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Abstract. In this paper, we examine the existence of a unique solution of a feedback control problem with an implicit

state-dependent pantograph equation. Additionally, the study implements the problem’s Hyers-Ulam stability and the

continuous dependence of the unique solution on the initial data and the parameters. Furthermore, we investigate this

problem in the absence of feedback control. We also provide some examples to illustrate our results.

1. Introduction

The purpose of synthetic biology is to develop novel strategies based on design. A biological

mechanism designed to control how other biological processes operate is called a controller. The

outcomes of control theory, including strategies, can serve as the foundation for the construction

of such controllers. The key to regulation, sensory adaptation, and long-term effects is integrated

feedback control. When we talk about the disturbance functions, we mean the control variables.

Dealing with issues involving control variables is crucial because unanticipated events frequently

disrupt real-world ecosystems, which might alter biological traits. Due to unforeseen circum-

stances that disturb ecosystems in the real world, challenges involving feedback control are critical

in a variety of areas; these problems are translated into mathematical models, see [16, 48, 61]. Un-

expected factors that frequently disrupt biological systems may alter biological qualities in the real

world. This emphasizes the importance of managing restrictions or control variables since they

may alter biological traits like survival rates, see [13, 14, 18, 46]. Ecology is interested in the topic

of whether an ecosystem can withstand those unpredictable, disturbing events that occasionally

occur, see [16, 17, 41, 50].
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Many researchers devoted their studies to this type of problem, the authors in [17] investigated a

necessary condition for the existence of a positive periodic solution of the model of feedback control

on chemostat models. A positive periodic solution with feedback control of a nonlinear neutral

delay population problem has been reported in [44]. The asymptotic stability and solvability

of a family of nonlinear functional-integral equations with feedback control were investigated

by the author in [43]. The authors in [20] looked at a constrained problem with a quadratic

functional integro-differential constraint and an arbitrary (fractional) order quadratic functional

integro-differential equation.

Pantograph differential equation is A particular kind of delay differential equation that was

first created by examining an electric locomotive [31, 45]. Ockendon and Taylor’s research, which

looked at the electric locomotive’s catenary system, is where the name "pantograph" first appeared.

They aimed to develop an equation for examining the pantograph head movement on an electric

locomotive that runs on an overhead trolley wire [45]. The behavior of the pantograph differential

equation is significant across various fields of research and have several applications in different

areas; for example in the current collection system [45], the cell development model [32, 57], the

ruin problem in risk theory [29], the quantum theory [51], the fusion of light in spiral galaxies [5],

and some industrial applications. The pantograph equations have been studied and used by

many researchers in a variety of mathematical and scientific fields, including number theory,

probability, electrodynamics, and medicine, as demonstrated by the references in [45,58] and other

works. In [21], the authors studied the solvability and the Hyers-Ulam stability of a non-local

fractional orders pantograph equation with a feedback control. The authors in [34] introduced

an efficient transferred Legendre pseudo-spectral method for finding the solution of pantograph

delay differential equations.

Differential and integral equations with diverging arguments frequently depend only on time;

see for example, [9, 38]. On the other side, the case when deviating arguments depend on time

t and the state variable ζ is crucial from a theoretical and practical perspective. This type of

equation is called self-reference or state-dependent equation. These formulas are extensively

employed in nonlinear analysis and have wide applicability across several domains, especially in

issues pertaining to memories of the past, for example, in hereditary phenomena, see [42, 52, 56].

These kinds of equations have been the focus of multiple published studies; Eder [19] presented a

categorization of the solutions for self-reference differential equations in one of the earliest studies

on this kind of equation. Fe’ckan [27] introduced a generalization of Eder’s result by examining

a self-referential functional differential equation. Buicá [11] investigated the data dependence

theorems, existence, and uniqueness of the solution for a self-referencee initial value problem.

Buicá’s results was extended, and her assumptions are relaxed by the results presented by El-

Sayed and Ebead in [22]. The authors of [25] examined the m-point boundary value problem of a

self-reference differential equation and proved that the solution of this problem is unique. Please

refer to [6, 23, 27, 28, 33, 39, 59] for further studies on this kind of equation.
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P. Andrzej in [7], studied the initial value problem of a self-reference functional differential

equation

dζ(t)
dt

= z
(
t, ζ(t), ζ(ζ(t))

)
, t ∈ (0, T], ζ(0) = ζ0.

In [37], Lauran used the technique of nonexpansive operators from [10] to study iterative and non

iterative first order differential equations of the form

dζ(t)
dt

= z(t, ζ(t), ζ(λt))

and
dζ(t)

dt
= z(t, ζ(t), ζ(ζ(t)))

respectively, with initial condition ζ(t0) = ζ0. In [24], The authors generalized the results in [7]

and [37], they studied the existence of positive nondecreasing solutions and data dependence of

the initial value problem of the self-refereed differential equation with two state-delay functions

dζ(t)
dt

= z
(
t, ζ

(
g1(t, ζ(t))

)
, ζ

(
g2(t, ζ(t))

))
, a.e. t ∈ (0, T], ζ(0) = ζ0 ≥ 0

under suitable assumptions for the functions g1 and g2.

