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Abstract. The present paper is emphasis on introducing Orlicz extension of new sequence spaces (i.e br,s
0 (M,G),

br,s
c (M,G) and br,s

∞ (M,G)) by way of the composition of binomial matrix and double band matrix, which are BK−spaces,

moreover we prove that these spaces are linearly isomorphic to the spaces l∞, c0 and c. We also derive some inclusion

relations. Additionally, we find the Schauder basis for these spaces and finally we also determine the α−, β− and γ−

duals of these spaces.

1. Fundamentals and Representations

By w we embodied the clan of all real(or complex) valued sequences. The signs, `∞, c0, c and `p

signifies the classical sequence spaces of all bounded, convergent, null and absolutely p-summable

sequences, respectively, where 1 ≤ p < ∞.

A BK− space is a Banach sequence space only if each of the maps pn : X→ C delineate by pn = zn

is continuous ∀ n ∈ N, where X is a sequence space (see [9]).
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By reflecting the above explanation and notion, It is obvious that l∞, c0, c and lp are BK− spaces

conferring norm ‖z‖∞ = sup
k∈N
|zk| and lp is a BK− space with p−norm given by

‖z‖lp =
( ∞∑

k=0

|zk|
p
) 1

p
,

where 1 ≤ p < ∞.

Let X and Y be two sequence spaces and A = (ank) be an infinite matrix of real or complex entries,

where n, k ∈N. Then we say that A defines a matrix mapping from X into Y if for every sequence

z = (zk) ∈ X, the sequence Az = {An(z)} ∈ Y, where

An(z) =
∑

k

ankzk (n ∈N), (1.1)

converges for each n ∈N. By (X, Y) we denote the class of all matrices A such that A : X→ Y. For

a sequence space X, the matrix domain XA of an infinite matrix A is defined by

XA = {z = (zk) ∈ w : Az ∈ X}. (1.2)

A matrix A = (ank) is called a triangle if ank = 0 for k > n and ann , 0 ∀ n ∈N [22].

We mark bs and cs for the sets of all bounded and convergent series, which are defined via the

matrix domain of the summation matrix S = (snk) such that

bs = (l∞)S and cs = cS

respectively, where S = (snk) is defined by

snk =

 1, 0 ≤ k ≤ n;

0, k > n

∀ n, k ∈N.

The principle of matrix transformation has an abundant reputation in summability theory given

by Cesàro, Nörlund, Borel, etc. For more details on sequence spaces defined by matrix domain of

infinite matrices see ( [21], [17], [14], [10], [1], [2], [3] and [18], [11], [12], [6] and [7]).

An Orlicz function M is a function, which is continuous, non-decreasing and convex with M(0) = 0,

M(z) > 0 for z > 0 and M(z) −→ ∞ as z −→ ∞.

Lindenstrauss and Tzafriri [15] used the idea of Orlicz function to define the following sequence

space

`M =
{
z ∈ w :

∞∑
k=1

M
(
|zk|

ρ

)
< ∞, for some ρ > 0

}
which is called as an Orlicz sequence space. The space `M is a Banach space with the norm

||z|| = inf
{
ρ > 0 :

∞∑
k=1

M
(
|zk|

ρ

)
≤ 1

}
.
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It is shown in [15] that every Orlicz sequence space `M contains a subspace isomorphic to `p(p ≥ 1).

The ∆2−condition is equivalent to M(Lz) ≤ kLM(z) for all values of z ≥ 0, k > 0 and for L > 1.

In second section of this article, we scrutinise Orlicz extension of three new sequence spaces

br,s
0 (M,G), br,s

c (M,G) and br,s
∞ (M,G) which is generalized by the composition of binomial matrix

and double band matrix, where G is a generalized difference matrix andM is an Orlicz function.

Several interesting inclusion relations between the newly formed sequence spaces are discussed

in third section of this article. Afterward, we remark Schauder basis of the spaces br,s
0 (M,G) and

br,s
c (M,G) and determine α−, β− and γ− duals of these spaces in fourth section. We have also

shown that the spaces br,s
0 (M,G) and br,s

c (M,G) are seperable spaces. Moreover, in fifth section

we depict some matrix classes related to the spaces br,s
c (M,G). In final section of this article, the

significance of the space is mentioned.

2. Three Sequence Spaces br,s
0 (M,G), br,s

c (M,G) and br,s
∞ (M,G)

In this segment of the paper, we contribute some significant material regarding previous studies

of composition of Binomial matrix, double band matrix and Euler matrix, so we made an effort to

build Orlicz extension of three new sequence spaces. Besides, we show that these Orlicz extensions

are linearly isomorphic to c0, c and l∞, respectively and also determine some inclusion relations.

