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Abstract. This paper presents a study on nonlinear difference equation systems of 6k + 3 order. The equations are of the

form pn+1 =pn−(6k+2)/(±1± qn−2krn−(4k+1)pn−(6k+2)), qn+1 =qn−(6k+2)/(±1± rn−2kpn−(4k+1)qn−(6k+2)), rn+1 =rn−(6k+2)/(±1±

pn−2kqn−(4k+1)rn−(6k+2)), k ≥ 0 where n is a non-negative integer (belonging to the set N0 = N ∪ {0}) and the starting

values p−l, q−l, r−l, l ∈ {0, 1, . . . , 6k + 2} are arbitrary nonzero real numbers. We propose a systematic approach to

solve this system, introducing a novel technique to find explicit solutions. The main outcomes of our study are the

explicit solutions derived from the considered system. The study examines four different cases of this system and

provides numerical examples to illustrate the results. The numerical examples demonstrate the behavior of the system

for various initial conditions. The study is concluded with graphical representations of the solutions for each case,

providing insights into the behavior of the systems.

1. Introduction

Difference equations, or discrete dynamic systems, represent a distinct field of study within

mathematics. They are particularly relevant in various scientific disciplines, such as biology,

where many systems are naturally described using discrete variables, and in economic modeling

(see, for example, [16]- [17] and the references therein). The theory of difference equations is

important in applied sciences and numerous other fields. This theory is considered fundamental

and is expected to maintain its central role in mathematics. Notably, nonlinear difference equations

of higher orders, exceeding one, carry immense significance and cannot be underestimated. They
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have applications and implications that are both broad and profound in various areas of research

and problem-solving.

The solvability of nonlinear difference equations and systems has become a focal point of interest

among mathematicians recently. This area of study has seen significant attention, with contri-

butions from researchers (see, for example, [1]- [15], [18]- [24] and the references therein). In

the realm of nonlinear difference equations, a particularly intriguing aspect is the association with

well-known sequences like the Fibonacci sequence. This connection has been thoroughly explored,

as exemplified in works such as “Dynamical behavior and solution of nonlinear difference equation via
Fibonacci sequence” by Elsayed et al. [9]. Notably, Clark and Kulenovic, in particular, have provided

valuable insights into the dynamics of solutions in the context of a specific difference equation. Nu-

merous studies have been conducted on the dynamics of solutions in various systems of nonlinear

difference equations. Here are some of the notable works and the systems they have investigated:

• Kurbanli et al. [22] examined the behavior of positive solutions in a system described by

the equations:

xn+1 =
xn−1

1 + ynxn−1
, yn+1 =

yn−1

1 + xnyn−1
.

• Elsayed [12] found solutions for systems of difference equations with the following form:

xn+1 =
xn−1

±1 + ynxn−1
, yn+1 =

yn−1

∓1 + xnyn−1
.

• Kurbanli et al. [23] discussed a three-dimensional system of difference equations:

xn+1 =
xn−1

−1 + ynxn−1
, yn+1 =

yn−1

−1 + xnyn−1
, zn+1 =

zn−1

−1 + ynzn−1
.

• In Elsayed and Gafel [10], solutions for a system of three difference equations were dis-

cussed:

xn+1 =
xn−2

±1 + znyn−1xn−2
, yn+1 =

yn−2

±1 + xnzn−1yn−2
, zn+1 =

zn−2

±1 + ynxn−1zn−2
.

This reflects the ongoing efforts to understand and solve nonlinear difference equations, which

have practical relevance in a wide range of scientific and mathematical applications. These in-

vestigations are critical for advancing our understanding of discrete dynamic systems and their

behavior. The investigations mentioned above have motivated the current study to explore the

form of solutions in systems involving 3−dimensional rational difference equations

pn+1 =
pn−(6k+2)

κ+ τqn−2krn−(4k+1)pn−(6k+2)
, qn+1 =

qn−(6k+2)

κ+ τrn−2kpn−(4k+1)qn−(6k+2)
, (1.1)

rn+1 =
rn−(6k+2)

κ+ τpn−2kqn−(4k+1)rn−(6k+2)
.