Motivated by the aforementioned, our aim in this work is to study the existence of the unique

solution ζ ∈ C(k), k = [0, T] for the implicit state-dependent pantograph problem

dζ
dt

= z1(t, ζ(t),λ1ζ(γ1
d=
dt

)), ζ(0) = ζ0, a.e. t ∈ k (1.1)

with the feedback control
d=
dt

= z2(t,=(t),λ2=(γ2
dζ
dt
)), =(0) = =0, a.e. t ∈ k, (1.2)

where γi, λi ∈ (0, 1), i = 1, 2. Moreover, we investigate the stability of the problem through Hyres-

Ulam stability and the stability of the solution through the continuous dependence of the solution

on the initial data and the parameters. We also analyzed this problem in the absence of feedback

control.

1.1. Structure of the paper. This article is organized as follows: Section 1 introduces the basic

background material about feedback control or constraint problems, pantograph differential equa-

tion and self-reference (state-dependence) equations and the importance of dealing with these

kinds of problems; moreover, we outline some results and previous works to clarify our motiva-

tion and innovation. Section 2 states and demonstrates suitable assumptions and existence results

for the unique solution of problem (1.1) with the feedback control (1.2) through Banach’s fixed

point theorem. In Section 3, we study the Hyres-Ulam stability of the problem additionally, we

proved the continuous dependence of the solution ζ on ζ0,=0, and the parameters λ, γ. In Section

4, we study a special case of our problem in the absence of the control variable; we introduce some

results for the existence and stability of the problem. In Section 5, we provide some examples to

illustrate our results. Finally, a conclusion section will be presented.
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2. Existence of solution

Consider the following assumptions:

(i) zi : k×R×R→ k are continuous and there exists a positive constant Ki such that

|zi(t, ζ, u) − zi(s,=, v)| ≤ Ki(|t− s|+ |ζ−=|+ |u− v|).

From this assumption, we get

|zi(t, ζ, u)| − |zi(t, 0, 0)| ≤ |zi(t, ζ, u) − zi(t, 0, 0)| ≤ Ki(|ζ|+ |u|),

then

|zi(t, ζ, u)| ≤ Ki(|ζ|+ |u|) + |zi(t, 0, 0)|.

(ii) supt∈k |zi(t, 0, 0)| = Bi.

(iii) There exists a real positive root of the algebraic equation

λKγr2 + (KT − 1)r + ((1 + λ)KA + B) = 0,

where A = max{ζ0,=0}, K = max{Ki}, γ = max{γi}, B = max{Bi}, λ = max{λi}, i = 1, 2.

2.1. Formulation of problem. Let dζ
dt = u and d=

dt = v, then

ζ(t) = ζ0 +

∫ t

0
u(s)ds (2.1)

and

ζ(γ1v(t)) = ζ0 +

∫ γ1v(t)

0
u(s)ds.

Also

=(t) = =0 +

∫ t

0
v(s)ds (2.2)

and

=(γ2u(t)) = =0 +

∫ γ2u(t)

0
v(s)ds,

and the problem (1.1)-(1.2) will be given by the coupled system

u(t) = z1(t, ζ0 +

∫ t

0
u(s)ds,λ1(ζ0 +

∫ γ1v(t)

0
u(s)ds)), (2.3)

v(t) = z2(t,=0 +

∫ t

0
v(s)ds,λ2(=0 +

∫ γ2u(t)

0
v(s)ds)). (2.4)

Let C(k) be the class of continuous functions define on k. Let X be the Banach space of all ordered

pairs (ζ,=) with the norm

‖(u, v)‖X = max{‖u‖C, ‖v‖C},

where

‖u‖C = sup
t∈[0,T]

|u(t)|.
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Define the operator F associated with (3.1)-(3.2) by

F(u, v) = (F1u, F2v).

Where

F1u = z1(t, ζ0 +

∫ t

0
u(s)ds,λ1(ζ0 +

∫ γ1v(t)

0
u(s)ds)),

F2v = z2(t,=0 +

∫ t

0
v(s)ds,λ2(=0 +

∫ γ2u(t)

0
v(s)ds)).

Let Qr = {(u, v) ∈ X : ‖u‖ ≤ r, ‖v‖ ≤ r}.

Theorem 2.1. Suppose the assumptions (i)–(ii) be hold. If (KT + 2λKrγ) < 1, then Problem (1.1)-(1.2)
has a unique solution ζ ∈ C(k).

Proof. For (u, v) ∈ Qr, we have

|F1u(t)| = |z1(t, ζ0 +

∫ t

0
u(s)ds,λ1(ζ0 +

∫ γ1v(t)

0
u(s)ds))|

≤ K1|ζ0 +

∫ t

0
u(s)ds|+ λ1K1|ζ0 +

∫ γ1v(t)

0
u(s)ds|+ |z1(t, 0, 0)|

≤ K1|ζ0|+ K1

∫ t

0
|u(s)|ds + λ1K1|ζ0|+ λ1K1

∫ γ1v(t)

0
|u(s)|ds + B1

≤ (1 + λ1)K1|ζ0|+ K1‖u‖T + λ1K1‖u‖γ1‖v‖+ B1

≤ (1 + λ)KA + KTr + λKr2γ+ B = r.

This proves that F1 : Qr → Qr. Similarly,

|F2v(t)| = |z2(t,=0 +

∫ t

0
v(s)ds,λ2(=0 +

∫ γ2u(t)

0
v(s)ds))|

≤ (1 + λ)KA + KTr + λKr2γ+ B = r.