In 2005 and 2006 Altay, Başar and Mursaleen were the first who introduce Euler matrix (See [1], [2])

and defined Euler sequence spaces er
0, er

c and er
∞ as follows:

er
0 =

z = (zk) ∈ w : lim
n→∞

n∑
k=0

 n
k

 (1− r)n−krkzk = 0


er

c =

z = (zk) ∈ w : lim
n→∞

n∑
k=0

 n
k

 (1− r)n−krkzk exists


and

er
∞ =

z = (zk) ∈ w : sup
n∈N

∣∣∣∣∣∣∣
n∑

k=0

 n
k

 (1− r)n−krkzk

∣∣∣∣∣∣∣ < ∞
.

Subsequently, in 2006 Altay and Polat [3] constructed sequence spaces er
0(4), er

c(4) and er
∞(4)

where 4 is difference matrix and enhansed the work done by Altay, Başar and Mursaleen as:

er
0(4) =

z = (zk) ∈ w : lim
n→∞

n∑
k=0

 n
k

 (1− r)n−krk(zk − zk−1) = 0


er

c(4) =

z = (zk) ∈ w : lim
n→∞

n∑
k=0

 n
k

 (1− r)n−krk(zk − zk−1) exists


and

er
∞(4) =

z = (zk) ∈ w : sup
n∈N

∣∣∣∣∣∣∣
n∑

k=0

 n
k

 (1− r)n−krk(zk − zk−1)

∣∣∣∣∣∣∣ < ∞
.
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Recently, In [4] and [5] Bişgin has defined the Binomial sequence spaces br,s
0 , br,s

c and br,s
∞ which is

a generalization of Altay, Başar and Mursaleen work, as follows:

br,s
0 =

z = (zk) ∈ w : lim
n→∞

1
(s + r)n

n∑
k=0

 n
k

 (s)n−krkzk = 0


br,s

c =

z = (zk) ∈ w : lim
n→∞

1
(s + r)n

n∑
k=0

 n
k

 (s)n−krkzk exists


and

br,s
∞ =

z = (zk) ∈ w : sup
n∈N

∣∣∣∣∣∣∣ 1
(s + r)n

n∑
k=0

 n
k

 (s)n−krkzk

∣∣∣∣∣∣∣ < ∞
,

where the Binomial matrix Br,s = (br,s
nk) is defined by

br,s
nk =


1

(s+r)n

n∑
k=0

 n
k

 (s)n−krk, 0 ≤ k ≤ n ;

0, k > n.

∀ r, s ∈ R+ and n, k ∈ N. Here we would like to clear that if we take s + r = 1 we obtain Euler

sequence spaces er
0, er

c and er
∞. Afterward, Meng and Song [16] in 2017, gave a new way to above

defined Bişgin work and stated the Binomial difference sequence spaces br,s
0 (4), br,s

c (4) and br,s
∞ (4)

(in case of m = 1) as follows:

br,s
0 (4) =

z = (zk) ∈ w : lim
n→∞

1
(s + r)n

n∑
k=0

 n
k

 (s)n−krk(zk − zk−1) = 0


br,s

c (4) =

z = (zk) ∈ w : lim
n→∞

1
(s + r)n

n∑
k=0

 n
k

 (s)n−krk(zk − zk−1) exists


and

br,s
∞ (4) =

z = (zk) ∈ w : sup
n∈N

∣∣∣∣∣∣∣ 1
(s + r)n

n∑
k=0

 n
k

 (s)n−krk(zk − zk−1)

∣∣∣∣∣∣∣ < ∞
,

Later on, in 2019 Sönmez [20] introduced new sequence spaces br,s
s (G), br,s

c (G) and br,s
∞ (G) and

defined as:

br,s
0 (G) =

z = (zk) ∈ w : lim
n→∞

1
(s + r)n

n∑
k=0

 n
k

 (s)n−krk(uzk + vzk−1) = 0


br,s

c (G) =

z = (zk) ∈ w : lim
n→∞

1
(s + r)n

n∑
k=0

 n
k

 (s)n−krk(uzk + vzk−1) exists


and

br,s
∞ (G) =

z = (zk) ∈ w : sup
n∈N

∣∣∣∣∣∣∣ 1
(s + r)n

n∑
k=0

 n
k

 (s)n−krk(uzk + vzk−1)

∣∣∣∣∣∣∣ < ∞
,
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where G = (gnk) is a generalized difference matrix and is given as

gnk =


u, k = n;

v, k = n− 1;

0, otherwise.

∀ n, k ∈N, u, v ∈ R/0 and r, s > 0. Now, by choosing v = −1 and u = 1, we get the difference matrix.

Now we define three new sequence spaces via Orlicz function br,s
0 (M,G), br,s

c (M,G) and

br,s
∞ (M,G) as follows:

br,s
0 (M,G) =

z = (zk) ∈ w : lim
n→∞

1
(s + r)n

n∑
k=0

 n
k

 (s)n−krkMk(uzk + vzk−1) = 0


br,s

c (M,G) =

z = (zk) ∈ w : lim
n→∞

1
(s + r)n

n∑
k=0

 n
k

 (s)n−krkMk(uzk + vzk−1) exists


and

br,s
∞ (M,G) =

z = (zk) ∈ w : sup
n∈N

∣∣∣∣∣∣∣ 1
(s + r)n

n∑
k=0

 n
k

 (s)n−krkMk(uzk + vzk−1)

∣∣∣∣∣∣∣ < ∞
,

where G = (gnk) is a generalized difference matrix, which is defined above andM = (Mk) is an

Orlicz function. Here if we take Mk = (1, 1, 1....1) we get generalized difference matrix, G and also

if we take Mk = (1, 1, 1....1), v = −1 and u = 1, we get the difference matrix, 4.

