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Abstract. In this research, we establish precise limits for the Euclidean operator radius of two bounded linear operators

operating within a Hilbert C∗-module over A. Furthermore, our work establishes a connection between these limits and

recent research findings that provide accurate upper and lower bounds for the numerical radius of linear operators. The

primary objective of this investigation is to explore various specific scenarios of interest and extend existing inequalities

found in the literature to encompass the Euclidean radius of two operators in a Hilbert A-module. Additionally, our

study presents conclusions that reveal relationships between the operator norm, the typical numerical radius of a

composite operator, and the Euclidean operator radius. Furthermore, we introduce several new inequalities involving

the Euclidean numerical radius and Euclidean operator norm of 2-tuple operators. These inequalities offer both lower

and upper bounds for the Euclidean numerical radius of 2-tuple operators, as well as for the sum and product of

2-tuple operators. We also delve into the study of Euclidean numerical radius inequalities for 2 × 2 operator matrices

whose entries consist of 2-tuple operators, leading to the derivation of some Euclidean operator radius inequalities.

Additionally, we establish an inequality for the Euclidean operator norm of 2× 2 operator matrices.

1. Introduction

A frequently employed tool within operator theory and operator algebra is the concept of a

Hilbert C∗-module. These modules encompass a substantial category within operator C∗-module

theory. Moreover, the field of Hilbert C∗-modules is inherently intriguing, with its profound

interplay with operator algebra theory and the incorporation of various essential concepts. It

emerges from the realm of non-commutative geometry, giving rise to both novel discoveries and

intriguing challenges that capture significant attention.

Expanding upon the notion of a Hilbert space, the concept of a Hilbert C∗-module was initially

introduced by Kaplansky [6]. The study of Hilbert C∗-modules took its initial steps with the work

of Rieffel’s induced representations of C∗-algebras [20] and Paschke’s pioneering PhD dissertation
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[13], see also [17–19]. These modules find utility across diverse domains, benefiting the theory

of operator algebras, operator K-theory, group representation theory, and the theory of operator

spaces. Furthermore, they play a pivotal role in investigating Morita equivalence among C∗-
algebras, the C∗-algebra quantum group, and C∗-algebra K-theory, as exemplified by Lance [10]

and Wegge-Olsen [21].

This research significantly advances operator theory within Hilbert C∗-modules, with applica-

tions spanning quantum mechanics, functional analysis, numerical analysis, signal processing,

and operator algebras. Its findings deepen our understanding of operator norms and inequalities,

impacting diverse mathematical and physical domains.

A pre-Hilbert module over a C∗-algebra A constitutes a complex linear space denoted as E. This

space functions as a right A-module, adhering to the properties λ(ax) = (λa)x = a(λx), where

λ ∈ C, a ∈ A, and x ∈ E. It is equipped with an inner product 〈·, ·〉 : E × E −→ A that satisfies the

following conditions:

(i) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0.

(ii) 〈x,αy + βz〉 = α〈x, y〉+ β〈x, z〉.
(iii) 〈x, ya〉 = 〈x, y〉a.

(iv) 〈x, y〉 = 〈y, x〉∗,

where x, y, z ∈ E, a ∈ A, and α, β ∈ C."

A pre-Hilbert module over A is designated as a Hilbert A-module, or alternatively, a Hilbert

C∗-module over A, if it possesses completeness relative to the norm |||x||| = |||〈x, x〉|||
1
2 . If we consider

E and F as Hilbert C∗-modules, we introduce the set L (E,F), which comprises all mappings

t : E −→ F for which there exists a corresponding map t∗ : F −→ E. This map t∗ satisfies the

property
〈
tx, y

〉
=

〈
x, t∗y

〉
for all x in E and y in F.

In the context of E, L (E,E) is denoted simply as L (E). It is well-established that L (E)

constitutes a C∗-algebra. Within the domain of C∗-algebras, a state is defined as a positive linear

functional on A possessing a norm of one. The state space of A is symbolized as $(A).

The primary objective of this research is to explore additional intriguing scenarios and expand

upon various inequalities found in existing literature concerning the Euclidean radius of two

operators within a Hilbert A-module. Furthermore, this study provides insights that establish

connections between the operator norm, the standard numerical radius of a composite operator,

and the Euclidean operator radius.

2. Terminology and Supplementary Findings

In this section, we will elucidate and define key terms, concepts, and notations essential for a

comprehensive understanding of Hilbert C∗-modules. Furthermore, we will delve into supplemen-

tary findings and insights that complement and enrich our comprehension of this specialized area

within functional analysis. This section aims to equip readers with the necessary linguistic tools
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and supplementary knowledge required to navigate the intricate terrain of Hilbert C∗-modules

with clarity and confidence.

Definition 2.1. Let t = (x, y) ∈ L 2(E). The Euclidean operator radius is defined by

we(t) : = we(x, y) (2.1)

= sup
{(∣∣∣ψ (〈ξ, xξ〉)

∣∣∣2 + ∣∣∣ψ (
〈
ξ, yξ

〉
)
∣∣∣2) 1

2
: ξ ∈ E,ψ ∈ $(A) and ψ (|ξ|) = 1

}
.

And the Euclidean operator norm is defined by

|||t||| : =
√∣∣∣∣∣∣∣∣∣x∗x + y∗y

∣∣∣∣∣∣∣∣∣ (2.2)

= sup
{(
ψ

(
|xξ|2

)
+ψ

(
|yξ|2

)) 1
2 : ξ ∈ E,ψ ∈ $(A) and ψ (|ξ|) = 1

}
.

Lemma 2.1. |||·||| is a norm on E.

Proof. If t = (t1, t2) = 0, then obviously |||t||| = 0. If |||t||| = 0, then for every ψ ∈ $(A) and each ξ ∈ E

such that ψ (|ξ|) = 1, we have ψ
(
|t jξ|2

)
= 0 for all j = 1, 2. We want to show that tξ = 0 for each

ξ ∈ E. Fix ξ ∈ E.

(1) If ψ (|ξ|) = 0, then by the Cauchy-Schwartz inequality we have

ψ
(〈

t jξ, t jξ
〉)

= ψ
(〈

t∗jt jξ, ξ
〉)
≤ ψ

(〈
t∗jt jξ, t∗jt jξ

〉) 1
2 ψ (|ξ|) = 0,

and so t j = 0 for all j = 1, 2, i.e., t = 0.

(2) If ψ (|ξ|) , 0, then by taking ζ = ξ
ψ(|ξ|) , then ψ (|ζ|) = 1. By Definition 2.2, ψ

(∣∣∣t jζ
∣∣∣) = 0 for

all j = 1, 2 and so 1
φ(|ξ|)ψ

(∣∣∣t jξ
∣∣∣) = 0 for all j = 1, 2. Thus ψ

(∣∣∣t jξ
∣∣∣) = 0 for all j = 1, 2. Since

for every ψ ∈ $(A), we have ψ
(
|t jξ|

)
= 0 for all j = 1, 2. We conclude that |t jξ| = 0 for each

ξ ∈ E and for all j = 1, 2 . So t j = 0 for all j = 1, 2 and so t = 0.

On the other hand A is an abelian C∗-algebra, then by [5, Theorem 3.6], |ξ+ ζ| ≤ |ξ|+ |ζ| for each

ξ, ζ ∈ E. Thus |tξ+ sξ| ≤ |tξ|+ |sξ| for all ξ ∈ E. Hence

ψ (|tξ+ sξ|) ≤ ψ (|tξ|) +ψ (|sξ|) .

Now by Minkowski’s inequality, we have((
ψ

∣∣∣(t1 + q1)ξ
∣∣∣)2

+
(
ψ

∣∣∣(t2 + q2)ξ
∣∣∣)2

) 1
2
≤

(
(ψ (|t1ξ|) +ψ (|q1ξ|))

2 + (ψ (|t2ξ|) +ψ (|q2ξ|))
2
) 1

2

≤

(
ψ

(
|t1ξ|

2
)
+ψ

(
|t2ξ|

2
)) 1

2 +
(
ψ

(
|q1ξ|

2
)
+ψ

(
|q2ξ|

2
)) 1

2

Taking the supremum over all ξ ∈ Ewith ψ (|ξ|) = 1 and ψ ∈ $(A), we have∣∣∣∣∣∣∣∣∣t + q
∣∣∣∣∣∣∣∣∣ ≤ |||t|||+ ∣∣∣∣∣∣∣∣∣q∣∣∣∣∣∣∣∣∣.