Then F2 : Qr → Qr, and we deduce that

F(u, v) = (F1u, F2v) : Qr → Qr.

Now, let (u, v), (ū, v̄) ∈ Qr, then

|F1u(t) − F1ū(t)|

= |z1(t, ζ0 +

∫ t

0
u(s)ds,λ1(ζ0 +

∫ γ1v(t)

0
u(s)ds))

− z1(t, ζ0 +

∫ t

0
ū(s)ds,λ1(ζ0 +

∫ γ1v̄(t)

0
ū(s)ds))|
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≤ K1

∫ t

0
|u(s) − ū(s)|ds + λ1K1|

∫ γ1v(t)

0
u(s)ds−

∫ γ1v̄(t)

0
ū(s)ds))|

≤ K1

∫ t

0
|u(s) − ū(s)|ds + λ1K1|

∫ γ1v(t)

0
u(s)ds−

∫ γ1v̄(t)

0
u(s)ds +

∫ γ1v̄(t)

0
u(s)ds

−

∫ γ1v̄(t)

0
ū(s)ds))|

≤ K1

∫ t

0
|u(s) − ū(s)|ds + λ1K1|

∫ γ1v̄(t)

0
u(s)ds−

∫ γ1v(t)

0
u(s)ds|

+ λ1K1|

∫ γ1v̄(t)

0
u(s)ds−

∫ γ1v̄(t)

0
ū(s)ds))|

≤ K1

∫ t

0
|u(s) − ū(s)|ds + λ1K1|

∫ γ1v(t)

γ1v̄(t)
u(s)ds|+ λ1K1

∫ γ1v̄(t)

0
|u(s) − ū(s)|ds

≤ K1T‖u− ū‖+ λ1K1rγ1‖v− v̄‖+ λ1K1‖u− ū‖
∫ γ1ū(t)

0
ds

≤ KT‖u− ū‖ds + λ1Krγ‖v− v̄‖+ λ1Krγ‖u− ū‖

≤ (KT + λKrγ)‖u− ū‖+ λKrγ‖v− v̄‖.

Then

‖F1u− F1ū‖ ≤ (KT + λKrγ)‖u− ū‖+ λKrγ‖v− v̄‖.

Similarly,

‖F2v− F2v̄‖ ≤ (KT + λKrγ)‖v− v̄‖+ λKrγ‖u− ū‖.

Hence

‖F(u, v) − F(ū, v̄)‖X = ‖(F1u, F2v) − (F1ū− F2v̄)‖X

= ‖(F1u− F1ū, F2v− F2v̄)‖X = max{‖F1u− F1ū‖C, ‖F2v− F2v̄‖C}

≤ max{(KT + λKrγ)‖u− ū‖+ λKrγ‖v− v̄‖,

(KT + λKrγ)‖u− ū‖+ λKrγ‖v− v̄‖}

≤ (KT + 2λKrγ)max{‖u− ū‖, ‖v− v̄‖}

≤ (KT + 2λKrγ)‖(u, v) − (ū, v̄)‖.

Since (KT + 2λKrγ) < 1, then F is a contraction mapping and by the Banach fixed point Theorem

[36], Problem (3.1)-(3.2) has a unique solution. Consequently, the feedback control problem (1.1)-

(1.2) has a unique solution ζ ∈ C(k). �
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3. Stability analysis

Stability analysis is a rich and versatile field with deep theoretical foundations and wide-ranging

applications in engineering, economics, biology, physics, and other fields. It is a typical subject in

the mathematical sciences [8, 60]. An equation or problem can be used to simulate a physical pro-

cess if a minor change to it yields a comparable small change in the result. The equation or problem

is considered to be stable when this happens. In 1998, the Hyers-Ulam stability of a differential

equation was initially investigated by Alsina and Ger [4]. Additionally, Jung [35] investigated

the Hyers-Ulam stability of the first order differential equation φ(t)=′(t) = =(t) in 2004. Sev-

eral authors looked into the Hyers-Ulam stability of second and third order differential equations

between 2010 and 2015 (see [3,30,55]). Recently, Hyers-Ulam stability of numerous kinds of differ-

ential equations has been applied; they include integro-differential equations studied by O. Tunc¸

et al. [53, 54], as well as hypergeometric and Laguerre differential equations studied by Abdollah-

pour et al. [1, 2]. Another important concept in stability theory is continuous dependence [47],

which deals with how solutions behave in various mathematical situations. It guarantees that

minor modifications to a problem’s initial conditions or parameters produce equally minor modi-

fications to the problem’s solution. Many authors have investigated the continuous dependence of

the solutions of their problems, (see [11, 12, 20, 22, 24, 49]), which is crucial for using mathematical

models to describe real-world situations. Integrating continuous dependency and Hyers-Ulam

stability is necessary to guarantee the reliability of these models. Hyers-Ulam stability evaluates

the problem’s resistance to shocks, whereas continuous dependency looks at how even slight

changes in parameters impact the problem’s unique solution.

