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Abstract. In this paper, we explore the fixed point approximation of (α, β,γ)–nonexpansive mappings using the Picard-

Thakur iterative scheme. We identify the efficiency of Picard-Thakur iterative scheme through a numerical example

by comparing it with other iterative schemes. We also proved strong and weak fixed point convergence theorems for

(α, β,γ)–nonexpansive mappings by using Picard-Thakur iterative scheme.

1. Introduction

Let K , ∅ be a subset of a norm linear spaceB. A mappingH : K→ K on K is called a contraction

mapping if ∀ x, y ∈ K, we have

||Hx−Hy|| ≤ α||x− y||, for some fixed α ∈ [0, 1). (1.1)

Some time, finding the solution of fixed point problem analytically is very difficult, that is

why we need numerical approximate solutions. The numerical approximation of solutions for

nonlinear operators is indeed an attractive area for researchers across various fields.

The Banach Contraction Principle (BCP) [5] which uses Picard [18] iterative scheme have indeed

made meaningful contributions to fixed point theory but Picard iterative scheme fails to work for

nonexpansive mappings (put α = 1 in equation (1.1)). As time goes on, in 1965 (cf. Browder [6],

Gohde [8] and others) proved fixed point theorems for nonexpansive mappings. The philosophy

of Browder and Gohde were used by Kirk [14] in reflexive Banach spaces.

Received: Jul. 30, 2024.

2020 Mathematics Subject Classification. Primary 47H09; Secondary 47H10.
Key words and phrases. Picard-Thakur iterative scheme; (α, β,γ)–nonexpansive mapping; fixed point; strong conver-

gence; weak convergence.

https://doi.org/10.28924/2291-8639-22-2024-189
ISSN: 2291-8639

© 2024 the author(s).

https://doi.org/10.28924/2291-8639-22-2024-189


2 Int. J. Anal. Appl. (2024), 22:189

In 2008 Suzuki [22] provided a new type of generalization of nonexpansive mappings and

proved some related fixed point results for this class of mappings in Banach spaces. A self-map

H : K→ K is said to be mapping with (C) property ( also known as Suzuki mapping) if ∀ x, y ∈ K,

we have:
1
2

∥∥∥x−Hx
∥∥∥ ≤ ∥∥∥x− y

∥∥∥⇒ ∥∥∥Hx−Hy
∥∥∥ ≤ ∥∥∥x− y

∥∥∥ .

Aoyama and Kahsoka [4] suggest α–nonexpansive map H defined on a subset K of Banch space

as if a real number can be defined α ∈ [0, 1] such that for each element x, y ∈ K, we have:

||Hx−Hy||2 ≤ α||x−Hy||2 + α||y−Hx||2 + (1− 2α)||x− y||2.

A self map on a subset K of a Banach space is said to be generalized α–nonexpansive if one can

find a real number α ∈ [0, 1] such that for x, y ∈ K, we have:

1
2
||x−Hx|| ≤ ||x− y|| ⇒ ||Hx−Hy|| ≤ α||x−Hy||+ α||y−Hx||+ (1− 2α)||x− y||.

Generalized (α, β)–nonexpansive mapping on a subset K of Banach space has been introduced by

Ullah et al. defined as:

1
2
||x−Hx|| ≤ ||x− y|| ⇒ ||Hx−Hy|| ≤ α||x−Hy||+ α||y−Hx||+ β||x−Hx||,

∀x, y ∈ K where α, β ∈ R+ and α+ β < 1.

Fixed point theory plays an important role in different fields of mathematics. Some time finding

the solution of fixed point problem analytically is very difficult, and hence there is a need of

approximate solutions. Several iterative schemes have been developed by many researchers for

solving fixed point problems for different operators over different spaces. Some of well known

iterations are Mann [15] , Ishikawa [9], Noor [16], Agarwal [3], Abbas [1], Nawaz et al. [28] etc.

