novel model of KSHV/HIV-1 co-dynamics in vivo. B cells’ defense

against HIV-1 is included in the model. Apart from the global stability of the steady states, we

investigate the fundamental characteristics of the solutions to the model. The global stability of

the four steady states are proven by using Lyapunov’s approach and applying LaSalle’s invariance

principle. In order to verify the theoretical findings, we offer numerical simulations. We carry

out sensitivity analysis for the basic reproduction ratios of HIV-1 mono-infection (R1) and KSHV

mono-infection (R2). We conclude by discussing the results. Our model and its analysis may be

important to study the dynamics of different human viruses.

2. Model formulation

In this section, a KSHV/HIV-1 co-infection model is introduced. The dynamics of KSHV/HIV-1

co-infection is illustrated in Figure 1. We develop our suggested model based on the following

presumptions:

A1 Six populations are depicted in the model: healthy CD4+ T cells (U), HIV-1-infected CD4+

T cells (Y), HIV-1 particles (V), healthy B cells (W), KSHV-infected B cells (Z), and KSHV

particles (P).
A2 HIV-1 and KSHV target healthy CD4+ T cells and B cells, respectively.

A3 The rate at which healthy CD4+ T cells are produced is ξ, they die at $U, and they get

HIV-1 infection at %UV.

A4 The mortality rate of CD4+ T cells infected with HIV-1 is δY.

A5 At rate κY, HIV-1-infected CD4+ T cells create the HIV-1 particles, which are then elimi-

nated at rate ϑV.

A6 At the rate of ρWV, the antibodies (generated by B cells) neutralize HIV-1 particles.

A7 The rate of generation of healthy B cells is `, whereas the rate of simulation by HIV-1 is

κWV, the rate of mortality is βW, and the rate of infection by KSHV is νPW.

A8 The rate of mortality of KSHV-infected B cells is ηZ.
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Figure 1. The schematic illustration of the HIV-1 and KSHV co-dynamics concept.

A9 At a rate of υZ, KSHV-infected B cells create KSHV particles, which thereafter die at a rate

of εP.

Here, we denote the concentrations of the compartments at time t by U = U(t), Y = Y(t),
V = V(t), W = W(t), Z = Z(t) and P = P(t). The above assumptions lead us to formulate the

following system:

U̇ = ξ−$U − %UV, (2.1)

Ẏ = %UV − δY, (2.2)

V̇ = κY − ϑV − ρWV, (2.3)

Ẇ = `+ κWV − βW − νPW, (2.4)

Ż = νPW − ηZ, (2.5)

Ṗ = υZ− εP. (2.6)

All presented parameters of model (2.1)-(2.6) are positive. The description and value of the

parameters are presented in Table 1. Some of the parameters’s value are taken from previous

studies, while other values are assumed.
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Table 1. Model parameters.

Symbol Parameter Value Source

ξ Source of healthy CD4+T cells 10 cells mm−3 day−1 [47]

$ Mortality rate of healthy CD4+T cells 0.01 day−1 [48]

% Incidence rate of healthy CD4+T cells by HIV-1 varied

δ Mortality rate of HIV-1-infected CD4+T cells 0.4 day−1 [47]

κ Generation rate of HIV-1 by infected CD4+T cells 38 viruses cells−1 day−1 [48]

ϑ Mortality rate of HIV-1 2.4 day−1 [48]

ρ Neutralization rate of HIV-1 particles due to B cells 0.1 cells−1 mm3 day−1

` Source of healthy B cells 48 cells mm−3 day−1 [45]

κ Activation rate of B cells 0.01 viruses−1 mm3 day−1 [49]

β Mortality rate of healthy B cells 0.24 day−1 [50]

ν Incidence rate of healthy B cells by KSHV varied

η Mortality rate of KSHV-infected B cells 0.33 day−1 [50]

υ Generation rate of KSHV particles by infected B cells 1 viruses cells−1 day−1 Assumed

ε Mortality rate of KSHV 0.57 day−1 [45, 50]

3. Basic properties

We ensure the well-posedness of model (2.1)-(2.6) by providing the non-negativity and bound-

edness of solutions in this part. In addition, we compute all steady states with the associated

threshold parameters.

3.1. Properties of the model’s solutions. We demonstrate the model’s biological acceptability and

mathematical well-posedness by examining the solutions’ boundedness and nonnegativity.

Lemma 3.1. All system’s solutions are non-negative and bounded.

Proof. From Eqs. (2.1)-(2.6) we have

U̇ |U=0 = ξ > 0,

Ẏ |Y=0 = %UV ≥ 0, ∀V, U ≥ 0,

V̇ |V=0 = κY ≥ 0, ∀Y ≥ 0,

Ẇ |W=0 = ` > 0,

Ż |Z=0 = νPW ≥ 0, ∀W, P ≥ 0,

Ṗ |P = = υZ ≥ 0, ∀Z ≥ 0.

Thus, according to Proposition B.7 of [51]

(U, Y, V, W, Z, P)(t) ∈ R6
+ for any t ≥ 0 when (U, Y, V, W, Z, P)(0) ∈ R6

+.

Let’s demonstrate the boundedness of solutions now. We define a function φ(t) as:

φ = U + Y +
δ

2κ
V +

δρ

2κκ
[W + Z] +

δηρ

4κυκ
P.



6 Int. J. Anal. Appl. (2024), 22:160

Then, we get

φ̇ = U̇ + Ẏ +
δ

2κ
V̇ +

δρ

2κκ

[
Ẇ + Ż

]
+

δηρ

4κυκ
Ṗ

= ξ−$U − %UV + %UV − δY +
δ

2κ
[κY − ϑV − ρWV] +

δρ

2κκ
[`+ κVW − βW − νPW

+νPW − ηZ] +
δηρ

4κυκ
[υZ− εP]

= ξ+
δρ`

2κκ
−$U −

δ
2

Y −
δϑ
2κ

V −
δρβ

2κκ
W −

δηρ

4κκ
Z−

δηρε

4κυκ
P

≤ ξ+
δρ`

2κκ
− σ

[
U + Y +

δ
2κ

V +
δρ

2κκ
(W + Z) +

δηρ

4κυκ
P
]

= ξ+
δρ`

2κκ
− σφ,

where σ = min{$, δ/2,ϑ, β, η/2, ε}. Thus,

φ(t) ≤
ξ
σ
+

δρ`

2κκσ
= θ1 if φ(0) ≤ θ1.