3.1. Hyres-Ulam stability.

Definition 3.1. Let the solution ζ ∈ C(k) of (1.1)-(1.2) be exists, then Problem (1.1)-(1.2) is Hyers-Ulam
stable if ∀ ε > 0 ∃ δ(ε) > 0 such that for any δ-approximate solution ζs ∈ C(k) of (1.1)-(1.2) satisfies

max{|
dζs

dt
− z1(t, ζs(t),λ1ζs(γ1(

d=s

dt
)))|, |

d=s

dt
− z2(t,=s(t),λ2=s(γ2(

dζs

dt
)))|} < δ,

implies
‖ζ− ζs‖X < ε.

Theorem 3.1. If the assumptions of Theorem 2.1 are met, then Problem (1.1)-(1.2) is Hyers-Ulam stable.

Proof. Let

max{|
dζs

dt
− z1(t, ζs(t),λ1ζs(γ1(

d=s

dt
)))|, |

d=s

dt
− z2(t,=s(t),λ2(=s(γ2(

dζs

dt
)))|} < δ,

then

|
dζs

dt
− z1(t, ζs(t),λ1ζs(γ1(

d=s

dt
)))| < δ,

−δ <
dζs

dt
− z1(t, ζs(t),λ1ζs(γ1(

d=s

dt
))) < δ.
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Similarly,

|
d=s

dt
− z2(t,=s(t),λ2=s(γ2(

dζs

dt
)))| < δ,

−δ <
d=s

dt
− z2(t,=s(t),λ2=s(γ2(

dζs

dt
))) < δ.

Let dζs
dt = us and d=s

dt = vs, then

ζs(t) = ζ0 +

∫ t

0
us(s)ds ⇒ ζs(γ1vs(t)) = ζ0 +

∫ γ1vs(t)

0
us(s)ds,

=s(t) = =0 +

∫ t

0
us(s)ds ⇒ =s(γ2us(t)) = =0 +

∫ γ2us(t)

0
vs(s)ds.

Hence

−δ < us(t) − z1(t, ζ0 +

∫ t

0
us(s)ds,λ1(ζ0 +

∫ γ1vs(t)

0
us(s)ds)) < δ

−δ < vs(t) − z2(t,=0 +

∫ t

0
vs(s)ds,λ2(=0 +

∫ γ2us(t)

0
vs(s)ds)) < δ,

and

|ζ(t) − ζs(t)| = |ζ0 +

∫ t

0
u(s)ds− ζ0 −

∫ t

0
us(s)ds|

≤

∫ t

0
|u(s) − us(s)|ds ≤ ‖u− us‖ T,

then

‖ζ− ζs‖ ≤ ‖u− us‖ T.

Similarly,

‖= −=s‖ ≤ ‖v− vs‖ T.

But

|u(t) − us(t)|

= |z1(t, ζ0 +

∫ t

0
u(s)ds,λ1(ζ0 +

∫ γ1v(t)

0
u(s)ds) − us(t))|

= |z1(t, ζ0 +

∫ t

0
u(s)ds,λ1(ζ0 +

∫ γ1v(t)

0
u(s)ds)) − z1(t, ζ0 +

∫ t

0
us(s)ds,λ1(ζ0 +

∫ γ1vs(t)

0
us(s)ds))

+ z1(t, ζ0 +

∫ t

0
us(s)ds,λ1(ζ0 +

∫ γ1vs(t)

0
us(s)ds)) − us(t)|

≤ |z1(t, ζ0 +

∫ t

0
us(s)ds,λ1(ζ0 +

∫ γ1vs(t)

0
us(s)ds)) − us(t)|

+ |z1(t, ζ0 +

∫ t

0
u(s)ds,λ1(ζ0 +

∫ γ1v(t)

0
u(s)ds)) − z1(t, ζ0 +

∫ t

0
us(s)ds,λ1(ζ0 +

∫ γ1vs(t)

0
us(s)ds))|

≤ δ+ K1

∫ t

0
|u(s) − us(s)|ds + λ1K1|

∫ γ1v(t)

0
u(s)ds−

∫ γ1vs(t)

0
us(s)ds|
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≤ δ+ K1T‖u− us‖+ λ1K1|

∫ γ1v(t)

0
u(s)ds−

∫ γ1vs(t)

0
u(s)ds +

∫ γ1vs(t)

0
u(s)ds−

∫ γ1vs(t)

0
us(s)ds|

≤ δ+ K1T‖u− us‖+ λ1K1|

∫ γ1v(t)

0
u(s)ds−

∫ γ1vs(t)

0
u(s)ds|

+ λ1K1|

∫ γ1vs(t)

0
u(s)ds−

∫ γ1vs(t)

0
us(s)ds|

≤ δ+ K1T‖u− us‖+ λ1K1|

∫ γ1v(t)

γ1vs(t)
u(s)ds|+ λ1K1

∫ γ1vs(t)

0
|u(s) − us(s)|ds

≤ δ+ K1T‖u− us‖+ λ1K1‖u‖γ1‖v− vs‖+ λ1K1‖u− us‖

∫ γ1us(t)

0
ds

≤ δ+ K1T‖u− us‖+ λ1K1rγ1‖v− vs‖+ λ1K1rγ1‖u− us‖

≤ δ+ KT‖u− us‖+ λKrγ‖v− vs‖+ λKrγ‖u− us‖

≤ δ+ (KT + λKrγ)‖u− us‖+ λKrγ‖v− vs‖,

and

(1− (KT + λKrγ))‖u− us‖ ≤ δ+ λKrγ‖v− vs‖,

hence

‖u− us‖ ≤
δ

1− (KT + λKrγ)
+

λKrγ
1− (KT + λKrγ)

‖v− vs‖.