In 2022 Jia et al. [10] proposed Picard-Thakur itrative scheme which is defined as:

a1 ∈ K,

an+1 = Hbn

bn = (1− αn)Hdn + αnHcn,

cn = (1− βn)dn + βnHdn,

dn = (1− γn)an + γnHan.


(1.2)

It has been proved that the new iterative scheme converges faster than the leading iterative

schemes like Thakur, Picard-Ishikawa, Picard-S, Picard- S∗ iterative schemes. By using Picard-

Thakur iterative scheme we prove some fixed point results for (α, β,γ)-nonexpansive mappings.

We also discuss a numerical example to show the efficiency of Picard-Thakur iterative scheme by

comparing it with other well-known iterative schemes.

Definition 1.1. [25]Let K , ∅ be a subset of a norm linear space B. A mapping H on K is called
(α, β,γ)–nonexpansive if

‖Hx−Hy‖ ≤ α‖x− y||+ β‖x−Hx‖+ γ‖x−Hy‖ ∀ x, y ∈ K
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where α, β,γ ∈ R+ are fixed scalers such that γ ∈ [0, 1) and α+ γ ≤ 1.

Definition 1.2. Let B be a Banach space and B ⊇ {pn} be bounded. If ∅ , K ⊆ B is convex and closed.
Then asymptotic radius of {pn} corresponding to K is defined as:

r(K, {pn}) = inf{lim sup
n→∞

||pn − p∗|| : p∗ ∈ K}

Likewise, the asymptotic center of the sequence {pn} corresponding to K is given as,

A(K, {pn}) = {s ∈ K : lim sup
n→∞

||pn − p∗|| = r(K, pn)}

Remark 1.1. B is represent to be a UCB space [7] , then it is established thatA(K, {pn}) contains a unique
element. Moreover it is noted that when K is both convex and weakly compact, thenA(K, {pn}) is convex .
(see e.g., [2, 23] and others).

Definition 1.3. [17] A Banach spaceB is said to be satisfy the Opial’s condition if for {pn} ⊆ B converging
weakly to p∗ ∈ K, then the following condition holds:

lim sup
n→∞

||pn − p∗|| < lim sup
n→∞

||pn − e0|| ∀e0 ∈ B\{p∗}.

Noted that every Hilbert space satisfies Opial’s condition.

Definition 1.4. [20] A mapping H that is prescribed on a subset K of Banach space B is said to have
the condition (I) iff there is a function q : [0,∞) → [0,∞) such that q(0) = 0, q(x) > 0 for every
x ∈ [0,∞) − {0} and ||x−Hx|| ≥ q(d(x, FH )) when x ∈ K. Here d(x, FH ) is the distance of x to FH .

Lemma 1.1. [25] LetH is (α, β,γ)–nonexpansive mapping on a subset K of a Banach space with a fixed
point, particularly, p∗. Then ‖Hx−Hp∗‖ ≤ ‖x− p∗‖ containing x ∈ K and p∗ ∈ FH .

Lemma 1.2. [25] LetH is (α, β,γ)–nonexpansive mapping on a subset K of a Banach space B. Then the
set FH is closed. Also, the set FH is convex providing that K is convex and the space B is strictly convex.

Lemma 1.3. [25] SupposeH is (α, β,γ)–nonexpansive mappings on a subset K of a Banach space. Then
for all x, y ∈ K, we have

‖x−Hy‖ ≤ (1+β)
(1−γ) ‖x−Hx‖+ α

(1−γ)‖x− y‖.

Lemma 1.4. [25] IfH is (α, β,γ)–nonexpansive mapping condition, {pn} is weakly convergent to p∗ and
limn→∞ ||Hpn − pn|| = 0, then p∗ ∈ FH provided that B is equipped with the Opial’s condition.

2. Main Results

Now we study the convergence behavior of fixed points for (α, β,γ)–nonxpansive mapping

through Picard-Thakur iterative scheme (1.2).