In view of notation (1.2) br,s
0 (M,G), br,s

c (M,G) and br,s
∞ (M,G) can be redefined via matrix domain

of Orlicz functionM and generalized difference matrix G as follows:

br,s
0 (M,G) = (br,s

0 )M,G, br,s
c (M,G) = (br,s

c )M,G and br,s
∞ (M,G) = (br,s

∞ )M,G (2.1)

Also, by considering the triangular matrix Dr,s,u,v,M = (dr,s,u,v,M
nk ) = Br,s

MG such that

dr,s,u,v,M
nk =


sn−k−1rk

(s+r)n Mk

us

 n
k

+ vr

 n
k + 1


 0 ≤ k ≤ n ;

0, k > n.

∀ n, k ∈N, br,s
0 (M,G), br,s

c (M,G) and br,s
∞ (M,G) can be reorganized as follows:

br,s
0 (M,G) = (c0)Dr,s,u,v,M , br,s

c (M,G) = (c)Dr,s,u,v,M and br,s
∞ (M,G) = (l∞)Dr,s,u,v,M . (2.2)

In this system Dr,s,u,v,M
− transform of z is given as

yk = (Dr,s,u,v,Mz)k =
1

(s + r)n

k∑
i=0

 k
i

 (s)k−iriMi(uzi + vzi−1) (2.3)

∀ k ∈N, or by considering another depiction, the sequence y = (yk) can be redrafted as follows:

yk = (Dr,s,u,v,Mz)k =
1

(s + r)k

k∑
i=0

us

 k
i

+ vr

 k
i + 1


(s)k−i−1riMi(zi) (2.4)
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for all k ∈N.

Theorem 2.1. The spaces br,s
0 (M,G), br,s

c (M,G) and br,s
∞ (M,G) are BK-spaces with the norm

‖z‖br,s
0 (M,G) = ‖z‖br,s

c (M,G) = ‖z‖br,s
∞ (M,G) = sup

k∈N
|(Dr,s,u,v,Mz)k|.

Proof. Since (c0), (c) and (l∞) sequences are BK- spaces, in addition to this condition (2.2) holds and

also Dr,s,u,v,M = (dr,s,u,v,M
nk ) is a triangular matrix on relating these three outcomes with the Theorem

4.3.12 of Wilansky [22], we achieve that br,s
0 (M,G), br,s

c (M,G) and br,s
∞ (M,G) are BK-spaces. �

Theorem 2.2. The spaces br,s
0 (M,G), br,s

c (M,G) and br,s
∞ (M,G) are linearly isomorphic to l∞, c0 and c,

respectively, that is br,s
0 (M,G) � l∞, br,s

c (M,G) � c0 and br,s
∞ (M,G) � c.

Proof. We only consider the case br,s
0 (M,G) � c0 and the other cases will follow similarly. Thus, to

prove the theorem, we must show the existence of linear bijection between br,s
0 (M,G) and c0.

For, consider the transformation T defined, with the notation (2.3), from br,s
0 (M,G) to c0 by

T(z) = Dr,s,u,v,Mz. Then it is clear that T(z) = Dr,s,u,v,Mz ∈ c0 for every z ∈ br,s
0 (M,G). Also, the

linearity of T is obvious. Further, it is trivial that z = 0 whenever Tz = 0 and hence T is injective.

Furthermore, let y = (yk) ∈ c0 and define the sequence z = (zn) by

zn =
1
u

n∑
k=0

Mk

 n∑
i=k

 k
i

 − v
u

n−i

(−s)i−k(r + s)kr−i

yk

∀ n ∈N. Then we have

(Dr,s,u,v,Mz)n =
1

(s + r)k

n∑
k=0

 n
k

 sn−krkMk(uzk + vzk−1)

=
1

(s + r)k

n∑
k=0

 n
k

 sn−krkMk

n∑
j=k

 k
j

 (−s)k− j(r + s) jr−kyi

= yn.

This shows that

lim
n→∞

(Dr,s,u,v,Mz)n = lim
n→∞

yn = 0.

Thus, we deduce that z = (zk) ∈ br,s
0 (M,G) and L(z) = y. Hence, T is surjective. Further, ∀

z ∈ br,s
0 (M,G) we have

‖L(z)‖∞ = ‖Dr,s,u,v,Mz‖∞ = ‖z‖br,s
0 (M,G),

which means that L is norm preserving, and so is linear bijection. As a result of these facts we

have, br,s
0 (M,G) � c0. �
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3. The Inclusion Relations

In this section of the paper we make an effort to prove some inclusion relation between the

newly defined sequence spaces.