It follows that

0 ≤ U(t), Y(t) ≤ θ1, 0 ≤ V(t) ≤ θ2, 0 ≤W(t), Z(t) ≤ θ3, 0 ≤ P(t) ≤ θ4

if

U(0) + Y(0) +
δ

2κ
V(0) +

δρ

2κκ
[W(0) + Z(0)] +

δηρ

4κυκ
P(0) ≤ θ1

where θ2 = 2κ
δ θ1, θ3 = 2κκ

δρ θ1 and θ4 = 4κυκ
δηρ θ1. �

3.2. Steady states and thresholds.

Lemma 3.2. For system (2.1)-(2.6), there exist four steady states as well as four thresholds (Ri, i = 1, 2, 3, 4)
such that

(I) There is always an healthy steady state, SS0 = (U0, 0, 0, W0, 0, 0).
(II) When R1 > 1, then there exists an KSHV mono-infection steady state, SS1 = (U1, 0, 0, W1, Z1, P1),

in addition to SS0.
(III) When R2 > 1, then there exists an HIV-1 mono-infection steady state, SS2 = (U2, Y2, V2, W2, 0, 0),

in addition to SS0.
(IV) When R3 > 1 and R4 > 1, then then there exists an KSHV/HIV-1 co-infection steady state,

SS3 = (U3, Y3, V3, W3, Z3, P3), in addition to SS0.

Proof. Steady states of (2.1)-(2.6) satisfy
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

0 = ξ−$U − %UV,

0 = %UV − δY,

0 = κY − ϑV − ρWV,

0 = `+ κWV − βW − νPW,

0 = νPW − ηZ,

0 = υZ− εP.

These equations provide four steady states:

(1) Healthy steady state, SS0 = (U0, 0, 0, W0, 0, 0), where U0 = ξ
$ and W0 = `

β .

(2) KSHV mono-infection steady state, SS1 = (U1, 0, 0, W1, Z1, P1) , where

U1 =
ξ
$

, W1 =
ηε

υν
=

W0

R1
, Z1 =

εβ

υν
(R1 − 1) , P1 =

β

ν
(R1 − 1) ,

where

R1 =
`υν
ηεβ

,

is the basic reproduction ratio for KSHV mono-infection. R1 is known as the number of

newly KSHV-infected B cells that result from one KSHV-infected B cell at the start of an

KSHV mono-infection. A KSHV mono-infection can be established or not based on the

parameter R1.

(3) HIV-1 mono-infection steady state, SS2 = (U2, Y2, V2, W2, 0, 0), where

U2 =
δY2

%V2
, Y2 =

ϑV2 + ρV2W2

κ
, W2 =

`
β− κV2

and V2 satisfies the following:

ω1V2 +ω2V +ω3

β− κV
= 0,

where

ω1 = δϑ%κ,

ω2 = δ$ϑκ− ξκ%κ− δϑ%β− δρ`%,

ω3 = ξκ%β− δ$ϑβ− δ$ρ`.

We define a function Ψ(V) as:

Ψ(V) =
ω1V2 +ω2V +ω3

β− κV
, V ∈

(
0,
β

κ

)
.
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Note that, Ψ is continuous on
(
0, βκ

)
. We have

Ψ(0) =
ξκ%β− δ$ϑβ− δ$ρ`

β

=
δ$ϑβ+ δ$ρ`

β
(R2 − 1)

where

R2 =
ξκ%β

δ$ (ϑβ+ ρ`)
,

which denotes the basic reproduction ratio for HIV-1 mono-infection. R2 is known as the

number of newly HIV-1-infected CD4+T cells that result from one HIV-1-infected CD4+T

cell at the start of an HIV-1 mono-infection. An HIV-1 mono-infection can be established

or not based on the parameter R2.

Therefore, Ψ(0) > 0 if R2 > 0. Moreover, we have lim
V→

( β
κ

)− Ψ(V) = −∞. Thus, there exists

V2 such that 0 < V2 <
β
κ and satisfies Ψ(V2) = 0. Consequently, U2 > 0, Y2 > 0 and W2 > 0.

(4) KSHV/HIV-1 co-infection steady state, SS3 = (U3, Y3, V3, W3, Z3, P3), where

U3 =
δ(ϑυν+ ηερ)

κυν%
, Y3 =

$(ϑυν+ ηερ)

κυν%
(R3 − 1) , V3 =

$
%
(R3 − 1) ,

W3 =
ηε

υν
, Z3 =

ε($κ+ %β)

υν%
(R4 − 1) , P3 =

$κ+ %β

ν%
(R4 − 1) ,

where

R3 =
ξκυν%

δ$(ϑυν+ ηερ)
,

R4 =
υν%

$κ+ %β

(
`
ηε

+
κκξ

δ (ϑυν+ ηερ)

)
.

Therefore, the co-infection steady state, SS3, exist if R3 > 1 and R4 > 1. In this case, the

threshold values R3 and R4 indicate whether HIV-1 and KSHV co-infection is likely to occur.

We note that, R4 can be written as:

R4 =
`υν%β

ηεβ($κ+ %β)
+

κυκξν%$

δ$ (ϑυν+ ηερ) ($κ+ %β)

= R1
%β

$κ+ %β
+ R3

κ$
$κ+ %β

< R1 + R3,

which leads to R4 < R1 as well as R4 < R3. The four threshold parameters are given as

follows:



Int. J. Anal. Appl. (2024), 22:160 9

R1 =
`υν
ηεβ

,

R2 =
ξκ%β

δ$ (ϑβ+ ρ`)
,

R3 =
ξκυν%

δ$(ϑυν+ ηερ)
,

R4 =
υν%

$κ+ %β

(
`
ηε

+
κκξ

δ (ϑυν+ ηερ)

)
.�

4. Global stability

Here, the Lyapunov approach described in [52] will be used to investigate the four steady states

of model’s global asymptotic stability. We utilize the below-depicted arithmetic mean-geometric

mean inequality

n

√√
n∏

i=1

gi ≤
1
n

n∑
i=1

gi, gi ≥ 0, i = 1, 2, . . . , n. (4.1)

Let Λi be the Lyapunov function candidate and define T′i as the largest invariant set of

Ti =

{
(U, Y, V, W, Z, P) :

dΛi

dt
= 0

}
, i = 0, 1, 2, 3.