Similarly,

‖v− vs‖ ≤
δ

1− (KT + λKrγ)
+

λKrγ
1− (KT + λKrγ)

‖u− us‖.

Then

‖(u, v) − (us, vs)‖X = ‖((u− us), (v− vs))‖X = max{‖(u− us)‖C, ‖(v− vs)‖C}

≤
δ

1− (KT + λKrγ)
+ max{

Krγ
1− (KT + Krγ)

‖v− vs‖,
Krγ

1− (KT + Krγ)
‖u− us‖}

≤
δ

1− (KT + λKrγ)
+

λKrγ
1− (KT + λKrγ)

max{‖v− vs‖, ‖u− us‖}

≤
δ

1− (KT + λKrγ)
+

λKrγ
1− (KT + λKrγ)

(‖((u− us), (v− vs))‖X)

≤
δ

1− (KT + λKrγ)
+

λKrγ
1− (KT + λKrγ)

‖(u, v) − (us, vs)‖X,

and

(1−
λKrγ

1− (KT + λKrγ)
)‖(u, v) − (us, vs)‖ ≤

δ

1− (KT + λKrγ)
,

then

‖(u, v) − (us, vs)‖ ≤
δ

1− (KT + 2λKrγ)
= ε1.
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Now,

‖(ζ,=) − (ζs,=s)‖X = ‖((ζ− ζs), (=−=s))‖X = max{‖(ζ− ζs)‖C, ‖(=−=s)‖C

≤ T max{‖(u− us)‖C, ‖(v− vs)‖C} ≤ T‖((u− us), (v− vs))‖

≤ T‖(u, v) − (us, vs)‖ ≤ ε1T = ε.

Hence

‖(ζ,=) − (ζs,=s)‖X ≤ ε.

Then we deduce that

‖ζ− ζs‖ ≤ ε.

�

3.2. Continuous dependence.

Definition 3.2. The solution (u, v) ∈ Qr of (3.1)-(3.2) depends continuously on ζ0, =0, γ, λ if ∀ ε >
0 ∃ δ > 0 such that

max{|ζ0 − ζ
∗

0|, |=0 −=
∗

0|, |γ− γ
∗
|, |λ− λ∗|} < δ ⇒ ‖(u, v) − (u∗, v∗)‖X < ε,

where

u∗(t) = z1(t, ζ∗0 +
∫ t

0
u∗(s)ds,λ∗1(ζ

∗

0 +

∫ γ∗1v∗(t)

0
u∗(s)ds)). (3.1)

v∗(t) = z2(t,=∗0 +
∫ t

0
v∗(s)ds,λ∗2(=

∗

0 +

∫ γ∗2u∗(t)

0
v∗(s)ds)), (3.2)

Theorem 3.2. Let the assumptions of Theorem (2.1) be satisfied, then the solution (u, v) depends continu-
ously on the parameters ζ0, =0,γ, λ.

Proof. Let δ > 0 be given such that

max{|ζ0 − ζ
∗

0|, |=0 −=
∗

0|, |γ− γ
∗
|, |λ− λ∗|} < δ.

Then

|u(t) − u∗(t)|

= |z1(t, ζ0 +

∫ t

0
u(s)ds,λ1(ζ0 +

∫ γ1v(t)

0
u(s)ds)) − z1(t, ζ∗0 +

∫ t

0
u∗(s)ds,λ∗1(ζ

∗

0 +

∫ γ∗1v∗(t)

0
u∗(s)ds))|

≤ K1|ζ0 − ζ
∗

0|+ K1

∫ t

0
|u(s) − u∗(s)|ds + K1|λ1

∫ γ1v(t)

0
u(s)ds− λ∗1

∫ γ∗1v∗(t)

0
u∗(s)ds|

≤ K1δ+ K1T‖u− u∗‖+ K1|λ1

∫ γ1v(t)

0
u(s)ds− λ∗1

∫ γ∗1v∗(t)

0
u∗(s)ds|

≤ K1δ+ K1T‖u− u∗‖+ K1|λ1

∫ γ1v(t)

0
u(s)ds− λ1

∫ γ∗1v∗(t)

0
u∗(s)ds
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+ λ1

∫ γ∗1v(t)

0
u∗(s)ds) − λ∗1

∫ γ∗1v∗(t)

0
u∗(s)ds|

≤ K1δ+ K1T‖u− u∗‖+ K1λ1|

∫ γ1v(t)

0
u(s)ds−

∫ γ∗1v∗(t)

0
u∗(s)ds|+ K1|λ1 − λ

∗

1|

∫ γ∗1v∗(t)

0
u∗(s)ds

≤ K1δ+ K1T‖u− u∗‖+ K1λ1|

∫ γ1v(t)

0
u(s)ds−

∫ γ1v(t)

0
u∗(s)ds +

∫ γ1v(t)

0
u∗(s)ds−

∫ γ∗1v∗(t)

0
u∗(s)ds|

+ K1δ‖u∗‖
∫ γ∗1v(t)