Theorem 3.1. The inclusions ĉ0 ⊂ br,s
0 (M,G), ĉ ⊂ br,s

c (M,G) and ˆl∞ ⊂ br,s
∞ (M,G) hold strictly, where

spaces ĉ0, ĉ and ˆl∞ defined in [13].

Proof. We provide the proof for only ˆl∞ ⊂ br,s
∞ (M,G). Let us consider an arbitrary sequence z =

(zk) ∈ ˆl∞, then we have

‖z‖br,s
∞ (M,G) = (Dr,s,u,v,Mz)∞

= sup
n∈N

∣∣∣∣ 1
(s + r)k

n∑
k=0

 n
k

 sn−krkMk(uzk + vzk−1)
∣∣∣∣

≤ sup
n∈N

∣∣∣∣Mn(uzn + vzn−1)
∣∣∣∣. sup

n∈N

∣∣∣∣ 1
(s + r)k

n∑
k=0

 n
k

 sn−krk
∣∣∣∣

= ‖z‖l∞ .

This display that z = (zk) ∈ br,s
∞ (M,G). Thus the inclusion ˆl∞ ⊂ br,s

∞ (M,G) holds. Now we also

need to show that the inclusion ˆl∞ ⊂ br,s
∞ (M,G) is strict, for this we define z = (zk) such that

zk = 1
u

i∑
k=0

(−
v
u
)k−i(−

s + r
r

)i for all k ∈ N here we takeM = (Mk) = (1, 1, 1, 1........). as a result of

which Gz = ((− s+r
r )k) < ˆl∞ on the other hand (Dr,s,u,v,Mz) = ((− r

s+r )
k) ∈ ˆl∞. As a significance of

which z = (zk) ∈ br,s
∞ (M,G) \ ˆl∞. Thus inclusion ĉ0 ⊂ br,s

0 (M,G), is strict. �

Theorem 3.2. The inclusions br,s
0 (M,G) ⊂ br,s

c (M,G) ⊂ br,s
∞ (M,G).

Proof. It is a well recognized fact that every null sequence is also convergent and every convergent

sequence is also bounded. So, the inclusion br,s
0 (M,G) ⊂ br,s

c (M,G) ⊂ br,s
∞ (M,G) holds. Now it

remains to show that the this inclusion is strict, for this we define two sequence spaces z = (zk)

and y = (yk) such that zk =
1−(− v

u )
k+1

u+v and yk =
1
u

i∑
k=0

(−
v
u
)k−i(−

r + 2s
r

)i
∀ k ∈N here we takeM =

(Mk) = (1, 1, 1, 1........). Then we clearly perceive that (Dr,s,u,v,Mz) = e ∈ c \ c0 and (Dr,s,u,v,My) =

((−1)k) ∈ l∞\c. thus z = (zk) ∈ br,s
c (M,G)\br,s

0 (M,G) and y = (yk) ∈ br,s
∞ (M,G)\br,s

c (M,G). On

combining these facts we conclude that the inclusion br,s
0 (M,G) ⊂ br,s

c (M,G) ⊂ br,s
∞ (M,G) is

strict. �

Theorem 3.3. c ⊂ br,s
0 (M,G) embraces strictly, whenever u + v = 0.

Proof. It is understandable that MGz ∈ c0 whenever z ∈ c and M = (Mk) = (1, 1, 1, 1........).

It is also known that when r, s > 0 then the binomial matrix is regular. On carteling these

facts, we attain that Br,sMGz ∈ c0 whenever z ∈ c and M = (Mk) = (1, 1, 1, 1........), namely

z ∈ br,s
0 (M,G), whenever z ∈ c and M = (Mk) = (1, 1, 1, 1........). So the inclusion c ⊂ br,s

0 (M,G)
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holds. For proving the strictness we define z = (zk) such that zk = (−1)k
[1−( v

u )
k+1

u−v

]
for all k ∈ N,

andM = (Mk) = (1, 1, 1, 1........), then we see that z = (zk) < c but (Dr,s,u,v,Mz) = (( s−r
s+r )

k) ∈ c0, that

means z ∈ br,s
0 (M,G). This shows that c ⊂ br,s

0 (M,G) is strict. �

4. The Schauder Basis and α−, β− and γ− Duals

In this segment of the paper, we find the Schauder Basis of Orlicz extension of binomial difference

sequence spaces br,s
0 (M,G) and br,s

c (M,G). Addition to this we also determine α−, β− and γ−Duals

of br,s
0 (M,G), br,s

c (M,G) and br,s
∞ (M,G).

A sequence u = (uk) ∈ X is called a Schauder basis for a normed space (X, ‖.‖X) if, ∀ z = (zk) ∈ X
∃ a unique sequence (λk) of scalars such that z =

∑
k

λkuk i.e

lim
n→∞

∥∥∥∥z−
n∑

k=0

λkuk

∥∥∥∥→ 0.