Theorem 4.1. The healthy steady state SS0 is globally asymptotically stable (GAS) when R1 ≤ 1 and
R2 ≤ 1. Moreover, SS0 is unstable when R1 > 1 and/or R2 > 1.

Proof. Define Λ0(U, Y, V, W, Z, P) as:

Λ0 = U0L

( U
U0

)
+ Y +

δ
κ

V +
δρ

κκ
W0L

( W
W0

)
+
δρ

κκ
Z +

δηρ

κυκ
P,

where L(x) = x − ln x − 1. Obviously, Λ0(U, Y, V, W, Z, P) > 0 for any U, Y, V, W, Z, P > 0 and

Λ0(U0, 0, 0, W0, 0, 0) = 0. Determining dΛ0
dt along the solutions of model (2.1)-(2.6) as:

dΛ0

dt
=

(
1−

U0

U

)
U̇ + Ẏ +

δ
κ

V̇ +
δρ

κκ

(
1−

W0

W

)
Ẇ +

δρ

κκ
Ż +

δηρ

κυκ
Ṗ.

Using equations of model (2.1)-(2.6), we obtain

dΛ0

dt
=

(
1−

U0

U

)
(ξ−$U − %UV) + (%UV − δY) +

δ
κ
(κY − ϑV − ρVW)

+
δρ

κκ

(
1−

W0

W

)
(`+ κWV − βW − νPW) +

δρ

κκ
(νPW − ηZ) +

δηρ

κυκ
(υZ− εP) .

Collecting term and using ξ = $U0 and ` = βW0, we get

dΛ0

dt
=
−$
U

(U −U0)
2 + %U0V −

δϑ
κ

V −
δρ

κκ

β

W
(W −W0)

2
−
δρ

κ
W0V +

δρν

κκ
W0P−

δηρε

κυκ
P

=
−$
U

(U −U0)
2
−
δρ

κκ

β

W
(W −W0)

2 +

(
%U0 −

δϑ
κ
−
δρ

κ
W0

)
V +

(
δρν

κκ
W0 −

δηρε

κυκ

)
P.
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Finally, we get

dΛ0

dt
=
−$
U

(U −U0)
2
−
δρ

κκ

β

W
(W −W0)

2 +
δ (ϑβ+ ρ`)

κβ
(R2 − 1)V +

δηρε

κυκ
(R1 − 1)P.

Hence, dΛ0
dt ≤ 0 satisfies if R1 ≤ 1 and R2 ≤ 1. Further, dΛ0

dt = 0 when (U, W) = (U0, W0),

(R2 − 1)V = 0 and (R1 − 1)P = 0. According to [53], T′0 is reached by the system’s solutions.

Thus, (U, W) = (U0, W0),

(R2 − 1)V = 0 and (R1 − 1)P = 0. (4.2)

are satisfied by any member in T′0.

There are four cases at hand:

(I) R1 = 1 and R2 = 1. Then Eq. (2.1) gives

0 = U̇ = ξ−$U0 − %U0V =⇒ V(t) = 0 for any t. (4.3)

From Eq. (2.3) we have

0 = V̇ = κY =⇒ Y(t) = 0 for any t. (4.4)

Eq. (2.4) implies that

0 = Ẇ = ` − βW0 − νW0P =⇒ P(t) = 0 for any t. (4.5)

Eq. (2.6) gives

0 = Ṗ = υZ =⇒ Z(t) = 0 for any t. (4.6)

Hence T′0 = {SS0}.

(II) R1 < 1 and R2 < 1. Then from Eq. (4.2) we have V = P = 0 and Eqs. (4.4) and (4.6) imply

Y = Z = 0. Consequently, T′0 = {SS0}.

(III) R1 = 1 and R2 < 1. Then from Eq. (4.2) we get V = 0. Eqs. (4.4)-(4.6) imply Y = P = Z = 0.

Thus T′0 = {SS0}.

(IV) R1 < 1 and R2 = 1. Eq. (4.2) gives P = 0. Eqs. (4.3), (4.4) and (4.6) give, V = Y = Z = 0.

Thus T′0 = {SS0}.

By LaSalle’s invariance principle [54], SS0 is GAS. �

In order to demonstrate the instability of SS0 if R1 and/or R2 are greater than 1.

To prove that if R1 > 1 and/or R2 > 1, then SS0 is unstable, the Jacobian matrix J =

J(U, Y, V, W, Z, P) of model (2.1)-(2.6) is calculated as:

J =



−$− %V 0 −%U 0 0 0

%V −δ %U 0 0 0

0 κ −ϑ− ρW −ρV 0 0

0 0 κW κV − β− νP 0 −νW
0 0 0 νP −η νW
0 0 0 0 υ −ε


. (4.7)
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Consequently, at SS0, the characteristic equation is provided by

det (J − σI) = (σ+$)(σ+ β)
(
τ2σ

2 + τ1σ+ τ0

) (
τ̃2σ

2 + τ̃1σ+ τ̃0

)
= 0, (4.8)

where, I is the identity matrix, σ the eigenvalues, and

τ2 = β,

τ1 = ηβ+ εβ,

τ0 = ηεβ− `υν = ηεβ (1−R1) ,

τ̃2 = $β,

τ̃1 = $ρ`+ δ$β+ ϑ$β,

τ̃0 = δ$(ϑβ+ ρ`) − ξκ%β,

= δ$(ϑβ+ ρ`) (1−R2) .

τ0 < 0 and/or τ̃0 < 0, respectively, if R1 > 1 and/or R2 > 1. SS0 is unstable as a result of Eq. (4.8)

having a positive root. �

Theorem 4.2. The KSHV mono-infection steady state SS1 is GAS when R1 > 1 and R3 ≤ 1.

Proof. Define Λ1(U, Y, V, W, Z, P) as:

Λ1 = U1L

( U
U1

)
+ Y +

δ
κ

V +
δρ

κκ
W1L

( W
W1

)
+
δρ

κκ
Z1L

( Z
Z1

)
+
δηρ

κυκ
P1L

( P
P1

)
.