Lemma 2.1. Let K , ∅ be a closed and convex subset of a norm linear space B. IfH : K→ K is (α, β,γ)–
nonxpansive mapping satisfying FH , ∅ and {pn} a sequence of Picard-Thakur iterates (1.2). Then for each
p∗ ∈ FH , it follows that, limn→∞ ||pn − p∗|| exists.
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Proof. If p∗ ∈ FH , then applying Lemma 1.1 with (1.2), we have

||dn − p∗|| = ||(1− γn)pn + γnHpn − p∗||

= ||(1− γn)pn + γnp∗ − γnp∗ + γnHpn − p∗||

≤ (1− γn)||pn − p∗||+ γn||pn − p∗||

≤ ||pn − p∗||. (2.1)

Using (2.1) and Lemma1.1, we have

||cn − p∗|| = ||(1− βn)dn + βnHdn − p∗||

= ||(1− βn)dn + βnp∗ − βnp∗ + βnHdn − p∗||

≤ (1− βn)||dn − p∗||+ βn||dn − p∗||

≤ ||dn − p∗||. (2.2)

From (2.1) and (2.2) we have

||bn − p∗|| = ||(1− αn)Hdn + αnHcn − p∗||

= ||(1− αn)Hdn + αnp∗ − αnp∗ + αnHcn − p∗||

≤ (1− αn)||Hdn − p∗||+ αn||cn − p∗||

≤ ||pn − p∗||, (2.3)

and

||pn+1 − p∗|| = ||Hpn − p∗|| ≤ ||pn − p∗||. (2.4)

It can be observed from (2.4) that ||pn+1 − p∗|| ≤ ||pn − p∗|| i.e {||pn − p∗||} is essentially bounded and

also non-increasing. This means that limn→∞ ||pn − p∗|| exists for each element p∗ of FH . �

This theorem explains the necessary and sufficient assumptions required for the existence of

fixed point.

Theorem 2.1. Let B represents a UCB space and K , ∅ be a subset of B, where K is closed and convex.
Let H : K → K is (α, β,γ)–nonxpansive mapping satisfying FH , ∅ and {pn} is a sequence generated by
Picard-Thakur iterates (1.2). Then, FH , ∅ ⇐⇒ {pn} is bounded and satisfies limn→∞ ||pn −Hpn|| = 0.

Proof. We first suppose that FH , ∅. Therefore, for any p∗ ∈ FH , Lemma 2.1 indicate that {pn} is

bounded and limn→∞ ||pn − p∗|| exists. Consider

lim
n→∞
||pn − p∗|| = q. (2.5)

Need to prove that limn→∞ ||pn −Hpn|| = 0. From (2.1) we have

||dn − p∗|| ≤ ||pn − p∗||

⇒ lim sup
n→∞

||dn − p∗|| ≤ lim sup
n→∞

||pn − p∗|| = q. (2.6)
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Since p∗ ∈ FH , we can apply Lemma 1.1 to get

||Hpn − p∗|| ≤ ||pn − p∗||

⇒ lim sup
n→∞

||Hpn − p∗|| ≤ lim sup
n→∞

||pn − p∗||. (2.7)

Now from (2.4), we have

||pn+1 − p∗|| ≤ ||dn − p∗||.

Using this together with (2.5), we obtain

q ≤ lim inf
n→∞

||dn − p∗||. (2.8)

From (2.6) and (2.8), we obtain

lim
n→∞
||dn − p∗|| = q. (2.9)

Since ||dn − p∗|| = limn→∞ ||(1− γn)pn + γnHpn − p∗||, so using this together with (2.9), we get

q = lim
n→∞

(1− γn)||(pn − p∗)||+ γn||(Hpn − p∗)||. (2.10)

Considering (2.5), (2.7) and (2.10) along with the Lemma 1.1, one gets

lim
n→∞
||pn −Hpn|| = 0.