Theorem 4.1. For all k ∈ N, let ξk = (Dr,s,u,v,Mz)k and consider the sequence a = (ak) for fixed k ∈ N

and defined as ak = Mk
1−(− v

u )

u+v and a(k)(r, s, u, v, M) = {a(k)n (r, s, u, v, M)}n∈N is given by

a(k)n (r, s, u, v, M) =


0, 0 ≤ n < k;

n∑
k=0

Mk

[
1
u

n∑
i=k

 i
k

 − v
u

n−i

(−s)i−k(r + s)kr−i
]
, k ≤ n

Then the following conditions holds:
(a) The Schauder basis of br,s

0 (M,G) is a(k)(r, s, u, v, M)k∈N and all z = (zk) ∈ br,s
0 (M,G) can be uniquely

written as

z =
∑

k

ξka(k)(r, s, u, v, M).

(b)The Schauder basis of br,s
c (M,G) is the sequence a, a(0)(r, s, u, v, M), a(1)(r, s, u, v, M), ..... and all z =

(zk) ∈ br,s
c (M,G) can be uniquely written as

z = la +
∑

k

|ξk − l|a(k)(r, s, u, v, M).

where l = lim
k→∞

(Dr,s,u,v,Mz)k.

Proof. (a) It is definitely understand that Dr,s,u,v,Ma(k)(r, s, u, v, M) = e(k) ∈ a0 ∀ k ∈ N, where

e(k) = (0, 0, 0, · · · , 1, 0, · · · ) with 1 in the kth place. Then we can easily accomplish a(k)(r, s, u, v, M) ⊂

br,s
0 (M,G) holds.

Let z = (zk) ∈ br,s
0 (M,G). We can mark for all m ∈N as

z[m] =
m∑

k=0

ξka(k)(r, s, u, v, M).



Int. J. Anal. Appl. (2024), 22:177 9

Then by putting the matrix Dr,s,u,v,M = (dr,s,u,v,M
nk ) to z[m], we have

Dr,s,u,v,Mz[m] =
m∑

k=0

ξkDr,s,u,v,Ma(k)(r, s, u, v, M) =
m∑

k=0

(Dr,s,u,v,Mz)ke(k)

and ∀ n, m ∈N we have

Dr,s,u,v,M(z− z[m])n =

 0, 0 ≤ n ≤ m;

(Dr,s,u,v,Mz)n, n > m.

For every ε > 0 ∃ m0 = mε
0 ∈N s.t.,

|(Dr,s,u,v,Mz)m| <
ε
2

∀ m0 ≤ m. On description of this

‖z− z[m]
‖br,s

0 (M,G) = sup
m≤n
|(Dr,s,u,v,Mz)n| ≤ sup

m0≤n
|(Dr,s,u,v,Mz)n| ≤

ε
2
< ε

for all m0 ≤ m. Which implies

z =
∑

k

ξka(k)(r, s, u, v, M).

Now, let us assume that there exist an another representation of z = (zk) such that

z =
∑

k

ϑka(k)(r, s, u, v, M).

Then by the continuity of the transformation T which is defined in the proof of the theorem 2.2,

we get

(Dr,s,u,v,Mz)n =
∑

k

ϑk[Dr,s,u,v,Ma(k)(r, s, u, v, M)]n =
∑

k

ϑke(k)n = ϑn

∀ n ∈N. This implies that (Dr,s,u,v,Mz)n = ξn for all n ∈N. Therefore all z = (zk) ∈ br,s
0 (M,G) has a

unique representation.

(b) The inclusion a, a(k)(r, s, u, v, M) ⊂ br,s
c (M,G) clearly embrace as from the above defined frag-

ment (a) we identified that a(k)(r, s, u, v, M) ⊂ br,s
c (M,G) and also Dr,s,u,v,Ma = e ∈ c. For an arbitrary

z = (zk) ∈ br,s
c (M,G)we built a sequence y = (yk) such that y = z− la, where l = lim

ξk
, then it is clear

that y = (yk) ∈ br,s
c (M,G) and by the above defined part (a) y = (yk) has a unique representation.

This drag us to z = (zk) has a unique representation of the form

z = la +
∑

k

|ξk − l|a(k)(r, s, u, v, M).

�

Furthermore if we associate Theorem 2.1 and Theorem 4.1 we get corollary 4.2.

Corollary 4.1. The sequence spaces br,s
c (M,G) and br,s

0 (M,G) are separable.
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A set defined by

N(X, Y) = {b = bk ∈ w : bz = (bkzk) ∈ Y for all z = (zk) ∈ X}

is called the multiplier space of the sequence spaces X and Y. Then the α−, β− and γ− duals of the

sequence space X are defined by the aid of the notation of multiplier spaces such that

Xα = N(X, l1), Xβ = N(X, cs), and Xγ = N(X, bs),

respectively

Now, we carry on with some declaration which are practice in the next lemma (see [ [19]]).

sup
K∈F

∑
n
|

∑
k∈K

bnk| < ∞, (4.1)

sup
K∈F

∑
k

|bnk| < ∞, (4.2)

lim
n→∞

∑
k

|bnk| =
∑

k

| lim
n→∞

bnk|, (4.3)

lim
n→∞

bnk = µk, for all k ∈N, (4.4)

lim
n→∞

∑
k

bnk = µ. (4.5)

Here F represents the set of all finite subsets of N.