Clearly, Λ1(U, Y, V, W, Z, P) > 0 for any U, Y, V, W, Z, P > 0 and Λ1(U1, 0, 0, W1, Z1, P1) = 0. Cal-

culating dΛ1
dt as:

dΛ1

dt
=

(
1−

U1

U

)
U̇ + Ẏ +

δ
κ

V̇ +
δρ

κκ

(
1−

W1

W

)
Ẇ +

δρ

κκ

(
1−

Z1

Z

)
Ż +

δηρ

κυκ

(
1−

P1

P

)
Ṗ.

From Eqs. (2.1)-(2.6) we obtain

dΛ1

dt
=

(
1−

U1

U

)
(ξ−$U − %UV) + (%UV − δY) +

δ
κ
(κY − ϑV − ρWV)

+
δρ

κκ

(
1−

W1

W

)
(`+ κWV − βW − νPW) +

δρ

κκ

(
1−

Z1

Z

)
(νPW − ηZ)

+
δηρ

κυκ

(
1−

P1

P

)
(υZ− εP) .

After collecting terms we get

dΛ1

dt
=

(
1−

U1

U

)
(ξ−$U) + %U1V −

δϑ
κ

V +
δρ

κκ

(
1−

W1

W

)
(` − βW) −

δρ

κ
VW1

+
δρν

κκ
W1P−

δρν

κκ
Z1

Z
WP +

δηρ

κκ
Z1 −

δηρ

κκ
P1

P
Z−

δηρε

κυκ
P +

δηρε

κυκ
P1.

Using the following steady state conditions

ξ = $U1, ` = βW1 + νW1P1,

νW1P1 = ηZ1, υZ1 = εP1,
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we get

dΛ1

dt
=
−$
U

(U −U1)
2
−
δρ

κκ

β

W
(W −W1)

2 +

(
%U1 −

δϑ
κ
−
δρ

κ
W1

)
V +

δρν

κκ
W1P1

−
δρν

κκ
W1

W
W1P1 −

δρν

κκ
Z1

Z
WP +

δηρ

κκ
Z1 −

δηρ

κκ
P1

P
Z +

δηρε

κυκ
P1 +

δρ

κκ

(
νW1 −

ηε

υ

)
P

=
−$
U

(U −U1)
2
−
δρ

κκ

β

W
(W −W1)

2 +
δ(ϑυν+ ηερ)

κυν

(
ξκυν%

δ$(ϑυν+ ηερ)
− 1

)
V

+
δηρ

κκ
Z1 −

δηρ

κκ
W1

W
Z1 −

δηρ

κκ
Z1

Z1

Z
W
W1

P
P1

+
δηρ

κκ
Z1 −

δηρ

κκ
Z1

P1

P
Z
Z1

+
δηρ

κκ
Z1

=
−$
U

(U −U1)
2
−
δρ

κκ

β

W
(W −W1)

2 +
δ(ϑυν+ ηερ)

κυν
(R3 − 1)V

+
δηρ

κκ
Z1

(
3−

W1

W
−

Z1WP
ZW1P1

−
P1Z
PZ1

)
.

Thus, if R1 > 1, R3 ≤ 1 and by using inequality (4.1), we conclude that
dΛ1
dt ≤ 0 for any U, Y, V, W, Z, P > 0. Also, we have dΛ1

dt = 0 if (U, W, Z, P) =

(U1, W1, Z1, P1) and (R3 − 1)V = 0. T′1 is reached by the model’s solutions. In T′1 we have

(U, W, Z, P) = (U1, W1, Z1, P1) and

(R3 − 1)V = 0. (4.9)

Two cases are at hand:

(I) R3 = 1, then Eq. (2.1) provides

0 = U̇ = ξ−$U1 − %U1V =⇒ V(t) = 0 for any t. (4.10)

Moreover, Eq. (2.3) gives

0 = V̇ = κY =⇒ Y(t) = 0 for any t. (4.11)

The T′1 = {SS1}.

(II) R3 < 1, thus Eq. (4.9) gives V = 0 and Eq. (4.11) yields Y = 0 and thus T′1 = {SS1}.

Thus, by LaSalle’s invariance principle, SS1 is GAS. �

Theorem 4.3. The HIV-1 mono-infection steady state SS2 is GAS when R2 > 1 and R4 ≤ 1.

Proof. Let us formulate a function Λ2(U, Y, V, W, Z, P) as:

Λ2 = U2L

( U
U2

)
+ Y2L

( Y
Y2

)
+
δ
κ

V2L

( V
V2

)
+
δρ

κκ
W2L

( W
W2

)
+
δρ

κκ
Z +

δηρ

κυκ
P.

Clearly, Λ2(U, Y, V, W, Z, P) > 0 for any U, Y, V, W, Z, P > 0 and Λ2(U2, Y2, V2, W2, 0, 0) = 0. Cal-

culating dΛ2
dt as:

dΛ2

dt
=

(
1−

U2

U

)
U̇ +

(
1−

Y2

Y

)
Ẏ +

δ
κ

(
1−

V2

V

)
V̇ +

δρ

κκ

(
1−

W2

W

)
Ẇ +

δρ

κκ
Ż +

δηρ

κυκ
Ṗ.

From Eqs. (2.1)-(2.6) we obtain

dΛ2

dt
=

(
1−

U2

U

)
(ξ−$U − %UV) +

(
1−

Y2

Y

)
(%UV − δY) +

δ
κ

(
1−

V2

V

)
(κY − ϑV − ρWV)
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+
δρ

κκ

(
1−

W2

W

)
(`+ κWV − βW − νPW) +

δρ

κκ
(νPW − ηZ) +

δηρ

κυκ
(υZ− εP) .

Collecting terms we get

dΛ2

dt
=

(
1−

U2

U

)
(ξ−$U) + %U2V − %UV

Y2

Y
+ δY2 − δY

V2

V
−
δϑ
κ

V +
δϑ
κ

V2 +
δρ

κ
WV2

+
δρ

κκ

(
1−

W2

W

)
(` − βW) −

δρ

κ
VW2 +

δρν

κκ
W2P−

δηρε

κυκ
P.