Conversely, we shall assume that {pn} is essentially bounded with the property limn→∞ ||pn −

Hpn|| = 0. Need to prove that FH , ∅. To do this, we consider any p∗ ∈A(E, {pn}). By Lemma 1.3,

we have

r(Hp∗, {pn}) = lim sup
n→∞

||pn −Hp∗||

≤
(1 + β)

(1− γ)
||pn −Hpn||+

α

(1− γ)
||pn − p∗||

= lim sup
n→∞

||pn − p∗||

= r(p∗, {pn}).

Thus Hp∗ ∈ A(E, {pn}. Since the set A(E, {pn}) contains only one point, therefore Hp∗ = p∗. It

implies that p∗ ∈ FH i.e FH , ∅. �

Now we will prove weak convergence theorem.

Theorem 2.2. LetB represents a UCB space and K , ∅ be a subset ofB, whereB be a closed and convex. Let
H : K→ K be a (α, β,γ)–nonxpansive mapping satisfying FH , ∅ and {pn} be a sequence of Picard-Thakur
iterates (1.2). Then {pn} converges weakly to a point of FH provided that B is satisfying Opial’s condition.

Proof. As givenB is a UCB space and according to the Theorem 2.1, {pn} is bounded. It follows that

there is a point, namely, p1 ∈ K such that a subsequence, namely, {onm} of {pn} weakly converges to

it. From Theorem 2.1, it is clear that limm→∞ ||pnm −Htnm || = 0. Using Lemma 1.2, we have p1 ∈ FH .

We want to prove that the point p1 is the only weak limit of {pn}. Contrary suppose that p1 cannot

become a weak limit for {pn} i.e there exists another subsequence, namely, {pns} of {pn}with a weak
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limit, namely, p2 , p1. From Theorem 2.1, it is annotated that lims→∞ ||pns −Hpns || = 0. Applying

Lemma 1.2, we get p2 ∈ FH . Using Opial’s condition of B along with the Theorem 2.1, we get

lim
n→∞
||pn − p1|| = lim

p→∞
||pnm − p1|| < lim

m→∞
||pnm − p2||

= lim
r→∞
||pn − p2|| = lim

s→∞
||pns − p2||

< lim
s→∞
||pns − p1|| = lim

n→∞
||pn − p1||.

Thus, we get limn→∞ ||pn − p1|| < limn→∞ ||pn − p1||, which is a contradiction. Hence proved. �

Now we prove strong convergence theorem for Picard-Thakur iterative scheme.

Theorem 2.3. Suppose K be a convex and compact subset of a UCB space B and let H : K → K be a
(α, β,γ)–nonxpansive mapping satisfying FH , ∅ and let {pn} be a sequence of Picard-Thakur iterates (1.2).
Then the sequence {pn} converges strongly to some fixed point of FH .

Proof. Given that K is convex and compact, so sequence {pn} ⊆ K has a convergent subsequence.

We represent this subsequence by {pnm} with a strong limit s∗ ∈ K i.e limnm→∞ ||pnm − s∗|| = 0. Then

applying Lemma 1.3 for x = pnm and y = s∗, we have

‖pnm −Hs∗‖ ≤
(1 + β)

(1− γ)
‖pnm −Hpnm‖+

α

(1− γ)
‖pnm − s∗‖. (2.11)

By Theorem 2.1, limnq→∞ ||pnq −Hpnq || = 0 and also limnm→∞ ||pnm −Htnm || = 0. Accordingly (2.11)

provide limnm→∞Hs∗ = Hs∗ ⇒Hs∗ = s∗.

By Lemma 2.1 limn→∞ ‖pn − s∗‖ exist. Hence we have proved that s∗ ∈ FH and pn → p1. �

Now we removed compactness condition on K and proved strong convergence theorem as

follows.

Theorem 2.4. Let K be a closed and convex subset of UCB space B. Let H : K → K be a (α, β,γ)–
nonxpansive mapping satisfying FH , ∅ and {pn} be a sequence of Picard-Thakur iterates (1.2). Then {pn}

converges strongly to a point FH whenever lim infn→∞ d(pn, FH ) = 0

Proof. From Lemma 2.1, limn→∞ ||pn − s∗|| exists for any s∗ ∈ FH . It follows that lim infn→∞ d(pn, FH )
also exists. Accordingly lim infn→∞ d(pn, FH ) = 0. Hence two subsequences of pn namely {pnm}

and {pm} exists in FH with property ‖pnm − pm‖ ≤
1

2m . We need to prove that {pm} is Cauchy in FH .