0
ds

≤ K1δ+ K1T‖u− u∗‖+ K1λ1

∫ γ1v(t)

0
|u(s) − u∗(s)|ds + K1λ1|

∫ γ1v(t)

γ∗1v∗(t)
u∗(s)ds|+ K1δ‖u∗‖γ∗1‖v‖

≤ K1δ+ K1T‖u− u∗‖+ K1λ1γ1r‖u− u∗‖+ K1λ1r|
∫ γ1v(t)

γ∗1v∗(t)
ds|+ K1δr2γ∗1

≤ K1δ+ K1T‖u− u∗‖+ K1λ1γ1r‖u− u∗‖+ K1λ1r|γ1v(t) − γ∗1v∗(t)|+ K1r2γ∗1δ

≤ K1δ+ K1T‖u− u∗‖+ K1λ1γ1r‖u− u∗‖+ K1λ1r|γ1v(t) − γ1v∗(t) + γ1v∗(t) − γ∗1v∗(t)|+ K1r2γ∗1δ

≤ K1δ+ K1T‖u− u∗‖+ K1λ1γ1r‖u− u∗‖+ K1λ1rγ1|v(t) − v∗(t)|+ K1λ1r2
|γ∗1 − γ1|+ K1r2γ∗1δ

≤ K1δ+ K1T‖u− u∗‖+ K1λ1γ1r‖u− u∗‖+ K1λ1rγ1‖v− v∗‖+ K1λ1r2δ+ K1r2γ∗1δ

≤ (1 + λr2 + γ∗r2)Kδ+ (KT + λKrγ)‖u− u∗‖+ Kλrγ‖v− v∗‖,

and

(1− (KT + λKrγ))‖u− u∗‖ ≤ (1 + λr2 + γ∗r2)Kδ+ λKrγ‖v− v∗‖,

then

‖u− u∗‖ ≤
(1 + λr2 + γ∗r2)K
1− (KT + λKrγ)

δ+
λKrγ

1− (KT + λKrγ)
‖v− v∗‖.

Similarly,

‖v− v∗‖ ≤
(1 + λr2 + γ∗r2)K
1− (KT + λKrγ)

δ+
λKrγ

1− (KT + λKrγ)
‖u− u∗‖.

Then

‖(u, v) − (u∗, v∗)‖X = ‖((u− u∗), (v− v∗))‖X = max{‖(u− u∗)‖C, ‖(v− v∗)‖C}

≤ max{
(1 + λr2 + γ∗r2)K
1− (KT + λKrγ)

δ+
λKrγ

1− (KT + λKrγ)
‖v− v∗‖,

(1 + λr2 + γ∗r2)K
1− (KT + λKrγ)

δ+
λKrγ

1− (KT + λKrγ)
‖u− u∗‖}

≤
(1 + λr2 + γ∗r2)K
1− (KT + Krγ)

δ+ max{
Krγ

1− (KT + Krγ)
‖v− v∗‖,

Krγ
(1− (KT + Krγ)

‖u− u∗‖}

≤
(1 + λr2 + γ∗r2)K
1− (KT + λKrγ)

δ+
λKrγ

1− (KT + λKrγ)
max{‖v− v∗‖, ‖u− u∗‖}
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≤
(1 + λr2 + γ∗r2)K
1− (KT + λKrγ)

δ+
λKrγ

1− (KT + λKrγ)
‖((u− u∗), (v− v∗))‖X

≤
(1 + λr2 + γ∗r2)K
1− (KT + λKrγ)

δ+
λKrγ

1− (KT + λKrγ)
‖((u, v) − (u∗, v∗))‖X

and

(1−
λKrγ

1− (KT + λKrγ)
)‖(u, v) − (u∗, v∗)‖ ≤

2K + Kr2

1− (KT + λKrγ)
δ,

then

‖(u, v) − (u∗, v∗)‖ ≤
2K + Kr2

1− (KT + 2λKrγ)
δ = ε.

This prove that the solution (u, v) ∈ X depends continuously on the parameters ζ0, =0,γ, λ. �

Definition 3.3. The solution (ζ,=) ∈ X of (1.1)-(1.2) depends continuously on u, v if ∀ ε > 0 ∃ δ >

0 such that

max{|u− u∗|, |v− v∗|} < δ ⇒ ‖(ζ,=) − (ζ∗,=∗)‖ < ε,

where

ζ∗(t) = ζ0 +

∫ t

0
u∗(s)ds. (3.3)

=
∗(t) = =0 +

∫ t

0
v∗(s)ds. (3.4)

Theorem 3.3. Let the assumptions of Theorem 3.2 be satisfied, then the solution (ζ,=) ∈ X depends
continuously on u, v.

Proof. Let (ζ∗,=∗) be the solution of (3.3)-(3.4), then

|ζ(t) − ζ∗(t)| ≤ |

∫ t

0
u(s)ds−

∫ t

0
u∗(s)ds|

≤

∫ t

0
|u(s) − u∗(s)|ds ≤ ‖u− u∗‖T ≤ δT,

then

‖ζ− ζ∗‖ ≤ ε.

Similarly,

|=(t) −=∗(t)| ≤ |

∫ t

0
v(s)ds−

∫ t

0
v∗(s)ds|

≤

∫ t

0
|v(s) − v∗(s)|ds ≤ ‖v− v∗‖T ≤ δT,

then

‖= −=
∗
‖ ≤ ε.