Finally, if t = (t1, t2), then we have

|||ct||| =
(
ψ

(
|ct1ξ|

2
)
+ψ

(
|ct2ξ|

2
)) 1

2 = |c|
(
ψ

(
|t1ξ|

2
)
+ψ

(
|t2ξ|

2
)) 1

2 = |c||||t|||
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for all c ∈ C. �

Theorem 2.1. Let t = (t1, t2) ∈ L 2 (E). If E is a Hilbert A-Modules, then

|||t||| = sup
{(∣∣∣ψ (〈ζ, t1ξ〉)

∣∣∣2 + ∣∣∣ψ (〈ζ, t2ξ〉)
∣∣∣2) 1

2
: ξ, ζ ∈ E,ψ ∈ $(A), and ψ (|ξ|) = ψ (|ζ|) = 1

}
.

Proof. Let

% = sup
{(∣∣∣ψ (〈ζ, t1ξ〉)

∣∣∣2 + ∣∣∣ψ (〈ζ, t2ξ〉)
∣∣∣2) 1

2
: ξ, ζ ∈ E,ψ ∈ $(A), and ψ (|ξ|) = ψ (|ζ|) = 1

}
.

It is sufficient to prove that |||t||| = %. If ψ ∈ $(A) and ξ, ζ ∈ E, such that ψ (|ξ|) = ψ (|ζ|) = 1, then

by using the Cauchy-Schwartz inequality, we get(∣∣∣ψ (〈ζ, t1ξ〉)
∣∣∣2 + ∣∣∣ψ (〈ζ, t2ξ〉)

∣∣∣2) 1
2
≤ (ψ (〈t1ξ, t1ξ〉)ψ (〈ζ, ζ〉) +ψ (〈t2ξ, t2ξ〉)ψ (〈ζ, ζ〉))

1
2

≤

(
ψ

(
|t1ξ|

2
)
ψ

(
|ζ|2

)
+ψ

(
|t2ξ|

2
)
ψ

(
|ζ|2

)) 1
2

=
(
ψ

(
|t1ξ|

2
)
+ψ

(
|t2ξ|

2
)) 1

2
≤ |||t|||

and so % ≤ |||t|||.
For ψ ∈ $(A) and ξ ∈ Ewith ψ (|ξ|) = 1, we have

ψ
(
|t jξ|

)4
= ψ

(
|t jξ|

2
)
= ψ

(〈
t jξ, t jξ

〉)
= ψ

(
|t jξ|

)2
ψ


〈

t jξ

ψ
(
|t jξ|

)〉 , t jξ


2

,

where assume that ψ
(∣∣∣t jξ

∣∣∣) , 0 for all j = 1, 2. Thus

(∣∣∣ψ (t1ξ)
∣∣∣2 + ∣∣∣ψ (t2ξ)

∣∣∣2) 1
2

=

ψ (〈
t1ξ

ψ (|t1ξ|)
, t1ξ

〉)2

+ψ

(〈
t2ξ

ψ (|t2ξ|)
, t2ξ

〉)2
1
2

=
(∣∣∣ψ (ζ, t1ξ)

∣∣∣2 + ∣∣∣ψ (ζ, t2ξ)
∣∣∣2) 1

2
≤ %

and hence |||t||| ≤ %. �

Recall that an operator t = (t1, t2) ∈ L 2(E) is said to be self-adjoint if t∗ = (t∗1, t∗2) = (t1, t2) = t.

Theorem 2.2. If t = (t1, t2) ∈ L 2(E) is self-adjoint, then

|||t||| = sup
{(∣∣∣ψ (〈ξ, t1ξ〉)

∣∣∣2 + ∣∣∣ψ (〈ξ, t2ξ〉)
∣∣∣2) 1

2
: ξ ∈ E,ψ ∈ $(A) and ψ (|ξ|) = 1

}
.

Proof. Let M = sup

(∣∣∣ψ (〈ξ, t1ξ〉)
∣∣∣2 + (∣∣∣∣ψ (〈

ξ, t jξ
〉)∣∣∣∣2)) 1

2

: ξ ∈ E,ψ ∈ $(A) and ψ (|ξ|) = 1

. If ψ ∈

$(A) and t is a self-adjoint, then by using the Cauchy-Schwartz inequality∣∣∣∣ψ (〈
ξ, t jξ

〉)∣∣∣∣2 ≤ ψ (〈
t jξ, t jξ

〉)
ψ (〈ξ, ξ〉) = ψ

(
|t jξ|

2
)
ψ

(
|ξ|2

)
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for all j = 1, 2. If ψ (|ξ|) = 1, then(∣∣∣ψ (〈ξ, t1ξ〉)
∣∣∣2 + ∣∣∣ψ (〈ξ, t2ξ〉)

∣∣∣2) 1
2
≤

(
ψ

(
|t1ξ|

2
)
+ψ

(
|t2ξ|

2
)) 1

2

≤ |||t|||.

By taking the supremum over all ξ ∈ Ewith ψ (|ξ|) = 1, we obtain

M ≤ |||t|||.

For the converse, let ξ, ζ ∈ E and ψ ∈ $(A). Then

ψ
(〈
ξ+ ζ, t j(ξ+ ζ)

〉)
−ψ

(〈
ξ− ζ, t j(ξ− ζ)

〉)
= 4ψ

(
Re

〈
ζ, t jξ

〉)
for j = 1, 2.

Consequently, by Minkowski’s inequality we have(∣∣∣ψ (Re 〈ζ, t1ξ〉)
∣∣∣2 + ∣∣∣ψ (Re 〈ζ, t2ξ〉)

∣∣∣2) 1
2

=
(

1
16

∣∣∣ψ (
〈
ξ+ ζ, t1(ξ+ ζ)

〉
) −ψ (

〈
ξ− ζ, t1(ξ− ζ)

〉
)
∣∣∣2 + 1

16

∣∣∣ψ (
〈
ξ+ ζ, t2(ξ+ ζ)

〉
) −ψ (

〈
ξ− ζ, t2(ξ− ζ)

〉
)
∣∣∣2) 1

2

≤
1
4

([∣∣∣ψ (
〈
ξ+ ζ, t1(ξ+ ζ)

〉
)
∣∣∣+ ∣∣∣ψ (

〈
ξ− ζ, t1(ξ− ζ)

〉
)
∣∣∣]2

+
[∣∣∣ψ (

〈
ξ+ ζ, t2(ξ+ ζ)

〉
)
∣∣∣+ ∣∣∣ψ (

〈
ξ− ζ, t2(ξ− ζ)

〉
)
∣∣∣]2

) 1
2

= 1
4

(
ψ

(
|ξ+ ζ|4

) ∣∣∣∣∣ψ (〈
ξ+ζ

ψ(|ξ+ζ|)
, t1(ξ+ζ)
ψ(|ξ+ζ|)

〉)∣∣∣∣∣2 +ψ
(
|ξ+ ζ|4

) ∣∣∣∣∣ψ (〈
ξ+ζ

ψ(|ξ+ζ|)
, t2(ξ+ζ)
ψ(|ξ+ζ|)

〉)∣∣∣∣∣2)
1
2

+ 1
4

(
ψ

(
|ξ− ζ|4

) ∣∣∣∣∣ψ (〈
ξ−ζ

ψ(|ξ−ζ|)
, t1(ξ−ζ)
ψ(|ξ−ζ|)

〉)∣∣∣∣∣2 +ψ
(
|ξ− ζ|4

) ∣∣∣∣∣ψ (〈
ξ−ζ

ψ(|ξ−ζ|)
, t2(ξ−ζ)
ψ(|ξ−ζ|)

〉)∣∣∣∣∣2)
1
2

= 1
4ψ

(
|ξ+ ζ|2

) (∣∣∣∣∣ψ (〈
ξ+ζ

ψ(|ξ+ζ|)
, t1(ξ+ζ)
ψ(|ξ+ζ|)

〉)∣∣∣∣∣2 + ∣∣∣∣∣ψ (〈
ξ+ζ

ψ(|ξ+ζ|)
, t2(ξ+ζ)
ψ(|ξ+ζ|)