Applying the steady state conditions

ξ = $U2 + %U2V2, %U2V2 = δY2,

κY2 = ϑV2 + ρW2V2, ` = −κW2V2 + βW2,

we obtain

dΛ2

dt
=
−$
U

(U −U2)
2 +

(
1−

U2

U

)
%U2V2 −

δρ

κκ

β

W
(W −W2)

2
−
δρ

κ

(
1−

W2

W

)
V2W2 + %U2V

− %UV
Y2

Y
+ δY2 − δY

V2

V
−
δϑ
κ

V +
δϑ
κ

V2 +
δρ

κ
WV2 −

δρ

κ
VW2 +

δρν

κκ
W2P−

δηρε

κυκ
P

=
−$
U

(U −U2)
2
−
δρ

κκ

β

W
(W −W2)

2 +

(
%U2 −

δϑ
κ
−
δρ

κ
W2

)
V +

δρ

κκ

(
νW2 −

ηε

υ

)
P

+ %U2V2 − %U2V2
U2

U
−
δρ

κ
V2W2 +

δρ

κ
V2W2

W2

W
− %UV

Y2

Y
+ δY2 − δY

V2

V
+
δϑ
κ

V2

+
δρ

κ
WV2 +

δρ

κ
V2W2 −

δρ

κ
V2W2

=
−$
U

(U −U2)
2
−
δρ

κκ

β

W
(W −W2)

2 +

(
%U2 −

δϑ
κ
−
δρ

κ
W2

)
V +

δρ

κκ

(
νW2 −

ηε

υ

)
P

+ δY2

(
3−

U2

U
−

U
U2

V
V2

Y2

Y
−

Y
Y2

V2

V

)
−
δρ

κ
V2W2

(
2−

W2

W
−

W
W2

)
=
−$
U

(U −U2)
2
−
δρ

κκ
`

WW2
(W −W2)

2 +
δρν

κκ
(W2 −W3)P + δY2

(
3−

U2

U
−

U
U2

V
V2

Y2

Y
−

Y
Y2

V2

V

)
.

Now we show that if R4 ≤ 1, then W2 ≤W3. In case R4 ≤ 1, then co-infection steady state SS3 does

not exist since Z3 ≤ 0 and P3 ≤ 0. Thus,

Ż = νPW − ηZ ≤ 0,

Ṗ = υZ− εP ≤ 0.

We need to find a value W̄ where 0 < W(t) ≤ W̄ such that Ż(t) ≤ 0 and Ṗ ≤ 0. We have

Ż +
η

υ
Ṗ = νPW −

ηε

υ
P = ν

(
W −

ηε

νυ

)
P ≤ 0 for any Z, P > 0.

This occurs when W2 ≤ W̄ =
ηε
νυ = W3. Inequality (4.1) yields dΛ2

dt ≤ 0, where equality holds when

(U, Y, V, W) = (U2, Y2, V2, W2) and (W2 −W3)P = 0. The model’s solutions reach T′2 which has

elements with (U, Y, V, W) = (U2, Y2, V2, W2) and

(W2 −W3)P = 0, (4.12)
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and we have two cases:

(I) W2 = W3. From Eq. (2.4) we have

0 = Ẇ = `+ κW2V2 − βW2 − νPW2 =⇒ P(t) = 0 for any t.

Eq. (2.6) gives

0 = Ṗ = υZ =⇒ Z(t) = 0 for any t. (4.13)

Hence T′2 = {SS2}.

(II) W2 < W3. Eq. (4.12) yields P = 0 and Eq. (4.13) gives Z = 0. Thus T′2 = {SS2}.

Consequently, by LaSalle’s invariance principle, SS2 is GAS. �

Theorem 4.4. The KSHV/HIV-1 co-infection steady state SS3 is GAS when R4 > 1 and 1 < R3 ≤ 1 + β%
$κ .

Proof. Define Λ3(U, Y, V, W, Z, P) as:

Λ3 = U3L

( U
U3

)
+ Y3L

( Y
Y3

)
+
δ
κ

V3L

( V
V3

)
+
δρ

κκ
W3L

( W
W3

)
+
δρ

κκ
Z3L

( Z
Z3

)
+
δηρ

κυκ
P3L

( P
P3

)
.

Calculating dΛ3
dt as:

dΛ3

dt
=

(
1−

U3

U

)
U̇ +

(
1−

Y3

Y

)
Ẏ +

δ
κ

(
1−

V3

V

)
V̇ +

δρ

κκ

(
1−

W3

W

)
Ẇ +

δρ

κκ

(
1−

Z3

Z

)
Ż +

δηρ

κυκ

(
1−

P3

P

)
Ṗ.

Using equation of model (2.1)-(2.6), we obtain

dΛ3

dt
=

(
1−

U3

U

)
(ξ−$U − %UV) +

(
1−

Y3

Y

)
(%UV − δY) +

δ
κ

(
1−

V3

V

)
(κY − ϑV − ρVW)

+
δρ

κκ

(
1−

W3

W

)
(`+ κWV − βW − νPW) +

δρ

κκ

(
1−

Z3

Z

)
(νPW − ηZ)

+
δηρ

κυκ

(
1−

P3

P

)
(υZ− εP) .

Collecting terms as:

dΛ3

dt
=

(
1−

U3

U

)
(ξ−$U) + %U3V − %UV

Y3

Y
+ δY3 − δY

V3

V
−
δϑ
κ

V +
δϑ
κ

V3 +
δρ

κ
WV3

+
δρ

κκ

(
1−

W3

W

)
(` − βW) −

δρ

κ
VW3 +

δρν

κκ
W3P−

δρν

κκ
WP

Z3

Z
+
δηρ

κκ
Z3 −

δηρ

κκ
Z

P3

P

−
δηρε

κυκ
P +

δηρε

κυκ
P3.