Now,

‖(ζ,=) − (ζ∗,=∗)‖X = ‖((ζ− ζ∗), (=−=∗))‖X = max{‖ζ− ζ∗‖C, ‖= −=∗‖C} ≤ ε.
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Then

‖(ζ,=) − (ζ∗,=∗)‖X ≤ ε.

�

Corollary 3.1. Let the assumptions of Theorem 3.3 be satisfied, then the solution (ζ,=) ∈ X depends
continuously on ζ0,=0 and the parameters λ, γ.

4. General discussion

In the absence of the feedback control; as a special case of our work; we can study the next

problem
dζ
dt

= z(t, ζ(t),λζ(γ
dζ
dt
)), ζ(0) = ζ0, a.e. t ∈ k. (4.1)

This problem can be solved under the following assumptions

(i) z : k×R×R→ k is continuous and there exists a positive constant L such that

|z(t, ζ, u) − z(s,=, v)| ≤ L(|t− s|+ |ζ−=|+ |u− v|).

From this assumption, we get

|z(t, ζ, u)| ≤ L(|ζ|+ |u|) + |z(t, 0, 0)|.

(ii) supt∈k |z(t, 0, 0)| = N.

(iii) There exists a real positive root of the algebraic equation

λLγr2 + (LT − 1)r + (L|ζ0|+ λL|ζ0|+ N) = 0.

The formulation of this problem can be obtained if we put dζ
dt = =, then

ζ(t) = ζ0 +

∫ t

0
=(s)ds, (4.2)

and

ζ(γ=(t)) = ζ0 +

∫ γ=(t)

0
=(s)ds,

and the problem (4.1), will be given by

=(t) = z(t, ζ0 +

∫ t

0
=(s)ds,λ(ζ0 +

∫ γ=(t)

0
=(s)ds)). (4.3)

Let C(k) be the class of continuous functions define on k. Define the operator G associated with

(4.3) by

G= = z(t, ζ0 +

∫ t

0
=(s)ds,λ(ζ0 +

∫ γ=(t)

0
=(s)ds)).

Let Qr = {= ∈ C : ‖=‖ ≤ r}.

Theorem 4.1. Suppose the assumptions (i)–(iii) be hold. If (LT + 2λLrγ) < 1, then the functional integral
equation (4.3) has a unique solution = ∈ C(k).
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Proof. For = ∈ Qr. By the same way, we can show that the functional integral equation (4.3) has a

unique solution = ∈ C(k). Consequently, Problem 4.1 has a unique solution ζ ∈ C(k). �

The next theorems can be also proved for Problem 4.1.

Theorem 4.2. If the assumptions of Theorem 4.1 are met, then (4.1) is Hyers-Ulam stable.

Theorem 4.3. Let the assumptions of Theorem 4.1 be satisfied, then the solution = ∈ C(k) depends
continuously on ζ0 and the parameters λ, γ.

Theorem 4.4. Let the assumptions of Theorem 4.1 be satisfied, then the solution ζ ∈ C(k) depends
continuously on =.

Corollary 4.1. Let the assumptions of Theorem 4.1 and Theorem 4.4 be satisfied, then the solution ζ ∈ C(k)
depends continuously on ζ0 and the parameters λ, γ.

5. Examples

Example 1. Consider the problem

dζ
dt

=
1
4

ln(1 + t) +
1
5
ζ(t) +

1
3
ζ(0.9

d=
dt

), t ∈ (0,
1
2
], ζ(0) = 0 (5.1)

d=
dt

=
1
7

√
t2 + 2 +

1
10
=(t) +

1
2
=(0.8

dζ
dt
), t ∈ (0,

1
2
], =(0) = 0.1. (5.2)

Set

z1(t, ζ, ζ1) =
1
4

ln(1 + t) +
1
5
ζ(t) +

1
3
ζ(0.9

d=
dt

),

z2(t,=,=1) =
1
7

√
t2 + 2 +

1
10
=(t) +

1
2

u(0.8
dζ
dt
),

thus

|z1(t,=,=1) − z1(s, =̄, =̄1)| ≤
1
4
|ln(1 + t) − ln(1 + s)|+

1
5
|ζ− ζ̄|+

1
3
|ζ1 − ζ̄1|

≤
1
3
(|t− s|+ |ζ− ζ̄|+ |ζ1 − ζ̄1|).

|z2(t, ζ, ζ1) − z2(s, ζ̄, ζ̄1)| ≤
1
7
|

√
t2 + 2−

√
s2 + 2|+

1
10
|= − =̄|+

1
2
|=1 − =̄1|

≤
1
2
(|t− s|+ |= − =̄|+ |=1 − =̄1|).

Where γ = max{γ1,γ2} = 0.9, K = max{ 13 , 1
2 } =

1
2 , λ = max{λ1,λ2} =

1
2 , A = max{0, 0.1} = 0.1 and

we have

z1(t, 0, 0) =
1
4

ln(1 + t), z2(t, 0, 0) =
1
7

√
t2 + 2.

Since B = max{0.044, 0.21} = 0.21. Then, we get r = 0.4373 and KT + 2λKrγ = 0.4468 < 1. It

is clear that all assumptions of Theorem 2.1 are satisfied. Hence there exist a unique solution
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ζ ∈ C[0, 1
2 ] of Problem (5.1)-(5.2).