〉)∣∣∣∣∣2)
1
2

+ 1
4ψ

(
|ξ− ζ|2

) (∣∣∣∣∣ψ (〈
ξ−ζ

ψ(|ξ−ζ|)
, t1(ξ−ζ)
ψ(|ξ−ζ|)

〉)∣∣∣∣∣2 + ∣∣∣∣∣ψ (〈
ξ−ζ

ψ(|ξ−ζ|)
, t2(ξ−ζ)
ψ(|ξ−ζ|)

〉)∣∣∣∣∣2)
1
2

Since ψ
(∣∣∣∣ ξ+ζ
ψ(|ξ+ζ|)

∣∣∣∣) = ψ(|ξ+ζ|)
ψ(|ξ+ζ|) = 1, we obtain(∣∣∣∣∣ψ (〈

ξ+ζ
ψ(|ξ+ζ|) , t1(ξ+ζ)

ψ(|ξ+ζ|)

〉)∣∣∣∣∣2 + ∣∣∣∣∣ψ (〈
ξ+ζ

ψ(|ξ+ζ|) , t2(ξ+ζ)
ψ(|ξ+ζ|)

〉)∣∣∣∣∣2)
1
2

≤M and(∣∣∣∣∣ψ (〈
ξ−ζ

ψ(|ξ−ζ|) , t1(ξ−ζ)
ψ(|ξ−ζ|)

〉)∣∣∣∣∣2 + ∣∣∣∣∣ψ (〈
ξ−ζ

ψ(|ξ−ζ|) , t2(ξ−ζ)
ψ(|ξ−ζ|)

〉)∣∣∣∣∣2)
1
2

≤M.

Hence (∣∣∣ψ (Re 〈ζ, t1ξ〉)
∣∣∣2 + ∣∣∣ψ (Re 〈ζ, t2ξ〉)

∣∣∣2) 1
2
≤

1
4 M

(
ψ

(
|ξ+ ζ|2

)
+ψ

(
|ξ− ζ|2

))
= 1

4 Mψ
(
2|ξ|2 + 2|ζ|2

)
= 1

2 Mψ
(
|ξ|2 + |ζ|2

)
.

If y =
t jξ

ψ(|t jξ|)
and ψ (|ξ|) = 1, then

(∣∣∣ψ (Re 〈ζ, t1ξ〉)
∣∣∣2 + ∣∣∣ψ (Re 〈ζ, t2ξ〉)

∣∣∣2) 1
2
≤

1
2

Mψ

|ξ|2 +
∣∣∣∣∣∣∣ t jξ

ψ
(
|t jξ|

) ∣∣∣∣∣∣∣
2

=
M
2
ψ

|ξ|2 + |t jξ|2

ψ
(
|t jξ|2

)
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=
M
2

ψ (
|ξ|2

)
+
ψ

(
|t jξ|2

)
ψ

(
|t jξ|2

) = M.

Therefore 
∣∣∣∣∣∣∣ 1

ψ
(
|t jξ|

)ψ (
Re

〈
t jξ, t1ξ

〉)∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣ 1

ψ
(
|t jξ|

)ψ (
Re

〈
t2ξ, t jξ

〉)∣∣∣∣∣∣∣
2

1
2

=


∣∣∣∣∣∣ 1
ψ (|t1ξ|)

Re
(
ψ

(
|t1ξ|

2
))∣∣∣∣∣∣2 +

∣∣∣∣∣∣ 1
ψ (|t2ξ|)

Re
(
ψ

(
|t2ξ|

2
))∣∣∣∣∣∣2


1
2

=


∣∣∣∣∣∣ 1
ψ (|t1ξ|)

ψ
(
|t1ξ|

2
)∣∣∣∣∣∣2 +

∣∣∣∣∣∣ 1
ψ (|t2ξ|)

ψ
(
|t2ξ|

2
)∣∣∣∣∣∣2


1
2

=
(∣∣∣ψ (|t1ξ|)

∣∣∣2 + ∣∣∣ψ (|t2ξ|)
∣∣∣2) 1

2
≤M

and so |||t||| ≤M. The proof of the theorem is complete. �

The following results are very useful in the sequel which can be found in [12].

Lemma 2.2. Let t ∈ L (E) and ψ ∈ $(A). Then the following are equivalent:

(a) ψ (〈ξ, tξ〉) = 0 for every ξ ∈ E with ψ (|ξ|) = 1;
(b) ψ (〈ξ, tξ〉) = 0 for every ξ ∈ E.

Lemma 2.3. Let t ∈ L (E), then t = 0 if and only if ψ (〈ξ, tξ〉) = 0 for every ξ ∈ E and ψ ∈ $(A).

Lemma 2.4. Let t = (t1, t2) ∈ L 2(E). Then for every ψ ∈ $(A) and ξ ∈ E,(∣∣∣ψ (〈ξ, t1ξ〉)
∣∣∣2 + ∣∣∣ψ (〈ξ, t2ξ〉)

∣∣∣2) 1
2
≤ we(t)ψ

(
|ξ|2

)
. (2.3)

Proof. For every ψ ∈ $(A) and ξ ∈ E, we have

1
ψ (|ξ|4)

∣∣∣∣ψ (〈
ξ, t jξ

〉)∣∣∣∣2 =

∣∣∣∣∣∣ψ
(〈

x
ψ (|ξ|)

,
t jξ

ψ (|ξ|)

〉)∣∣∣∣∣∣2
for all j = 1, 2. Hence(

1
ψ (|ξ|4)

∣∣∣ψ (〈ξ, t1ξ〉)
∣∣∣2 + 1

ψ (|ξ|4)

∣∣∣ψ (〈ξ, t2ξ〉)
∣∣∣2) 1

2

≤ we(t)

and so (∣∣∣ψ (〈ξ, t1ξ〉)
∣∣∣2 + ∣∣∣ψ (〈ξ, t2ξ〉)

∣∣∣2) 1
2
≤ we(t)ψ

(
|ξ|2

)
.

�

Theorem 2.3. If t = (t1, t2) ∈ L 2(E), then

we(t) ≤ |||t||| ≤ 2
√

2we(t). (2.4)
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or equivalently,
1

2
√

2
|||t||| ≤ we(t) ≤ |||t|||. (2.5)

Here the constants 1
2
√

2
and 1 are best possible.

Proof. For every ψ ∈ $(A) and ξ ∈ E such that ψ (|ξ|) = 1, by Theorem 2.1, we have(∣∣∣ψ (ξ, t1ξ)
∣∣∣2 + ∣∣∣ψ (ξ, t2ξ)

∣∣∣2) 1
2
≤ |||t|||,

by taking the supremum, we obtain

we(t) ≤ |||t|||.

Fix ξ, ζ ∈ E and ψ ∈ $(A), we have for all j = 1, 2 that

4
∣∣∣∣ψ (〈

ζ, t jξ
〉)∣∣∣∣ = |ψ[

〈
ξ+ ζ, t j(ξ+ ζ)

〉
−

〈
ξ− ζ, t j(ξ− ζ)

〉
+ i

〈
ξ+ iζ, t j(ξ+ iζ)

〉
− i

〈
ξ− iζ, t j(ξ− iζ)

〉
]|

≤

∣∣∣∣ψ (〈
ξ+ ζ, t j(ξ+ ζ)

〉)∣∣∣∣+ ∣∣∣∣ψ (〈
ξ− ζ, t j(ξ− ζ)

〉)∣∣∣∣
+

∣∣∣∣ψ (〈
ξ+ iζ, t j(ξ+ iζ)

〉)∣∣∣∣+ ∣∣∣∣ψ (〈
ξ− iζ, t j(ξ− iζ)

〉)∣∣∣∣ .
Hence for all j = 1, 2, we have

4
∣∣∣∣ψ (〈

ζ, t jξ
〉)∣∣∣∣ ≤ (∣∣∣ψ (

〈
ξ+ ζ, t1(ξ+ ζ)

〉
)
∣∣∣2 + ∣∣∣∣ψ (〈

ξ+ ζ, t j(ξ+ ζ)
〉)∣∣∣∣2) 1

2

+
(∣∣∣ψ (

〈
ξ− ζ, t1(ξ− ζ)

〉
)
∣∣∣2 + ∣∣∣ψ (

〈
ξ− ζ, t2(ξ− ζ)