Using the steady state conditions

ξ = $U3 + %U3V3, %U3V3 = δY3,

κY3 = ϑV3 + ρV3W3, ` = −κW3V3 + βW3 + νW3P3,

νP3W3 = ηZ3, υZ3 = εP3,

we get

dΛ3

dt
=
−$
U

(U −U3)
2 +

(
1−

U3

U

)
%U3V3 −

δρ

κκ

β

W
(W −W3)

2
−
δρ

κ

(
1−

W3

W

)
V3W3
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+
δρν

κκ

(
1−

W3

W

)
W3P3 + %U3V − %UV

Y3

Y
+ δY3 − δY

V3

V
−
δϑ
κ

V +
δϑ
κ

V3 +
δρ

κ
WV3

−
δρ

κ
VW3 +

δρν

κκ
W3P−

δρν

κκ
WP

Z3

Z
+
δηρ

κκ
Z3 −

δηρ

κκ
Z

P3

P
−
δηρε

κυκ
P +

δηρε

κυκ
P3

=
−$
U

(U −U3)
2
−
δρ

κκ

β

W
(W −W3)

2 + %U3V3 − %U3V3
U3

U
−
δρ

κ
V3W3 +

δρ

κ

W3

W
V3W3

+
δρν

κκ
W3P3 −

δρν

κκ
W3

W
W3P3 + %U3V − %UV

Y3

Y
+ δY3 − δY

V3

V
−
δϑ
κ

V +
δϑ
κ

V3

+
δρ

κ
WV3 −

δρ

κ
VW3 +

δρν

κκ
W3P−

δρν

κκ
WP

Z3

Z
+
δηρ

κκ
Z3 −

δηρ

κκ
Z

P3

P
−
δηρε

κυκ
P

+
δηρε

κυκ
P3 +

δρ

κ
V3W3 −

δρ

κ
V3W3.

It follows that
dΛ3

dt
=
−$
U

(U −U3)
2
−
δρ

κκ

β

W
(W −W3)

2 +

(
%U3 −

δϑ
κ
−
δρ

κ
W3

)
V +

δρ

κκ

(
νW3 −

ηε

υ

)
P

+ δY3

(
3−

U3

U
−

UVY3

U3V3Y
−

YV3

Y3V

)
−
δρ

κ
V3W3

(
2−

W3

W
−

W
W3

)
+
δρν

κκ
W3P3

(
3−

W3

W
−

WZ3P
W3ZP3

−
ZP3

Z3P

)
=
−$
U

(U −U3)
2
−
δρ

κκ

β

W
(W −W3)

2 + δY3

(
3−

U3

U
−

UVY3

U3V3Y
−

YV3

Y3V

)
−
δρ

κ
V3W3

(
2−

W3

W
−

W
W3

)
+
δρν

κκ
W3P3

(
3−

W3

W
−

WZ3P
W3ZP3

−
ZP3

Z3P

)
=
−$
U

(U −U3)
2
−
δρ

κκ

β

W
(W −W3)

2 + δY3

(
3−

U3

U
−

UVY3

U3V3Y
−

YV3

Y3V

)
+
δρ

κ

V3

W
(W −W3)

2 +
δρν

κκ
W3P3

(
3−

W3

W
−

WZ3P
W3ZP3

−
ZP3

Z3P

)
.

Finally, we get

dΛ3

dt
=
−$
U

(U −U3)
2 +

δρ$

κ%
1
W

(W −W3)
2
(
R3 − 1−

β%

$κ

)
+ δY3

(
3−

U3

U
−

UVY3

U3V3Y
−

YV3

Y3V

)
+
δρν

κκ
W3P3

(
3−

W3

W
−

WZ3P
W3ZP3

−
ZP3

Z3P

)
.

Thus, if 1 < R3 ≤ 1 +
β%
$κ and by using inequality (4.1), we conclude that dΛ3

dt ≤

0 for any U, Y, V, W, Z, P > 0. In addition, dΛ3
dt = 0 if (U, Y, V, W, Z, P) = (U3, Y3, V3, W3, Z3, P3).

Solutions of model (2.1)-(2.6) reach to T′3 where (U, Y, V, W, Z, P) = (U3, Y3, V3, W3, Z3, P3). Hence,

T′3 = {SS3} and SS3 is GAS using LaSalle’s invariance principle. �

Table 2 provides an overview of the global stability conditions for each of the model’s steady

states.
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Table 2. Conditions for an equilibrium’s existence and stability.

Steady state Existence condition Stability condition

SS0 = (U0, 0, 0, W0, 0, 0) - R1 ≤ 1 and R2 ≤ 1

SS1 = (U1, 0, 0, W1, Z1, P1) R1 > 1 R1 > 1 and R3 ≤ 1

SS2 = (U2, Y2, V2, W2, 0, 0) R2 > 1 R2 > 1 and R4 ≤ 1

SS3 = (U3, Y3, V3, W3, Z3, P3) R3 > 1, R4 > 1 R4 > 1 and 1 < R3 ≤ 1 + β%
$κ

5. Numerical simulations

5.1. Numerical simulations for system (2.1)-(2.6). In this section, numerical simulations are pro-

vided to visualize the analytical results that obtain in previous section by using the parameter’s

values that provided in Table 1. The initial conditions of model (2.1)-(2.6) are taken as:

Initial.1 : U(0) = 200, Y(0) = 20, V(0) = 25, W(0) = 200, Z(0) = 150, P(0) = 300.

Initial.2 : U(0) = 400, Y(0) = 15, V(0) = 20, W(0) = 300, Z(0) = 100, P(0) = 200.

Initial.3 : U(0) = 600, Y(0) = 10, V(0) = 15, W(0) = 400, Z(0) = 50, P(0) = 100.

The values the parameters % and ν are selected and leading to the following circumstances:

Circumstance-1: % = 0.0001 and ν = 0.0005. For these values of parameters, we have

R1 = 0.53 < 1 and R2 = 0.42 < 1. Starting with the three initials the trajectories lead to

the steady state SS0 = (1000, 0, 0, 200, 0, 0), as Figure 2 illustrates. This demonstrates that,

according to Theorem 1, SS0 is GAS. This will result in the clearance of both KSHV and

HIV-1. Making R1 ≤ 1 and R2 ≤ 1 may be achieved if there are efficient drug therapies for

both KSHV and HIV-1.

Circumstance-2: % = 0.0001 and ν = 0.002. This yields R1 = 2.1 > 1 and R3 = 0.8 <

1. The findings in Figure 3 demonstrate how the solutions approach the steady state,

SS1 = (1000, 0, 0, 94.05, 77.05, 135.18). Consequently, Theorem 2 and the numerical findings

match. This instance illustrates what happens when a person has KSHV infection but not

HIV-1 infection. It is evident that KSHV infection has resulted in decreased B cell numbers,

while CD4+T cell concentrations are still within normal limits.

Circumstance-3: % = 0.001 and ν = 0.0001. Then, we calculate R2 = 4.2 > 1 and R4 =

0.22 < 1. It is evident that the requirements listed in Table 2 are met. Theorem 3 is

supported by Figure 4, which shows that the solutions converge to the steady state SS2 =

(451.53, 13.71, 12.14, 404.96, 0, 0). This instance illustrates what happens when a person has

HIV-1 infection but not KSHV infection. It is evident that HIV-1 infection has resulted in

decreased CD4+T cell numbers. The presence of HIV-1 stimulates the B cells and increases

their concentration.