To do this, using Lemma 2.1, we can write that {pn} is nonincreasing. Thus, we have

‖pm+1 − pm‖ ≤ ‖pm+1 − pnm+1‖+ ‖pnm+1 − pm‖ ≤
1

2m+1
+

1
2m .

It follows that limm→∞ ‖pm+1 − pm‖ = 0. Hence it is proved that {pm} is cauchy in FH . According to

the Lemma 1.2 we get that FH is closed. Hence {pm} converges to some q0 ∈ FH . By Lemma 2.1,

limn→∞ ||pn − s∗|| exists and hence s∗ is the strong limit of {pn}. �

Following is the strong convergence results using condition (I) [21] .
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Theorem 2.5. Let K be a closed convex subset of a UCBSB andH : K→ K be any (α, β,γ)–nonexpansive
mappings with FH , ∅. Assume that {pn} be a sequence of a Picard-Thakur iterates (1.2). If H possess
condition (I), then the sequence {pn} converges strongly to some fixed point ofH .

Proof. We verify this result using the Theorem 2.4. For this, from the Theorem 2.1, we have

lim infn→∞ ||Hpn − pn|| = 0. By applying condition (I) of H , we have lim infn→∞ d(pn, FH ) = 0. It

follows from Theorem 2.4 that {pn} has a strong limit in FH . This completes the proof. �

3. Numerical Example

Picard-Thakur iterative scheme indubitably exhibit faster convergence rate as compare to other

iterative scheme using in connection with (α, β,γ)–nonxpansive mapping. Observation are given

below with the help of numerical example.

Example 3.1. Let K = [0, 1] ⊂ B and norm on K be defined as ||.|| = |.|, α = 1
2 , β = 2

3 , γ = 1
2 . Defined

functionH : K→ K as

Hx =

 x
4 if x ∈ [0, 0.5)
x
5 if x ∈ [0.5, 1].

thenH is
(

1
2 , 2

3 , 1
2

)
–nonexpansive mapping.But not nonexpansive mapping.

Proof. First we show that given mapping is not nonexpensive. For this we take x = 0.4 and

y = 0.2, then it is not nonexpensive mapping. Now we prove that the given mapping is
(

1
2 , 2

3 , 1
2

)
–

nonexpansive. We proceed as follows

Case(I): If x, y ∈ [0, 0.5), then

α‖x− y||+ β‖x−Hx‖+ γ‖x−Hy‖ =
1
2
‖x− y||+

2
3
‖x−

x
4
‖+

1
2
‖x−

y
4
‖

=
1
2
|x− y|+

2
3
|x−

x
4
|+

1
2
|x−

y
4
|

≥
1
2
|x− y|+

2
3
|x−

x
4
|

≥
1
2
|x− y|

≥
1
4
|x− y|

≥ ‖Hx−Hy‖.

Case(II): If x, y ∈ [0.5, 1], then

α‖x− y||+ β‖x−Hx‖+ γ‖x−Hy‖ =
1
2
|x− y|+

2
3
‖x−

x
5
‖+

1
2
‖x−

y
5
‖

≥
1
2
|x− y|+

2
3
|x−

x
5
|

≥
1
2
|x− y|

≥
1
5
|x− y|
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≥ ||Hx−Hy||.

Case(III): If x ∈ [0, 0.5) and y ∈ [0.5, 1], then

α‖x− y||+ β‖x−Hx‖+ γ‖x−Hy‖ =
1
2
‖x− y||+

2
3
‖x−

x
4
‖+

1
2
||x−

y
5
||

≥
1
2
|(x− y) − (x−

y
5
)|+

2
3
|x−

x
4
‖

=
1
5
|2y|+

1
3
|x|

≥
1
4
|x|+

1
5
|y|

≥ |
1
4

x−
1
5

y|

≥ ||Hx−Hy||.