Lemma 4.1. [19] Let B = (bnk) be an infinite matrix. Then the following declaration embraces:
(i) B = (bnk) ∈ (c0 : l1) = (c : l1) = (l∞ : l1)⇔ (4.1) hold.
(ii)B = (bnk) ∈ (c0 : l∞) = (c : l∞) = (l∞ : l∞)⇔ (4.2) hold.
(iii)B = (bnk) ∈ (c0 : c)⇔ (4.2) and (4.4) holds.
(iv)B = (bnk) ∈ (c : c)⇔ (4.2),(4.4) and (4.5) holds.
(v)B = (bnk) ∈ (l∞ : c)⇔ (4.3) and (4.4) holds.
(vi)B = (bnk) ∈ (c : c0)⇔ (4.2),(4.4) and (4.5) holds with µk = 0, for all k ∈N and µ = 0.

Theorem 4.2. The α− dual of the Binomial sequence spaces br,s
0 (M,G), br,s

c (M,G) and br,s
∞ (M,G) is

ar,s,u,v,M
1 =

{
b = (bk) ∈ w : sup

K∈F

∑
n

∣∣∣∣∣∣∑
k∈K

Mk

[
1
u

n∑
i=k

 i
k

 − v
u

n−i

(−s)i−k(r + s)kr−ibn

]∣∣∣∣∣∣ < ∞
}

Proof. To prove this theorem we need to keep in mind the sequence which is defined in the proof

of Theorem 2.2 so

bnz(n) =
n∑

k=0

Mk

[
1
u

n∑
i=k

 i
k

 − v
u

n−i

(−s)i−k(r + s)kr−ibn

]
yk =

n∑
k=0

ur,s,u,v,M
nk yk = (Ur,s,u,v,My)n

∀ n ∈ N. when z = (zk) ∈ br,s
0 (M,G), br,s

c (M,G) or br,s
∞ (M,G) we have bz = (bnzn) ∈ l1 iff

Ur,s,u,v,My ∈ l1 whenever y = (yk) ∈ c0, c or l∞. This indicate that b = (bn) ∈ {br,s
0 (M,G)}α =
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{br,s
c (M,G)}α = {br,s

α (M,G)}α if and only if Ur,s,u,v,M
∈ (c0 : l1) = (c : l1) = (l∞ : l1). By associating

this outcome and Lemma 4.3 (i) we conclude that

b = (bn) ∈ {br,s
0 (M,G)}α ⇔ sup

K∈F

∑
n

∣∣∣∣∣∣∑
k∈K

Mk

[
1
u

n∑
i=k

 i
k

 − v
u

n−i

(−s)i−k(r + s)kr−ibn

]∣∣∣∣∣∣ < ∞.

This proves that b = (bn) ∈ {br,s
0 (M,G)}α = {br,s

c (M,G)}α = {br,s
α (M,G)}α = ar,s,u,v,M

1 . �

Theorem 4.3. Let us consider four sets ar,s,u,v,M
2 , ar,s,u,v,M

3 , ar,s,u,v,M
4 and ar,s,u,v,M

5 defined as follows:

ar,s,u,v,M
2 =

{
b = (bk) ∈ w : sup

n∈N

∑
k

∣∣∣vr,s,u,v,M
nk

∣∣∣ < ∞}
.

ar,s,u,v,M
3 =

{
b = (bk) ∈ w : lim

n→∞
vr,s,u,v,M

nk exists for all k ∈N.
}

ar,s,u,v,M
4 =

{
b = (bk) ∈ w : lim

n→∞

∑
k

∣∣∣vr,s,u,v,M
nk

∣∣∣ = ∑
k

∣∣∣ lim
n→∞

vr,s,u,v,M
nk

∣∣∣ < ∞}
.

and

ar,s,u,v,M
5 =

{
b = (bk) ∈ w : lim

n→∞

∑
k

vr,s,u,v,M
nk

∣∣∣ < ∞}
.

Where the matrix V = vr,s,u,v,M
nk is defined by sequence b = (bn) by

vr,s,u,v,M
nk =


n∑

k=0

Mk

[
1
u

i∑
j=k

n∑
i=k

 j
k

 − v
u

i− j

(−s) j−k(r + s)kr− jai

]
, 0 ≤ k ≤ n

0, n < k;

for all n, k ∈N. Then the following holds:
(i) {br,s

0 (M,G)}β = ar,s,u,v,M
2 ∩ ar,s,u,v,M

3 ;

(ii) {br,s
c (M,G)}β = ar,s,u,v,M

2 ∩ ar,s,u,v,M
3 ∩ ar,s,u,v,M

5 ;

(iii) {br,s
∞ (M,G)}β = ar,s,u,v,M

3 ∩ ar,s,u,v,M
4 ;

(iv) {br,s
0 (M,G)}γ = {br,s

c (M,G)}γ = {br,s
∞ (M,G)}γ = ar,s,u,v,M

2 .