Example 2. Consider the problem

dζ
dt

=
1
25

t2

(9− t)
+

1
5
ζ(t) +

1
7
ζ(0.7

dy
dt

), t ∈ (0, 1], ζ(0) = 0.1 (5.3)

d=
dt

=
1
8
(t2
− 1) +

1
7
=(t) +

1
10
=(0.5

dζ
dt
), t ∈ (0, 1], =(0) = 0.25. (5.4)

Set

z1(t, ζ, ζ1) =
1
25

t2

(9− t)
+

1
7
ζ(t) +

1
5
ζ1(0.7

dy
dt

).

z2(t,=,=1) =
1
12

(t2
− 1) +

1
8
=(t) +

1
10
=1(0.5

dζ
dt
),

thus

|z1(t, ζ, ζ1) − z1(s, ζ̄, ζ̄1)| ≤
1
25
|

t2

9− t
−

s2

9− s
|+

1
7
|ζ− ζ̄|+

1
5
|ζ1 − ζ̄1|

≤
1
25
|
t2(9− s) − s2(9− t)

(9− t)(9− s)
|+

1
7
|ζ− ζ̄|+

1
5
|ζ1 − ζ̄1|

≤
18
200
|t− s|+

1
200
|t− s|+

1
7
|ζ− ζ̄|+

1
5
|ζ1 − ζ̄1|

≤
1
5
(|t− s|+ |ζ− ζ̄|+ |ζ1 − ζ̄1|),

|z2(t,=,=1) − z2(s, =̄, =̄1)| ≤
1

12
|(t2
− 1) − (s2

− 1)|+
1
8
|= − =̄|+

1
10
|=1 − =̄1|

≤
1

12
|t2
− s2
|+

1
8
|= − =̄|+

1
10
|=1 − =̄1|

≤
1
6
(|t− s|+ |= − =̄|+ |=1 − =̄1|).

Where γ = max{γ1,γ2} = 0.7, K = max{15 , 1
6 } =

1
5 , λ = max{λ1,λ2} =

1
7 , A = max{0.25, 0.1} = 0.1

and we have

z1(t, 0, 0) =
1
25

t2

9− t
, z2(t, 0, 0) =

1
12

(t2
− 1).

Since B = max{0, 0.05} = 0.05. Then, we get r = 0.0908 and KT + 2λKrγ = 0.2036 < 1. It is clear

that all assumptions of Theorem 2.1 are satisfied. Hence there exist unique solution ζ ∈ C[0, 1] of

Problem (5.3)-(5.4).

Example 3. Consider the problem

dζ
dt

=
1 + 2t

20
+

2
3
ζ(t) +

1
2
ζ(0.6

dζ
dt
), ζ(0) =

1
5

, t ∈ (0,
1
3
]. (5.5)

Set

z(t, ζ, ζ̄) =
1 + 2t

20
+

2
3
ζ(t) +

1
2
ζ(0.6ζ).
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We can easily deduce that

|z(t1, ζ1, ζ̄1) − z(t2, ζ2, ζ̄2)| ≤
1 + 2t1

20
−

1 + 2t2

20
+

2
3
|ζ1 − ζ2|+

1
2
(ζ̄1 − ζ̄2)

≤
1
10
|t1 − t2|+

2
3
|ζ1 − ζ2|+

1
2
|ζ̄1 − ζ̄2|

≤
2
3
(|t1 − t2|+ |ζ1 − ζ2|+ |ζ̄1 − ζ̄2|).

Where γ = 0.6, L = 2
3 , λ = 1

2 and N = 1
5 , ζ0 = 1

5 and we have z(t, 0, 0) = 1+2t
20 , since N =

supt∈[0, 1
3 ]
|z(t, 0, 0)| = 0.08. Then, we get r = 0.5975 and LT + 2λLrγ = 0.4612 < 1. It is clear that

all assumptions of Theorem 4.1 are satisfied. Hence there exist a unique solution ζ ∈ C[0, 1
3 ] of

Problem (5.5).

6. conclusion

Problems with differential equations involving control variables are very applicable due to

their influence on a wide range of fields. When these equations also have deviating arguments

depending on both the time t and the state variable ζ, the problem in this case possesses broad

relevance in a variety of fields. This kind of delay introduces memory effects into the system,

which implies intricate and rich dynamics. Many researchers devoted their works to such types

of differential equations; they used a variety of analytical and numerical methodologies to study

the existence and stability of the solution. Feedback control problems with pantograph equations

have various applications in most fields, such as biology, ecology, physics, engineering, and others.

In this manuscript, we are concerned with the study of the solvability of the state-dependent

implicit pantograph problem (1.1) under the feedback control (1.2). We also introduced suitable

assumptions and analyzed the uniqueness of the solution. We investigated the stability of the

problem due to the concept of Hyres-Ulam stability. The continuous dependence of the solution

of the problem on the initial data and some parameters has been proved. Furthermore, we

presented a general discussion section for the problem of a state-dependent implicit pantograph

equation without feedback control and introduced some theorems for the existence, uniqueness,

and stability of the problem. Finally, we provided some examples to illustrate our results.
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