Case(IV): If x ∈ [0.5, 1] and y ∈ [0, 0.5) then

α‖x− y||+ β‖x−Hx‖+ γ‖x−Hy‖ =
1
2
‖x− y||+

2
3
‖x−

x
5
‖+

1
2
||x−

y
4
||

≥
1
2
|(x− y) − (x−

y
4
)|+

2
3
|x−

x
5
‖

=
1
8
|3y|+

1
15
|8x|

≥
1
4
|y|+

1
5
|x|

≥ |
1
4

y−
1
5

x|

≥ ||Hx−Hy||.

HenceH is
(

1
2 , 2

3 , 1
2

)
–nonexpansive mapping. �

Table 1 and Table 2 shows the tabular comparison of Picard-Thakur [24] iteration scheme with

M [26], Abbas [1], Agarwal [3] iteration schemes for initial values 0.4 and -0.2 respectively with

αn = 0.22, βn = 0.66, γr = 0.25 and the graphical comparison is given in Figure 1, which shows

that Picard-Thakur iteration scheme converges faster as compare to the other iterative schemes.
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Table 1. Numerical results produced by Picard-Thakur, M, Abbas and Agarwal

iterative schemes forH of the Example 3.1.
n Picard-Thakur M Abbas Agarwal

1 0.4 0.4 0.4 0.4

2 0.01810046875 0.02087500000 0.03496187500 0.08911000000

3 0.00081906742 0.00108941406 0.00305583175 0.01985148025

4 0.00003706376 0.00005685379 0.00026709401 0.00442241351

5 0.00000167717 0.00000296705 0.00002334526 0.00098520317

6 0.00000007589 0.00000015484 0.00000204048 0.00021947863

7 0.00000000343 0.00000000808 0.00000017834 0.00004889435

8 0.00000000015 0.00000000042 0.00000001558 0.00001089243

9 0.00000000000 0.00000000002 0.00000000136 0.00000000013

10 0.0000000000 0.00000000000 0.00000000011 0.0000000012

Table 2. Numerical results produced by Picard-Thakur, M, Abbas and Agarwal

approximation schemes forH of the Example 3.1.
n Picard-Thakur M Abbas Agarwal

1 -0.2 -0.2 -0.2 -0.2

2 -0.00565657600 -0.00659200000 -0.01245632000 -0.03535360000

3 -0.00015998420 -0.00021727232 -0.00077579953 -0.00062493851

4 -0.00000452480 -0.00000716129 -0.00004831803 -0.00110469131

5 -0.000000797400 -0.0000002360 -0.00000300932 -0.00019527407

6 -0.00000000360 -0.00000000777 -0.00000018742 -0.00003451820

7 0.000000000000 -0.00000000256 -0.00000001167 -0.00000610171

8 0.000000000000 0.000000000000 -0.00000000727 -0.00000107858

9 0.000000000000 0.000000000000 -0.00000000004 -0.00000019065

10 0.000000000000 0.000000000000 0.000000000000 -0.00000003370

0.00 0.05 0.10 0.15 0.20

0.00

0.01

0.02

0.03

0.04

0.05

x_n

x_
n
+
1

Agarwal
Abbas
M
Picard-Thakur

-0.08 -0.06 -0.04 -0.02 0.00

-0.015

-0.010

-0.005

0.000

n

x_
n

Agarwal
Abbas
M
Picard-Thakur

Figure 1. Graphical analysis of iteration schemes towards the fixed point of H in

Example 3.1.
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4. Conclusions

In this paper, convergence performance of Picard-Thakur iterative scheme is examined using

numerical tabulation and graphs in relationship with (α, β,γ)–nonxpansive mappings. Strong

and weak fixed point convergence results using Picard-Thakur iteration scheme for (α, β,γ)-

nonxpansive mappings are proved.
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