〉
)
∣∣∣2) 1

2

+
(∣∣∣ψ (

〈
ξ+ iζ, t1(ξ+ iζ)

〉
)
∣∣∣2 + ∣∣∣ψ (

〈
ξ+ iζ, t2(ξ+ iζ)

〉
)
∣∣∣2) 1

2

+
(∣∣∣ψ (

〈
ξ− iζ, t1(ξ− iζ)

〉
)
∣∣∣2 + ∣∣∣ψ (

〈
ξ− iζ, t2(ξ− iζ)

〉
)
∣∣∣2) 1

2

≤ we(t)ψ
(
|ξ+ ζ|2

)
+ we(t)ψ

(
|ξ− ζ|2

)
+ we(t)ψ

(
|ξ+ iζ|2

)
+ we(t)ψ

(
|ξ− iζ|2

)
= we(t)

[
ψ

(
|ξ+ ζ|2

)
+ψ

(
|ξ− ζ|2

)
+ψ

(
|ξ+ iζ|2

)
+ψ

(
|ξ− iζ|2

)]
= we(t)ψ

(
2|ξ|2 + 2|ζ|2 + 2|ξ|2 + 2|iζ|2

)
= 4we(t)

(
ψ(|ξ|2) +ψ(|ζ|2)

)
.

If ψ(|ξ|) = ψ(|ζ|) = 1, then ∣∣∣∣ψ (〈
ζ, t jξ

〉)∣∣∣∣ ≤ 2we(t).

Now (∣∣∣ψ (〈ζ, t1ξ〉)
∣∣∣2 + ∣∣∣ψ (〈ζ, t2ξ〉)

∣∣∣2) 1
2
≤

(
8w2

e (t)
) 1

2 = 2
√

2we(t).

Taking the supremum over all ξ, ζ ∈ E and ψ ∈ $(A) such that ψ(|ξ|) = ψ(|ζ|) = 1,we get

|||t||| ≤ 2
√

2we(t).

�



8 Int. J. Anal. Appl. (2024), 22:174

Remark 2.1. (i) Observe that if t = (x, y) is a self adjoint, then it follows from (2.5) that

1

2
√

2

∣∣∣∣∣∣∣∣∣x2 + y2
∣∣∣∣∣∣∣∣∣ 1

2
≤ we(x, y) ≤

∣∣∣∣∣∣∣∣∣x2 + y2
∣∣∣∣∣∣∣∣∣ 1

2 . (2.6)

(ii) If t = x + iy is the cartesian decomposition of t, then

w2
e (x, y) = sup

ψ(|x|)=1

[∣∣∣ψ (〈ξ, xξ〉)
∣∣∣2 + ∣∣∣ψ (

〈
ξ, yξ

〉
)
∣∣∣2]

= sup
ψ(|x|)=1

∣∣∣ψ (〈ξ, tξ〉)
∣∣∣2 = w2(t). (2.7)

(iii) If t = x + iy is the cartesian decomposition of t, then

t∗t + tt∗ = 2(x2 + y2)

and hence it follows from (2.6) that

1
16
|||t∗t + tt∗||| ≤ w2(t) ≤

1
2
|||t∗t + tt∗|||.

Theorem 2.4. Let t = x + iy be the cartesian decomposition of t ∈ L (E). Then for every µ, ν ∈ R,

we(x, y) = sup
µ2+ν2=1

∣∣∣∣∣∣∣∣∣µx + νy
∣∣∣∣∣∣∣∣∣. (2.8)

In particular,
1
2
|||t + t∗||| ≤ we(x, y) and

1
2
|||t− t∗||| ≤ we(x, y). (2.9)

Proof. First of all, we note that

we(x, y) = sup
θ∈R

∣∣∣∣∣∣∣∣∣∣∣∣Re
(
eiθt

)∣∣∣∣∣∣∣∣∣∣∣∣. (2.10)

In fact, supθ∈R
(
eiθψ (ξ, tξ)

)2
=

∣∣∣ψ (〈ξ, xξ〉)
∣∣∣2 + ∣∣∣ψ (

〈
ξ, yξ

〉
)
∣∣∣2 yields to

sup
θ∈R

∣∣∣∣∣∣∣∣∣∣∣∣Re
(
eiθt

)∣∣∣∣∣∣∣∣∣∣∣∣ = sup
θ∈R

w
(
Re(eiθt)

)
= we(x, y).

On the other hand, let t = x + iy be the Cartesian decomposition of t. Then

Re
(
eiθt

)
=

eiθt + e−iθt∗

2

=
1
2
[(cosθ+ i sinθ) t + (cosθ− i sinθ) t∗]

= (cosθ)
( t + t∗

2

)
− (sinθ)

( t− t∗

2i

)
= (cosθ) x− (sinθ) y. (2.11)

Therefore, by putting µ = cosθ and ν = sinθ in (2.11), we obtain (2.8). Especially, by setting

(µ, ν) = (1, 0) and (µ, ν) = (0, 1), we reach (2.9). �

Remark 2.2. By using (2.9), we get some known inequalities:

(a) |||t||| =
∣∣∣∣∣∣∣∣∣x + iy

∣∣∣∣∣∣∣∣∣ ≤ |||x|||+ ∣∣∣∣∣∣∣∣∣y∣∣∣∣∣∣∣∣∣ ≤ 2we(x, y). Hence we have 1
2 |||t||| ≤ we(x, y).

(b) If t = t∗, then t = x. Hence we have |||t||| = |||x||| ≤ we(x, y) ≤ |||t||| and we(x, y) = |||t|||.
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(c) By an easy calculation, we have t∗t+tt∗
2 = x2 + y2. Hence

1
4
|||t∗t + tt∗||| =

1
2

∣∣∣∣∣∣∣∣∣x2 + y2
∣∣∣∣∣∣∣∣∣ ≤ 1

2

(
|||x|||2 +

∣∣∣∣∣∣∣∣∣y∣∣∣∣∣∣∣∣∣2) ≤ w2
e (x, y).

(d) Let µ, ν ∈ R such that µ2 + ν2 = 1. Then for every ξ ∈ E and ψ ∈ $(A) such that ψ (|ξ|) = 1, we
have ∣∣∣∣∣∣∣∣∣(µx + νy)ξ

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x y
0 0

 µξνξ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x y
0 0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x y
0 0

 x 0

y 0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1
2

=
∣∣∣∣∣∣∣∣∣x2 + y2

∣∣∣∣∣∣∣∣∣ 1
2 =

1
√

2
|||t∗t + tt∗|||

1
2 .

Hence we have

w2
e (x, y) = sup

µ2+ν2=1

∣∣∣∣∣∣∣∣∣µx + νy
∣∣∣∣∣∣∣∣∣2 ≤ 1

2
|||t∗t + tt∗|||.

Theorem 2.5. we : L 2(E) −→ [0,∞) is defines a norm which is equivalent to the norm on L 2(E).

Proof. Let we(t1, t2) = 0. Then for every ξ ∈ E and ψ ∈ $(A) with ψ (|ξ|) = 1, we have(∣∣∣ψ (〈ξ, t1ξ〉)
∣∣∣2 + ∣∣∣ψ (〈ξ, t2ξ〉)

∣∣∣2) 1
2
= 0.

Hence ψ (〈ξ, tkξ〉) = 0 for every ξ ∈ E and ψ ∈ $(A) with ψ (|ξ|) = 1 and k = 1, 2. By Lemma

2.2, ψ (〈ξ, tkξ〉) = 0 for every ξ ∈ E and ψ ∈ $(A) with ψ (|ξ|) = 1, and by Lemma 2.3, tk = 0 for

k = 1, 2. For every µ ∈ C,

we(µt1,µt2) = sup
ψ(|ξ|)=1

(∣∣∣ψ (
〈
x,µt1x

〉
)
∣∣∣2 + ∣∣∣ψ (

〈
x,µt2x

〉
)
∣∣∣2) 1

2

=
∣∣∣µ∣∣∣ (∣∣∣ψ (〈ξ, t1ξ〉)

∣∣∣2 + ∣∣∣ψ (〈ξ, t2ξ〉)
∣∣∣2) 1

2
=

∣∣∣µ∣∣∣ we(t1, t2).