Circumstance-4: % = 0.001 and ν = 0.0006. These data provide R4 = 1.3 > 1, R3 = 2.8 > 1

and R3 < 1 +
β%
$κ = 3.4. Figure 5 show that SS3 = (355.26, 16.12, 18.15, 313.5, 89.86, 157.65)
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exist, and is GAS as we have proved in Theorem 4. Here, KSHV and HIV-1 are co-infected

in a human. The possibility of KSHV elimination is reduced due to a drop in the quantity

of both CD4+ T cells and B cells. Furthermore, the patient’s immune system may be

deteriorating, which might lead to a rise in the manifestation of illness symptoms. This

might raise the likelihood that the patient would pass away.
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Figure 2. Solutions of system (2.1)-(2.6) with three different initials reach healthy

steady state SS0 = (1000, 0, 0, 200, 0, 0).
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Figure 3. Solutions of system (2.1)-(2.6) with three different initials reach the KSHV

mono-infection steady state SS1 = (1000, 0, 0, 94.05, 77.05, 135.18).
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Figure 4. Solutions of system (2.1)-(2.6) with three different initials reach the HIV-1

mono-infection steady state SS2 = (451.53, 13.71, 12.14, 404.96, 0, 0).
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Figure 5. Solutions of system (2.1)-(2.6) with three different ini-

tials reach the KSHV/HIV-1 co-infection steady state SS3 =

(355.26, 16.12, 18.15, 313.5, 89.86, 157.65).
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For further confirmation, a study of local stability for any steady state are provided. The jacobian

matrix J = J(U, Y, V, W, Z, P) of model (2.1)-(2.6) is computed in (4.7). For each steady state,

we compute the eigenvalues λi, i = 1, · · · , 6 of J . An steady state point is locally stable if the

eigenvalues satisfy Re(λi) < 0 for all i = 1, 2, · · · , 6. By computing all the nonnegative steady

state and using the parameter’s value that written in Circumstance 1-4, we deduce the eigenvalues

corresponding to all steady states. Table 3 outlined all positive steady states and the real part of

the eigenvalues.

Table 3. Local stability of steady states.

Circumstance Equilibrium Re(λi) < 0, i = 1, · · · , 6 Stability

1 SS0 = (1000, 0, 0, 200, 0, 0) (−22.57,−0.79,−0.24,−0.23,−0.11,−0.01) stable

2 SS0 = (1000, 0, 0, 200, 0, 0) (−22.57,−1.1,−0.24,−0.23, 0.19,−0.01) unstable

SS1 = (1000, 0, 0, 94.05, 77.05, 135.18) (−12.13,−1.,−0.4,−0.2,−0.2,−0.01) stable

3 SS0 = (1000, 0, 0, 200, 0, 0) (−24, 1.2,−0.64,−0.26,−0.24,−0.01) unstable

SS2 = (451.53, 13.71, 12.14, 404.96, 0, 0) (−43.18,−0.68,−0.11,−0.11,−0.22,−0.033) stable

4 SS0 = (1000, 0, 0, 200, 0, 0) (−24, 1.2,−0.82,−0.24,−0.083,−0.01) unstable

SS2 = (451.53, 13.71, 12.15, 404.96, 0, 0) (−43.18,−0.96,−0.11,−0.11, 0.057,−0.033) unstable

SS3 = (355.26, 16.12, 18.15, 313.5, 89.86, 157.65) (−33.98,−0.93,−0.14,−0.14,−0.016,−0.016) stable

5.2. Sensitivity Analysis. Sensitivity analysis is a crucial method in biological systems that helps

to illustrate the relationship between model results and parameters and is essential to improving

model research comprehension [55]. Therefore, sensitivity analysis quantifies the biological reac-

tions to any modification in the biological parameters, enabling the identification of the critical

element influencing the models’ output [56]. As stated in [56], several sensitivity analysis tech-

niques have been developed for use with biological models. We use derivative-based sensitivity

in our model. Partial derivatives with regard to model parameters allow for the analytical calcula-

tion of the indexes. Since R1 and R2 have a significant influence in determining the stability of the

healthy steady state, sensitivity analysis for them is studied. The normalized forward sensitivity

index of Ri, i = 1, 2 is given by

SRi
γ =

∂Ri

∂γ
×
γ

Ri
, (5.1)

where γ is given parameter.

5.2.1. Sensitivity analysis for R1. By using the Eq. (5.1), sensitivity indices of R1 to each parameter

are computed as presented in Table 4. Obviously, the sensitivity analysis of R1 do not depend in

parameter’s values since the sensitivity analysis with respect to any parameter is equal to 1 or −1.

For instance

SR1
`

=
∂R1

∂`
×
`

R1
=

υν
ηεβ
×
`ηεβ

`υν
= 1.

Table 4’s representation of the sensitivity analysis’s sign allows us to understand each parameter’s

involvement in the following ways:
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• Parameters `, υ and ν have positive impact on R1. This indicates that these parameters

have a role in the proliferation of KSHV throughout the body.

• On the contrary, the other parameters η, ε and β is responsible on decreasing the spread

rate of KSHV in human.

These result is clearly shown in Figure 6.

Table 4. Sensitivity index for R1.

Parameters γ ` υ ν η ε β

Value of SR1
γ 1 1 1 −1 −1 −1

Figure 6. Sensitivity analysis for R1.

5.2.2. Sensitivity analysis for R2. By using the Eq. (5.1) and parameter values in Table 1, sensitivity

indices of R2 to each parameter are computed as presented in Table 5. Figure 7 illustrates the

sensitivity indices values of R2 using the parameter values in Table 1. According to the sensitivity

indices that are presented in the Table 5, we have the following:

• ξ, κ, %, and β have positive indices, which mean that the increase or decrease of these

parameters will increase or decrease the basic reproduction ratio for HIV-1 mono-infection

R2.

• δ, $, `, ϑ, and ρ have a negative impact on R2. Thus, any increase in these values will leads

to decrease the value of R2. Clearly, δ, d, and ϑ are the most significant parameters, while `

and ρ are the less significant parameters.
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Table 5. Sensitivity index for R2.