Proof. We provide the proof of the theorem for only part (i), the proof of other parts i.e (ii), (iii) and

(iv) can be proved similarly.

Let b = (bn) ∈ w be given. As defined in proof of the Theorem 2.2, the sequence z = (zk) we have

n∑
k=0

bkzk =
n∑

k=0

Mk

[
1
u

k∑
i=0

k∑
j=i

 j
i

 − v
u

k− j

(−s) j−i(r + s)ir− jyi

]
bk

=
n∑

k=0

Mk

[
1
u

n∑
i=k

i∑
j=k

 j
k

 − v
u

i− j

(−s) j−k(r + s)kr− jbi

]
yk

= (Vr,s,u,v,My)n
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∀ n, k ∈N. Then bz = (bnzn) ∈ cs whenever z = (zk) ∈ br,s
0 (M,G) iff Vr,s,u,v,My ∈ c whenever y ∈ c0.

This outcome display us that b = (bk) ∈ {b
r,s
0 (M,G)}β if and only if Vr,s,u,v,M

∈ (c0 : c). By merging

this result and Lemma 4.3 (iii) we conclude that b = (bk) ∈ {b
r,s
0 (M,G)}β iff

sup
n∈N

∑
k

|vr,s,u,v,M
nk | < ∞,

and

lim
n→∞

, vr,s,u,v,M
nk exists, for all k ∈N,

thus {br,s
0 (M,G)}β = ar,s,u,v,M

2 ∩ ar,s,u,v,M
3 . �

5. Matrix Classes Associated to br,s
c (M,G)

In this section of the paper we try to potray some matrix transformation subjected to br,s
c (M,G).

Currently, we need to provide a Lemma which is used in further corollaries.

Lemma 5.1. ( [8]) Let X and Y be any two sequence spaces. Let B = (bnk) is an infinite matrix and E ba a
triangle matrix. Then B ∈ (X : YE)⇔ EB ∈ (X : Y).

In this particular section of the paper we use the following equalities for the sake of simplicity

of notations.

ar,s,u,v,M
nk =

n∑
k=0

Mk

[
1
u

∞∑
i=k

i∑
j=k

 j
k

 − v
u

i− j

(−s) j−k(r + s)kr− jbni

]
∀ n, k ∈N

Theorem 5.1. B ∈ br,s
c (M,G) : l∞ if and only if

sup
n∈N

∑
k

|ar,s,u,v,M
nk | < ∞, (5.1)

ar,s,u,v,M
nk exists for all n, k ∈N (5.2)

sup
m∈N

n∑
k=0

Mk

[∣∣∣∣∣∣1u
∞∑

i=k

i∑
j=k

 j
k

 − v
u

i− j

(−s) j−k(r + s)kr− jbni

∣∣∣∣∣∣
]
< ∞ (m ∈N) (5.3)

n∑
k=0

Mk

[
lim

m→∞

1
u

∞∑
i=k

i∑
j=k

 j
k

 − v
u

i− j

(−s) j−k(r + s)kr− jbni

]
exists for all m ∈N. (5.4)

Proof. Let us undertake that B ∈ br,s
c (M,G) : l∞. then Bz exists and belongs to l∞ for each z =

(zk) ∈ br,s
c (M,G). This pointers to {bnk}k∈N ∈ {b

r,s
0 (M,G)}β for all n ∈N. On merging this point and

Theorem 4.2 (ii) we accomplish that the statements (5.2), (5.3) and (5.4) hold.

If we reflect the element that z =

(
1−(− v

u )
k+1

u+v

)
∈ br,s

c (M,G) , takingM = (Mk) = (1, 1, 1.......) and

Bz ∈ l∞ for all z ∈ br,s
c (M,G) we can see that statement (5.1) hold.
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On the contrary let us undertake that the statements (5.1)-(5.4) hold. Consider an arbitrary z =

(zk) ∈ br,s
c (M,G) and take into account the equality

m∑
k=0

bnkzk =
m∑

k=0

Mk

[
1
u

k∑
i=0

k∑
j=i

 j
i

 − v
u

k− j

(−s) j−i(r + s)ir− jyi

]
bnk

m∑
k=0

bnkzk =
n∑

k=0

Mk

[
1
u

m∑
k=0

m∑
i=k

[ i∑
j=k

 j
k

 − v
u

i− j

(−s) j−k(r + s)kr− j
]
bniyk

]
(5.5)

∀ m, n ∈N. If we take limit as m→∞ side by side in (5.5) then we obtain that∑
k

bnkzk =
∑

k

ar,s,u,v,M
nk yk (5.6)

∀ n ∈N. On taking sup-norm (5.6) side by side we get

‖Bz‖∞ ≤ sup
n∈N

∑
k

|ar,s,u,v,M
nk ||yk| ≤ ‖y‖∞ sup

n∈N

∑
k

|ar,s,u,v,M
nk | < ∞.