Let t1, t2, s1, s2 ∈ L (E). For every ξ ∈ E and ψ ∈ $(A) with ψ (|ξ|) = 1, and by Minkowski’s

inequality we have[∣∣∣ψ (
〈
ξ, (t1 + s1)ξ

〉
)
∣∣∣2 + ∣∣∣ψ (

〈
ξ, (t2 + s2)ξ

〉
)
∣∣∣2] 1

2

≤

[(∣∣∣ψ (〈ξ, t1ξ〉)
∣∣∣+ ∣∣∣ψ (〈x, s1x〉)

∣∣∣)2
+

(∣∣∣ψ (〈ξ, t2ξ〉)
∣∣∣+ ∣∣∣ψ (〈x, s2x〉)

∣∣∣)2
] 1

2

≤

[∣∣∣ψ (〈ξ, t1ξ〉)
∣∣∣2 + ∣∣∣ψ (〈ξ, t2ξ〉)

∣∣∣2] 1
2
+

[∣∣∣ψ (〈ξ, s1ξ〉)
∣∣∣2 + ∣∣∣ψ (〈ξ, s2ξ〉)

∣∣∣2] 1
2

By taking supremum over all ψ (|ξ|) = 1,

we (t1 + s1, t2 + s2) ≤ we(t1, t2) + we(s1, s2).

Finally, the equivalence with the norm on L 2(E) follows from Theorem 2.3. �

Theorem 2.6. Let t, s ∈ L (E). Then the following assertions hold:

(i) we(t, s) ≥ max{w(t), w(s)}.
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(ii) we(t, s) ≥ 1
√

2
w

(
t + eiθs

)
for all θ ∈ R.

(iii) we(t, s) ≥
√

1
2 w (t2 + eiθs2) + 1

2

∣∣∣w2(t) −w2(s)
∣∣∣ for all θ ∈ R.

(iv) we(t, s) ≥
√

1
2 w (ts + st).

Proof. (i) This can be readily inferred from the Euclidean numerical radius definition.

(ii) It can be deduced from the definition that for any ξ in set E and ψ in the range of the function

$(E), the following holds:

we(t, s) = sup
ψ(|ξ|)=1

√∣∣∣ψ (〈ξ, tξ〉)
∣∣∣2 + ∣∣∣ψ (〈ξ, sξ〉)

∣∣∣2
≥ sup

ψ(|ξ|)=1

√
1
2

(∣∣∣ψ (〈ξ, tξ〉)
∣∣∣+ ∣∣∣ψ (〈ξ, sξ〉)

∣∣∣)2

≥ sup
ψ(|ξ|)=1

√
1
2

∣∣∣ψ (〈ξ, tξ〉) + eiθψ (〈ξ, sξ〉)
∣∣∣2

≥
1
√

2
w(t + eiθs), for all θ ∈ R.

(iii) From (i), we have

w2
e (t, s) ≥ max{w2(t), w2(s)}

=
1
2

(
w2(t) + w2(s)

)
+

1
2

∣∣∣w2(t) −w2(s)
∣∣∣

≥
1
2

(
w(t2) + w(s2)

)
+

1
2

∣∣∣w2(t) −w2(s)
∣∣∣

≥
1
2

(
w(t2 + eiθs2)

)
+

1
2

∣∣∣w2(t) −w2(s)
∣∣∣ .

(iv) From (ii), we have we(t, s) ≥ 1
√

2
w (t + s) and we(t, s) ≥ 1

√
2
w (t− s). Hence

2w2
e (t, s) ≥

1
2

w2(t + s) +
1
2

w2(t + s)

≥
1
2

w((t + s)2) +
1
2

w((t− s)2)

≥
1
2

w
(
(t + s)2

− (t− s)2
)
= w(ts + st).

and so, we(t, s) ≥
√

1
2 (ts + st). This completes the proof. �

3. Inequalities Related to the Euclidean Operator Radius of Two Operators within aHilbert

C∗-Module.

Within this section, as a result of refining the Euclidean operator radius bounds for a pair of

operators, we establish a collection of lower and upper bounds for the numerical radius of t within

the context of a Hilbert C∗-module. These bounds stand out in their superior level of strength

when compared to the existing ones.
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Theorem 3.1. Let t, s ∈ L (E). Then

we(t, s) ≥

√
1
4

w (t2 + s2) +
1
4
(w2(t) + w2(s)) +

1
2

∣∣∣w2(t) −w2(s)
∣∣∣.

Proof. Setting

η1 = max
{
w2(t),

1
2

w
(
t2 + s2

)}
η2 = max

{
w2(s),

1
2

w
(
t2 + s2

)}
µ1 =

∣∣∣∣∣w2(t) −
1
2

w
(
t2 + s2

)∣∣∣∣∣
µ2 =

∣∣∣∣∣w2(s) −
1
2

w
(
t2 + s2

)∣∣∣∣∣ .
Using inequalities (i) and (iii) from Theorem 2.6, we can derive that

w2
e (t, s) ≥ max

{
η1, η2

}
=

1
2
(η1 + η2) +

1
2

∣∣∣η1 − η2
∣∣∣

=
1
4

(
w2(t) + w2(s)

)
+

1
4

w(t2 + s2) +
1
4
(µ1 + µ2) +

1
2

∣∣∣η1 − η2
∣∣∣

≥
1
4

(
w(t2) + w(s2)

)
+

1
4

w(t2 + s2) +
1
4
(µ1 + µ2) +

1
2

∣∣∣η1 − η2
∣∣∣

≥
1
4

w(t2 + s2) +
1
4

w(t2 + s2) +
1
4
(µ1 + µ2) +

1
2

∣∣∣η1 − η2
∣∣∣

=
1
2

w(t2 + s2) +
1
4
(µ1 + µ2) +

1
2

∣∣∣η1 − η2
∣∣∣

=
1
4

w(t2 + s2) +
1
4

(
w2(t) + w2(s)

)
+

1
2

∣∣∣w2(t) −w2(s)
∣∣∣ ,

as required. �

A direct outcome of Theorem 3.1 yields the following outcome.

Corollary 3.1. If t, s ∈ L (E) are normal, then

we(t, s) ≥

√
1
4

∣∣∣∣∣∣∣∣∣t2 + s2
∣∣∣∣∣∣∣∣∣+ 1

4

(
|||t|||2 + |||s|||2

)
+

1
2

∣∣∣|||t|||2 − |||s|||2∣∣∣
=

√
1
4

∣∣∣∣∣∣∣∣∣t2 + s2
∣∣∣∣∣∣∣∣∣+ 1

4
(τ1 + τ2) +

1
2

∣∣∣ρ1 − ρ2
∣∣∣,

where

τ1 = max
{
|||t|||2,

1
2

∣∣∣∣∣∣∣∣∣t2 + s2
∣∣∣∣∣∣∣∣∣}

τ2 = max
{
|||s|||2,

1
2

∣∣∣∣∣∣∣∣∣t2 + s2
∣∣∣∣∣∣∣∣∣}

ρ1 =

∣∣∣∣∣|||t|||2 − 1
2

∣∣∣∣∣∣∣∣∣t2 + s2
∣∣∣∣∣∣∣∣∣∣∣∣∣∣ and
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ρ2 =

∣∣∣∣∣|||s|||2 − 1
2

∣∣∣∣∣∣∣∣∣t2 + s2
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Corollary 3.1 provides us with the following bound on the numerical radius of a bounded linear

operator t in L (E).

Corollary 3.2. Let t = b + ic ∈ L (E) be the Cartesian decomposition of t. Then

w(t) ≥

√
1
8
|||t∗t + tt∗|||+

1
4

(
|||b|||2 + |||c|||2

)
+

∣∣∣|||b|||2 − |||c|||2∣∣∣.
Proof. In Corollary 3.1, when we set t = b and s = c, we arrive the result. �

By utilizing Corollary 3.1, we additionally derive the subsequent lower bound for the numerical

radius.

Corollary 3.3. Let t = b + ic ∈ L (E) be the cartesian decomposition of t. Then

w(t) ≥

√
1
8
|||t∗t + tt∗|||+

1
8

(
|||b + c|||2 + |||b− c|||2

)
+ δ(t),

where δ(t) = 1
4

∣∣∣|||b + c|||2 − |||b− c|||2
∣∣∣.