Parameters γ ξ κ % β δ $ ` ϑ ρ

Value of SR2
γ 1 1 1 0.0171 −1 −1 −0.0171 −0.8929 −0.0107

Figure 7. Sensitivity for R2.

5.3. Comparison results. In this part, we examine the effects of KSHV or HIV-1 mono-infection

on each other by comparing the dynamics of KSHV or HIV-1 co-infection with those of KSHV or

HIV-1 mono-infection.

5.3.1. Evaluation of HIV-1 co-infection with KSHV versus HIV-1 mono-infection. We evaluate the fol-

lowing HIV-1 mono-infection system against the KSHV/HIV-1 co-infection model (2.1)-(2.6):

U̇ = ξ−$U − %UV, (5.2)

Ẏ = %UV − δY, (5.3)

V̇ = κY − ϑV − ρVW, (5.4)

Ẇ = `+ κVW − βW. (5.5)

We select the parameter’s values % = 0.001 and ν = 0.003 in addition to the following initial

condition:

Initial.4 : U(0) = 250, Y(0) = 15, V(0) = 50, W(0) = 150, Z(0) = 50, P(0) = 100.

The solutions of two systems (2.1)-(2.6) and (5.2)-(5.5) are displayed in Figure 8. Obviously, when

HIV-1 mono-infected patients are co-infected with KSHV, then the concentrations of healthy CD4+T

cells are decreased while the concentrations of HIV-1 particles are increased. These findings align
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Figure 8. A comparative analysis of the models’ solutions for KSHV/HIV-1 co-

infection and HIV-1 mono-infection.

with research presented in [57] and [58], indicating that KSHV may increase the HIV-1 load and

spread, delaying the onset of AIDS.

5.3.2. Evaluation of HIV-1 co-infection with KSHV versus KSHV mono-infection. We evaluate the

following KSHV mono-infection system against the KSHV/HIV-1 co-infection model (2.1)-(2.6):

Ẇ = ` − βW − νWP, (5.6)

Ż = νWP− ηZ, (5.7)

Ṗ = υZ− εP. (5.8)

We choose the values % = 0.001 and ν = 0.001 and take the following initial condition as:

Initial.5 : U(0) = 200, Y(0) = 300, V(0) = 50, W(0) = 100, Z(0) = 40, P(0) = 70.

Solutions of the two systems (2.1)-(2.6) and (5.6)-(5.8) that illustrated in Figure 9. It is evident

that the B cell concentrations in both systems progressively get closer to the same value, W3 =

W1. Compared to KSHV mono-infection patients, KSHV/HIV-1 co-infection patients had higher

prevalence of KSHV-infected B cells and free KSHV particles. This is in line with research reported
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Figure 9. A comparative analysis of the models’ solutions for KSHV/HIV-1 co-

infection and KSHV mono-infection.

in [59], which hypothesized that elevated HIV-1 DNA levels might potentially trigger KSHV

reactivation by direct KSHV activation or increased immunosuppression.

6. Conclusion and discussion

By infecting CD4+T cells, one of the immune system’s primary components, HIV-1 damages

the system and can cause AIDS. As is well known, HIV-1 is highly contagious worldwide, and

those infected with it are vulnerable to opportunistic infections like KSHV. HHV8 can induce

KS by attacking B cells. KSHV/HIV-1 co-infection cases have been reported recently in various

nations, particularly in Africa [60–62]. In this study, we constructed and investigated a new

model for KSHV and HIV-1 co-infection in a host. The interactions between healthy CD4+ T cells,

HIV-1-infected CD4+ T cells, free HIV-1, healthy B cells, KSHV-infected B cells, and free KSHV

are explained by a system of six nonlinear ODEs. First, nonnegativity and boundedness-the two

main properties of the solutions-were shown. Next, we demonstrated the existence of four stable

states in the model. The global asymptotic stability of the model’s steady states is defined by four

threshold parameters, Ri, for i = 1, 2, 3, and 4. We demonstrated the global asymptotic stability
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for all steady state by utilizing the Lyapunov approach and LaSalle’s invariance principle. Our

findings are as follows:

• There is always an healthy steady state, SS0. Additionally, when R1 ≤ 1 and R2 ≤ 1, SS0 is

GAS. An individual who is free of both KSHV and HIV-1 is represented by this case.

• There exists a KSHV mono-infection steady state SS1 when R1 > 1. Additionally, when

R1 > 1 and R3 ≤ 1, SS1 is GAS. This condition reflects what happens to a person who just

has KSHV infection.

• There exists an HIV-1 mono-infection steady state SS2 when R2 > 1. Furthermore, SS2 is

GAS when R2 > 1 and R4 ≤ 1. This condition is representative of an individual with just

HIV-1 infection.

• There exists a KSHV/HIV-1 co-infection steady state SS3 when R3 > 1 and R4 > 1. Further-

more, SS3 is GAS when R4 > 1 and 1 < R3 ≤ 1 + β%
$κ . This condition is representative of an

individual who carries both HIV-1 and KSHV infections.

In accordance with the theoretical outcomes, we offered numerical simulations. Sensitivity

analysis was examined for both both basic reproduction ratios R1 and R2. A comparison was

presented between co-infections of KSHV and HIV-1 and single infections of HIV-1 or KSHV. We

found that the concentrations of KSHV and HIV-1 are greater when they co-infect than when they

are infections apart. This result is in line with a number of findings found in the literature.

The primary constraint on our study is that we were unable to estimate the model’s parameter

values using actual data from patients who were co-infected with HIV-1 and KSHV. Actual data

from individuals with HIV-1 or KSHV single infections may exist, but there is currently a dearth

of actual data from patients who are co-infected with both HIV-1 and KSHV.

We point out that the immunological competition at the cellular level has recently been modeled

using active agent techniques, see [63]. We think that our strategy can direct future advancements

in agent-based techniques to accommodate the presence of various diseases. Using fractional

differential equations (FDEs) to examine the effect of memory on our model’s dynamics looks

like an intriguing approach. FDEs have the ability to capture non-local and memory-dependent

effects, which are often crucial in different biological systems. The model created in this study

may also be enhanced by (i) taking viral mutations into consideration [64], (ii) utilizing real data

to get an accurate estimation of the parameter values, and (iii) taking reaction-diffusion into

consideration [65].
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