Thus, Bz ∈ l∞, hence B ∈ (br,s
c (M,G) : l∞). �

Theorem 5.2. B ∈ (br,s
c (M,G) : c) iff the statements (5.1) -(5.4) hold, and

lim
n→∞

∑
k

ar,s,u,v,M
nk = µ, (5.7)

lim
n→∞

ar,s,u,v,M
nk = µk, for all k ∈N. (5.8)

Proof. Take B ∈ (br,s
c (M,G) : c). We all identify a well-known inclusion c ⊂ l∞. On merging

the above fact and Theorem 5.1, we get (5.1)-(5.2) hold. Bz exists and belongs to c for all z =

(zk) ∈ br,s
c (M,G). According to this if we choose two sequence z =

(
1−(− v

u )
k+1

u+v

)
∈ br,s

c (M,G), taking

M = (Mk) = (1, 1, 1.......) and z = a(k)r,s,u,v,M. We (5.7) and (5.8), where z = a(k)r,s,u,v,M is already defined

in the Theorem 4.1.

Conversly, let us assume that the statements (5.1)-(5.4), (5.7) and (5.8) hold, for given z = (zk) ∈

br,s
c (M,G). Then by reflecting Theorem 4.2 (ii), one can say that {ank}k∈N ∈ {b

r,s
c (M,G)}β for all

n ∈N. Which shows that Bz exists. From the statements (5.1) and (5.8) we realize that
m∑
k

≤ sup
n∈N

∑
k

|ar,s,u,v,M
nk | < ∞

for every m ∈ N. This shows that µk ∈ l1. So that the series
∑

k

µkyk absolute converges. Now we

additionally substitute bnk − µk instead of bnk in the statement (5.6). Then we have

∑
k

(bnk − µk)zk =
n∑

k=0

Mk

[
1
u

∞∑
i=k

k∑
j=i

 j
i

 − v
u

k− j

(−s) j−i(r + s)ir− j(bni − µk)yk

]
, (5.9)
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∀ n ∈N. By merging (5.9) and Lemma 4.3 (vi) we conclude that

lim
n→∞

(bnk − µk)zk = 0 (5.10)

Last of all, if we merge the statements (5.10) and the fact (µkyk) ∈ l1, we conclude that bz ∈ c or we

can say B ∈ (br,s
c (M,G) : c). �

Corollary 5.1. Let us consider T = (tnk) instead of B = (bnk) in the necessity ones in Theorem 5.1 and
5.2, where T = (tnk) is defined by

tnk = bnk − bn+1,k

∀ n, k ∈ N. Then, the necessary and sufficient conditions in order for B = bnk to belong to any one of the
classes (br,s

c (M,G) : l∞(∆)) and (br,s
c (M,G) : c(∆)) are obtained.

Corollary 5.2. Let us consider Q = (qσ,%
nk ) instead of B = (bnk) in the necessity ones in Theorem 5.1 and

5.2, where Q = (qσ,%
nk ) is given as

qσ,%
nk =

1
(σ+ %)n

n∑
j=0

 n
j

 %n− jσ jb jk

∀ n, k ∈N where σ, % ∈ R and σ, % > 0. Then, the necessary and sufficient conditions in order for B = (bnk)

to belong to any one of the classes (br,s
c (M,G) : bσ,%

∞ ) and (br,s
c (M,G) : bσ,%

c ) are obtained.

Corollary 5.3. Let us consider W = (wnk) instead of B = (bnk) in the necessity ones in Theorem 5.1 and
5.2, where W = (wnk) is given as

wnk =
n∑

j=0

b jk

∀ n, k ∈ N. Then, the necessary and sufficient conditions in order for B = bnk to belong to any one of the
classes (br,s

c (M,G) : bs and (br,s
c (M,G) : cs are obtained.

6. Conclusion

From many years, great deal of work has been done on Orlicz function, double band matrix

and binomial matrix. Various kind of interesting results have been studied by many researchers.

In this article we intend to extend the study of Orlicz sequence spaces by the composition of both

double band matrix and binomial matrix. We introduced three new sequence space br,s
0 (M,G),

br,s
c (M,G) and br,s

∞ (M,G) and proved several interesting results like Schauder basis, α, β, γ duals

and some inclusion relation relations. As a natural continuation of this paper, in future we will

study these results with the help of Nörlund fractional difference sequence spaces.
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[11] E.E. Kara, M. Başarir, On Compact Operators and Some Euler B(m)-Difference Sequence Spaces, J. Math. Anal.

Appl. 379 (2011), 499–511. https://doi.org/10.1016/j.jmaa.2011.01.028.

[12] V. Karakaya, H. Polat, Some New Paranormed Sequence Spaces Defined by Euler and Difference Operators, Acta

Sci. Math. 76 (2010), 87–100. https://doi.org/10.1007/bf03549822.
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