Proof. Within Corollary 3.1, if we assign t = b+c
√

2
and s = b−c

√
2

, we obtain the outcome. �

Subsequently, we acquire an upper limit for the Euclidean operator radius denoted as we(t, s).

Theorem 3.2. If t and s belong to L (E), then for all ν in the interval [0,1], the following inequality holds:

we(t, s) ≤

∣∣∣∣∣∣∣∣∣ν2t∗t + (1− ν)2s∗s
∣∣∣∣∣∣∣∣∣1/2

+
1
√

2

[
w2 ((1− ν)t + νs) + w2 ((1− ν)t− νs)

]1/2
.

Specifically, when ν = 1
2 , we have:

we(t, s) ≤
1
2
|||t∗t + s∗s|||1/2 +

1

2
√

2

[
w2(t + s) + w2(t− s)

]1/2
.

Proof. For each ξ in the set E, ψ in the range of $(E) such that ψ (|ξ|) = 1, and νwithin the interval

[0,1], the following holds:(∣∣∣ψ (〈ξ, tξ〉)
∣∣∣2 + ∣∣∣ψ (〈ξ, sξ〉)

∣∣∣2)1/2

=
(∣∣∣νψ (〈ξ, tξ〉) + (1− ν)ψ (〈ξ, tξ〉)

∣∣∣2 + ∣∣∣(1− ν)ψ (〈ξ, sξ〉) + νψ (〈ξ, sξ〉)
∣∣∣2)1/2

≤

(
ν2

∣∣∣ψ (〈ξ, tξ〉)
∣∣∣2 + (1− ν)2

∣∣∣ψ (〈ξ, sξ〉)
∣∣∣2)1/2

+
(
ν2

∣∣∣ψ (〈ξ, sξ〉)
∣∣∣2 + (1− ν)2

∣∣∣ψ (〈ξ, tξ〉)
∣∣∣2)1/2

(by Minkowski’s Inequality)

≤

(
ν2ψ

(
|tξ|2

)
+ (1− ν)2ψ

(
|sξ|2

))1/2
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+
(1
2

∣∣∣ψ (
〈
ξ, ((1− ν)t + νs)

〉
ξ)

∣∣∣2 + ∣∣∣ψ (
〈
ξ, ((1− ν)t− νs)

〉
ξ)

∣∣∣2)1/2

By considering the supremum across all ξ in the set Ewhere ψ (|ξ|) = 1, we obtain:

we(t, s) ≤
∣∣∣∣∣∣∣∣∣ν2t∗t + (1− ν)2s∗s

∣∣∣∣∣∣∣∣∣1/2
+

[1
2

w2((1− ν)t + νs) +
1
2

w2((1− ν)t− νs)
]1/2

.

�

Theorem 3.3. Let t, s ∈ L (E). Then

1
√

2

[
w(t2 + s2)

] 1
2
≤ we(t, s) ≤ |||t∗t + s∗s|||

1
2 . (3.1)

Proof. We follow a similar argument to the one from [12]. For every x ∈ E with ψ (|x|) = 1 and

ψ ∈ $(A), we have∣∣∣ψ (〈x, tx〉)
∣∣∣2 + ∣∣∣ψ (〈x, sx〉)

∣∣∣2 ≥
1
2

(∣∣∣ψ (〈x, tx〉) +
∣∣∣ψ (〈x, tx〉)

∣∣∣∣∣∣)2

≥
1
2

∣∣∣ψ (
〈
x, (t± s)x

〉
)
∣∣∣2 . (3.2)

Taking the supremum in (3.2), we deduce

w2
e (t, s) ≥

1
2

w2(t± s). (3.3)

Utilising the inequality (3.3) and the properties of the numerical radius, we have successively:

2w2
e (t, s) ≥

1
2

[
w2(t + s) + w2(t− s)

]
≥

1
2

[
w

(
(t + s)2

)
+ w

(
(t− s)2

)]
≥

1
2

w
(
(t + s)2 + (t− s)2

)
= w(t2 + s2).

which gives the desired inequality (3.1). �

Corollary 3.4. For any two self-adjoint bounded linear operators t, s on E, we have

1
√

2

∣∣∣∣∣∣∣∣∣t2 + s2
∣∣∣∣∣∣∣∣∣ 1

2
≤ we(t, s) ≤

∣∣∣∣∣∣∣∣∣t2 + s2
∣∣∣∣∣∣∣∣∣ 1

2 . (3.4)

Example 3.1. Let’s consider the Hilbert C∗-module E to be the space of continuous functions on the closed
interval [0, 1] with the inner product defined as the integral of the pointwise product of functions. In this
case, we have:
E is a Hilbert C∗-module. Self-adjoint bounded linear operators t and s can be represented as integral

operators. For instance, let t be the operator corresponding to multiplication by 2x and s the operator
corresponding to multiplication by x2. Now, let’s verify the inequality (3.4):
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Lower Bound: We calculate the lower bound first:

1
√

2

∣∣∣∣∣∣∣∣∣t2 + s2
∣∣∣∣∣∣∣∣∣ 1

2 =
1
√

2

(∫ 1

0
|2x|2 + |x2

|
2, dx

) 1
4

=
1
√

2

(∫ 1

0
(4x2 + x4), dx

) 1
2

=
1
√

2

(23
15

) 1
4
≈ 0.78685.

To find the Euclidean numerical radius we(t, s) for the operators t = 2x and s = x2 on the Hilbert space
C([0, 1]), which is the space of continuous functions on the closed interval [0, 1], we will use the definition
of the Euclidean numerical radius:

we(t, s) = sup
{(∣∣∣ψ (〈ξ, xξ〉)

∣∣∣2 + ∣∣∣ψ (
〈
ξ, yξ

〉
)
∣∣∣2) 1

2
: ξ ∈ E,ψ ∈ $(A) and ψ (|ξ|) = 1

}
.

In this case, ξ can be any function in C([0, 1]) ψ can be any function in a dense ∗-subalgebra $(A) such
that ψ(|ξ|) = 1. Let’s compute we(t, s) step by step:

• First, calculate
∣∣∣ψ (〈ξ, tξ〉)

∣∣∣2:

∣∣∣ψ (〈ξ, tξ〉)
∣∣∣2 =

∣∣∣∣∣∣
∫ 1

0
ψ(x) (2xξ(x)) dx

∣∣∣∣∣∣
2

.

• Next, calculate
∣∣∣ψ (〈ξ, sξ〉)

∣∣∣2:

∣∣∣ψ (〈ξ, tξ〉)
∣∣∣2 =

∣∣∣∣∣∣
∫ 1

0
ψ(x)

(
x2ξ(x)

)
dx

∣∣∣∣∣∣
2

.

Now, consider the expression
∣∣∣ψ (〈ξ, tξ〉)

∣∣∣2 + ∣∣∣ψ (〈ξ, sξ〉)
∣∣∣2:

∣∣∣ψ (〈ξ, tξ〉)
∣∣∣2 + ∣∣∣ψ (〈ξ, sξ〉)

∣∣∣2 =

∣∣∣∣∣∣
∫ 1

0
ψ(x) (2xξ(x)) dx

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∫ 1

0
ψ(x)

(
x2ξ(x)

)
dx

∣∣∣∣∣∣
2

.

Now, we want to find the supremum of this expression over all possible choices of ξ and ψ satisfying the
given conditions. Let’s choose a simple case for ξ and ψ to maximize this expression:

• Let ξ(x) = 1 for all x ∈ [0, 1]. This represents a constant function.
• Let ψ(x) = 1 for all x ∈ [0, 1]. This also represents a constant function.

Using these choices, we have:√√∣∣∣∣∣∣
∫ 1

0
ψ(x) (2xξ(x)) dx

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∫ 1

0
ψ(x) (x2ξ(x)) dx

∣∣∣∣∣∣
2

=

√√∣∣∣∣∣∣
∫ 1

0
1.(2x.1) dx

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∫ 1

0
1.(x2.1) dx

∣∣∣∣∣∣
2

=

√
1 +

1
9
=

√
10
9

.

So, for the chosen ξ and ψ, the value of the expression is
√

10
9 . Since this value is achieved for the chosen, the

supremum is
√

10
9 = 1.054, and that is the Euclidean numerical radius we(t, s) =

√
10
9 for the operators

t = 2x and s = x2 on C([0, 1]).
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Upper Bound: The upper bound is the norm of the operator t2 + s2:

∣∣∣∣∣∣∣∣∣t2 + s2
∣∣∣∣∣∣∣∣∣ 1

2 =

(∫ 1

0
|(2x)2 + (x2)2

|, dx
) 1

4

=

(∫ 1

0
(4x2 + x4), dx

) 1
4

=
(23
15

) 1
4
≈ 1.23827.

This value is indeed greater than we(t, s), which is consistent with the upper bound of
∣∣∣∣∣∣∣∣∣t2 + s2

∣∣∣∣∣∣∣∣∣ 1
2 . Hence,

this example illustrates the theorem’s inequality (3.4).

Remark 3.1. Notice that when both t and s are self-adjoint operators within the Cartesian decomposition
of a, we precisely achieve the lower bound as established by Moghaddam and Mirmostafaee in [12, Theorem
3.2] for the numerical radius w(a). Furthermore, since 1

4 represents an optimal constant in Moghaddam
and Mirmostafaee’s inequality, it logically follows that 1

√
2

also stands as the most favorable constant in both
(3.4) and (3.1), respectively.

Corollary 3.5. For any a ∈ L (E) and µ, ν ∈ C, we have

1
2

w
(
µ2a2 + ν2(a∗)2

)
≤

(
|µ|2 + |ν|2

)
w2(a) ≤

∣∣∣∣∣∣∣∣∣|µ|2a∗a + |ν|2aa∗
∣∣∣∣∣∣∣∣∣. (3.5)

Proof. In Theorem 3.3, put t = µa and s = νa∗, we get

w2
e (t, s) =

(
|µ|2 + |ν|2

)
w2(a)

and

w2(t2 + s2) = w
(
|µ|2a∗a + |ν|2aa∗

)
,

which, by (3.1) implies the desired result (3.5). �

Remark 3.2. (i) By selecting µ = ν , 0 in equation (3.5), we derive the subsequent inequality for any
operator a ∈ L (E):

1
4

∣∣∣∣∣∣∣∣∣a2 + (a∗)2
∣∣∣∣∣∣∣∣∣ ≤ w2(a) ≤

1
2
|||a∗a + aa∗|||. (3.6)

(ii) By setting µ = 1 and ν = i in equation (3.5), we establish the following inequality for any operator
a ∈ L (E):

1
4

∣∣∣∣∣∣∣∣∣a2
− (a∗)2

∣∣∣∣∣∣∣∣∣ ≤ w2(a). (3.7)

Theorem 3.4. For any t, s ∈ L (E), we have

1
√

2
max{w(t + s), w(t− s)} ≤ we(t, s) ≤

1
√

2

[
w2(t + s) + w2(t− s)

] 1
2 . (3.8)

The constant 1
√

2
is sharp in both inequalities.
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Proof. The first inequality follows from (3.3). For the second inequality, we observe that∣∣∣ψ (〈x, tx〉) ±ψ (〈x, sx〉)
∣∣∣2 ≤ w2(t± s) (3.9)

for every x ∈ Ewith ψ (|x|) = 1 and ψ ∈ $(A).

The inequality (3.9) and the parallelogram identity for complex numbers lead to the following

expression for any x ∈ Ewith ψ (|x|) = 1 and ψ ∈ $(A):

2
[∣∣∣ψ (〈x, tx〉)

∣∣∣2 + ∣∣∣ψ (〈x, sx〉)
∣∣∣2] =

∣∣∣ψ (〈x, tx〉) −ψ (〈x, sx〉)
∣∣∣2 + ∣∣∣ψ (〈x, tx〉) +ψ (〈x, sx〉)

∣∣∣2
≤ w2(t + s) + w2(t− s) (3.10)

By taking the supremum in (3.9) over all vectors x ∈ E with ψ (|x|) = 1, we arrive at the desired

result (3.11). It’s worth noting that the optimality of the constant 1
√

2
is evident, as for t = s , 0, all

terms in (3.11) would yield the same quantity
√

2w(t). �

Corollary 3.6. For any pair of self-adjoint operators t and s belonging to L (E), the following inequality
holds:

1
√

2
max {|||t + s|||, |||t− s|||} ≤ we(t, s) ≤

1
√

2

[
|||t + s|||2 + |||t− s|||2

] 1
2 . (3.11)

It’s important to note that the constant 1
√

2
is the tightest possible value for both of these inequalities.

Theorem 3.5. Let t, s ∈ L (E). Then

we(t, s) ≤
[
w2(t− s) + 2w(t)w(s)

] 1
2 . (3.12)

Proof. For any x ∈ Ewith ψ (|x|) = 1 and ψ ∈ $(A), we have∣∣∣ψ (〈x, tx〉)
∣∣∣2 − 2Re

[
ψ (〈x, tx〉)ψ (〈x, sx〉)

]
+

∣∣∣ψ (〈x, sx〉)
∣∣∣2 =

∣∣∣ψ (〈x, tx〉) −ψ (〈x, sx〉)
∣∣∣2 ≤ w2(t− s),

giving ∣∣∣ψ (〈x, tx〉)
∣∣∣2 + ∣∣∣ψ (〈x, sx〉)

∣∣∣2 ≤ w2(t− s) + 2Re
[
ψ (〈x, tx〉)ψ (〈x, sx〉)

]
≤ w2(t− s) + 2

∣∣∣ψ (〈x, tx〉)
∣∣∣ ∣∣∣ψ (〈x, sx〉)

∣∣∣ (3.13)

for any x ∈ Ewith ψ (|x|) = 1 and ψ ∈ $(A).

Taking the supremum in (3.13) over all x ∈ E with ψ (|x|) = 1 and ψ ∈ $(A), we deduce the

required inequality (3.12). �

In particular, if t and s are self-adjoint operators, then

we(t, s) ≤
[
|||t− s|||2 + |||t + s|||2

] 1
2 . (3.14)

The following result provides a different upper bound for the Euclidean operator radius than

(3.12).

Theorem 3.6. Let t, s ∈ L (E). Then we have

we(t, s) ≤
[
2 min{w2(t), w2(s)}+ w(t− s)w(t + s)

] 1
2 . (3.15)
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Proof. By employing the parallelogram identity (3.10), we can derive the following equation by

taking the supremum over x ∈ Ewith ψ (|x|) = 1 and ψ ∈ $(A):

2w2
e (t, s) = w2

e (t− s, t + s). (3.16)

Now, if we apply Theorem 3.5 to the operators t− s and t + s instead of t and s, we can state:

w2
e (t− s, t + s) ≤ 4w2(s) + 2w(t− s)w(t + s)

This leads to the following inequality:

w2
e (t, s) ≤ 2w2(s) + w(t− s)w(t + s). (3.17)

Furthermore, if we interchange s with t in (3.17), we also obtain:

w2
e (t, s) ≤ 2w2(t) + w(t− s)w(t + s). (3.18)

The final conclusion follows from the combination of (3.17) and (3.18). �

An alternative upper limit for the Euclidean operator radius is introduced as follows.

Theorem 3.7. Let t, s ∈ L (E). Then we have

w2
e (t, s) ≤ max{|||t|||2, |||s|||2}+ w(s∗t). (3.19)

Proof. Firstly, let us observe that for any y, u, v ∈ E and ψ ∈ $(A) we have successively∣∣∣∣∣∣∣∣∣ψ (
〈
y, u

〉
) u +ψ (

〈
y, v

〉
) v

∣∣∣∣∣∣∣∣∣2 =∣∣∣(〈y, u
〉
)
∣∣∣2 ψ (

|u|2
)
+

∣∣∣(〈y, v
〉
)
∣∣∣2 ψ (

|v|2
)
+ 2Re

[
ψ (

〈
y, u

〉
)ψ (

〈
y, v

〉
)ψ (〈u, v〉)

]
≤

∣∣∣(〈y, u
〉
)
∣∣∣2 ψ (

|u|2
)
+

∣∣∣(〈y, v
〉
)
∣∣∣2 ψ (

|v|2
)
+ 2

∣∣∣ψ (
〈
y, u

〉
)
∣∣∣ ∣∣∣ψ (

〈
y, v

〉
)
∣∣∣ ∣∣∣ψ (〈u, v〉)

∣∣∣
≤

∣∣∣(〈y, u
〉
)
∣∣∣2 ψ (

|u|2
)
+

∣∣∣(〈y, v
〉
)
∣∣∣2 ψ (

|v|2
)
+

[∣∣∣ψ (
〈
y, u

〉
)
∣∣∣2 + ∣∣∣ψ (

〈
y, v

〉
)
∣∣∣2] ∣∣∣ψ (〈u, v〉)

∣∣∣
≤

[∣∣∣ψ (
〈
y, u

〉
)
∣∣∣2 + ∣∣∣ψ (

〈
y, v

〉
)
∣∣∣2] (max{ψ

(
|u|2

)
,ψ

(
|v|2

)
}+

∣∣∣ψ (〈u, v〉)
∣∣∣) . (3.20)

On the other hand,[∣∣∣ψ (
〈
y, u

〉
)
∣∣∣2 + ∣∣∣ψ (

〈
y, v

〉
)
∣∣∣2]2

= [ψ (
〈
y, u

〉
)ψ (

〈
u, y

〉
) +ψ (

〈
y, v

〉
)ψ (

〈
v, y

〉
)]2

= [ψ (
〈
y,ψ (

〈
y, u

〉
) u +ψ (

〈
y, v

〉
) v

〉
)]2

≤ ψ
(
|y|2

)
ψ

(∣∣∣ψ (
〈
y, u

〉
) u +ψ (

〈
y, v

〉
) v

∣∣∣2) . (3.21)

for any u, v, y ∈ E.

Making use of (3.20) and (3.21) we deduce that∣∣∣ψ (
〈
y, u

〉
)
∣∣∣2 + ∣∣∣ψ (

〈
y, v

〉
)
∣∣∣2 ≤ ψ (

|y|2
) (

max{ψ
(
|u|2

)
,ψ

(
|v|2

)
}+

∣∣∣ψ (〈u, v〉)
∣∣∣) (3.22)
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for any u, v, y ∈ E.

Now, if we apply the inequality (3.22) for y = x, u = tx, v = sx, x ∈ E, ψ (|x|) = 1, then we can state

that ∣∣∣ψ (〈x, tx〉)
∣∣∣2 + ∣∣∣ψ (〈x, sx〉)

∣∣∣2 ≤ ψ (
|x|2

) (
max{|||tx|||2, |||sx|||2}+

∣∣∣ψ (〈tx, sx〉)
∣∣∣) (3.23)

for any x ∈ Ewith ψ (|x|) = 1 and ψ ∈ $(A).

Taking the supremum over x ∈ E with ψ (|x|) = 1 and ψ ∈ $(A), we deduce the desired result

(3.19). �

Remark 3.3. In Theorem 3.7, when both t and s are self-adjoint operators and they are equal, the inequality
(3.19) simplifies to:

we(t, t) ≤
√

2|||t|||.

This demonstrates the optimality of the inequality (3.19).

When data regarding the addition and subtraction of operators t and s is accessible, the subse-

quent outcome can be applied.

Corollary 3.7. Let t, s ∈ L (E). Then

w2
e (t, s) ≤

1
2

[
max{|||t− s|||2, |||t + s|||2}+ w[(t + s)(t∗ − s∗)]

]
. (3.24)

The constant 1
2 is best possible.

Proof. This is deduced by applying the inequality (3.19) to the operators t + s and t − s instead of

t and s, while also utilizing the identity (3.16). The reason why 1
2 is the optimal constant in (3.24)

becomes apparent when considering the case where s = t, with t being a self-adjoint operator. In

this scenario, both sides of the inequality (3.24) yield the quantity 2|||t|||2. �

Corollary 3.8. Let a ∈ L (E). Then

w2(t) ≤
1
4

[
max{|||t− t∗|||2, |||t + t∗|||2}+ w[(t− t∗)(t + t∗)]

]
. (3.25)

The constant 1
4 is best possible.

Proof. If t = a+a∗
2 and s = a−a∗

2i are the cartesian decomposition of a ∈ L (E), then

w2
e (t, s) = w2(a)

and

w(s∗t) =
1
4
[(a∗ + a)(a∗ − a)] .

Utilizing (3.19), we deduce (3.25). �

Remark 3.4. If we choose in (3.19), t = a and s = a∗, a ∈ L (E), then we can state that

w2(a) ≤
1
2

[
|||a|||2 + w(a2)

]
. (3.26)

The constant 1
2 is best possible.
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the following upper bound for the Euclidean radius involving different composite operators

Theorem 3.8. Let t, s ∈ L (E). Then

w2
e (t, s) ≤

1
2
[|||t∗t + s∗s|||+ |||t∗t− s∗s|||] + w(s∗t). (3.27)

Proof. We use (3.23) to write that∣∣∣ψ (〈x, tx〉)
∣∣∣2 + ∣∣∣ψ (〈x, sx〉)

∣∣∣2 ≤ 1
2

[
|||tx|||2 + |||sx|||2 +

∣∣∣|||tx|||2 − |||sx|||2
∣∣∣]+ ∣∣∣ψ (〈sx, tx〉)

∣∣∣ (3.28)

for any x ∈ Ewith ψ (|x|) = 1 and ψ ∈ $(A).

Since |||tx|||2 = ψ (〈x, t∗tx〉) and |||sx|||2 = ψ (〈x, s∗sx〉), then (3.28) can be written as∣∣∣ψ (〈x, tx〉)
∣∣∣2 + ∣∣∣ψ (〈x, sx〉)

∣∣∣2 ≤
1
2

[
ψ (

〈
x, (t∗t + s∗s)x

〉
) +

∣∣∣ψ (
〈
x, (t∗t− s∗s)x

〉
)
∣∣∣]

+
∣∣∣ψ (〈sx, tx〉)

∣∣∣ (3.29)

for any x ∈ Ewith ψ (|x|) = 1 and ψ ∈ $(A).

Taking the supremum in (3.29) over x ∈ E with ψ (|x|) = 1 and ψ ∈ $(A). and noticing that the

operators t∗t± s∗s are self-adjoint, we deduce the desired result (3.27). �

Corollary 3.9. for any operators t, s ∈ L (E), we have

w2
e (t, s) ≤

1
2
[|||t∗t + s∗s|||+ |||t∗s + s∗t|||+ w[(t + s)(t∗ − s∗)]] . (3.30)

The constant 1
2 is best possible.

Proof. If we write (3.27) for t + s, t− s instead of t, s and perform the required calculations then we

get

w2
e (t + s, t− s) ≤

1
2
[2|||t∗t + s∗s|||+ 2|||t∗s + s∗t|||] + w[(t + s)(t∗ − s∗)],

which, by the identity (3.16) is clearly equivalent with (3.30).

Now, if we choose in (3.30) t = s, then we get the inequality w(t) ≤ |||t|||, which is a sharp

inequality. �

Corollary 3.10. If t, s ∈ L (E) are self-adjoint, then

w2
e (t, s) ≤

1
2

[∣∣∣∣∣∣∣∣∣t2 + s2
∣∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∣t2

− s2
∣∣∣∣∣∣∣∣∣]+ w(st). (3.31)

Remark 3.5. (i) Notably, if we designate t and s as the Cartesian decomposition for the bounded linear
operator a in equation (3.31), we can derive the following inequality:

w2(a) ≤
1
4

[
|||t∗t + tt∗|||+

∣∣∣∣∣∣∣∣∣t2 + (t∗)2
∣∣∣∣∣∣∣∣∣+ w ((a + a∗)(a∗ − a))

]
. (3.32)

It’s crucial to highlight that the constant 1
4 is the tightest possible value in this inequality. This is evident

since, for a self-adjoint operator a, both sides of (3.32) yield the same value, which is |||a|||2.
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(ii) In a different situation, by selecting t = a and s = a∗ in (3.27), where a ∈ L (E), we obtain the following
inequality:

w2(a) ≤
1
4
[|||a∗a + aa∗|||+ |||a∗a− aa∗|||] +

1
2

w(a2). (3.33)

This inequality is characterized as sharp. Equality holds, for instance, when we assume that a is a normal
operator, i.e., a∗a = aa∗. In this particular case, both sides of (3.33) yield the quantity |||a|||2, as for normal
operators, we have w(a2) = w2(a) = |||a|||2.
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