The present paper proposes a systematic approach to solving this system and introduces a novel

technique to find explicit solutions. The main outcomes of this study is the explicit solutions
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derived from the considered system. The methodology used in this study builds upon the es-

tablished techniques introduced in seminal works in the field. Notably, the methods used in this

study draws from the following important papers:

• The Recati difference equation system, which is closely related to the system under consider-

ation, was introduced by Recati (1897) and further studied by Brand (1955), Papaschinopou-

los and Papadopoulos (2002), Clark and Kulenovic (2005), Stević et al. (2018-2019).

• The method used to find explicit solutions for nonlinear difference equations is based on

the works of Elsayed (2012), Kurbanli et al. (2016), and Elsayed and Gafel (2021).

The study examines four different cases of this system and provides numerical examples to

illustrate the results. These examples aim to demonstrate the behavior of the system for various

initial conditions. The study is concluded with graphical representations of the solutions for each

case, providing insights into the behavior of the systems. These studies contribute to a deeper

understanding of the behavior and solutions in nonlinear difference equation systems (1.1).

2. Main results

The main results focus on finding solutions to a three-dimensional system of nonlinear difference

equations. These equations are represented by the system described in (1.1) and are closely related

to the system mentioned. The objective is to analyze and understand the behavior of solutions for

this system.

2.1. System (1.1) when κ = τ = +1. In this context, it is assumed that
{
pn, qn, rn

}
represent a

solution to the following system

pn+1 =
pn−2

1 + qnrn−1pn−2
, qn+1 =

qn−2

1 + rnpn−1qn−2
, rn+1 =

rn−2

1 + pnqn−1rn−2
, (2.1)

which is considered as special cases of system (1.1) when κ = τ = +1 and k = 0. This subsection is

dedicated to an in-depth investigation of solutions for the three-dimensional system of nonlinear

difference equations (2.1). The investigation employs a methodology that relies on the suggested

notations as a fundamental tool. These notations are

αn = pnqn−1rn−2, βn = qnrn−1pn−2, γn = rnpn−1qn−2. (2.2)

In many cases, when dealing with systems of difference equations, it can be advantageous to

express the system represented by (2.1) as an equivalent system of difference equations. This

transformation is typically performed to simplify the study and analysis of the system. Accord-

ingly, our research has resulted in the following equivalent system:

αn+1 =
βn

1 + βn
, βn+1 =

γn

1 + γn
, γn+1 =

αn

1 + αn
. (2.3)

The solutions to the last system of difference equations are provided in the following theorem:
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Theorem 2.1. Let
{
αn, βn,γn

}
n≥0 be solutions of system (2.3). Then {αn}n≥0 ,

{
βn

}
n≥0 and

{
γn

}
n≥0 are given

by the following formulas for n = 0, 1, . . .

{αn}n≥0 :


α3n = K3n (α0)

α3n+1 = K3n+1 (β0)

α3n+2 = K3n+2 (γ0)

,
{
βn

}
n≥0 :


β3n = K3n (β0)

β3n+1 = K3n+1 (γ0)

β3n+2 = K3n+2 (α0)

and
{
γn

}
n≥0 :


γ3n = K3n (γ0)

γ3n+1 = K3n+1 (α0)

γ3n+2 = K3n+2 (β0)

,

(2.4)

where Kn (x) = x
1+nx , and α0, β0 and γ0 are computed from (2.2).

Proof. By replacing the expression derived from the last recurrence relation in (2.3) into the second

equation, and subsequently incorporating this result into the first recurrence relation in (2.3), we

arrive at the following:

αn+1 =
αn−2

1 + 3αn−2
, n ≥ 2.

Likewise, we get

βn+1 =
βn−2

1 + 3βn−2
, γn+1 =

γn−2

1 + 3γn−2
, n ≥ 2.

Using the follownig notations αn,l = α3n+l, βn,l = β3n+l and γn,l = γ3n+l, for n ≥ 0 with l = 0, 1, 2,

we obtain:

αn+1,l =
αn,l

1 + 3αn,l
, βn+1,l =

βn,l

1 + 3βn,l
, γn+1,l =

γn,l

1 + 3γn,l
,

for n ≥ 0 with l = 0, 1, 2. Since the three recurrence relations are similar, let’s use the first recurrence

relation for the next transformation 1 + 3αn,l = α̃n
/
α̃n−1 . By simplifying, we obtain:

α̃n+1 − 2α̃n + α̃n−1 = 0, n ≥ 0.

So, we have α̃n =
n− (n + 1) α̃0

n (1− α̃0) − 1
and αn,l =

α0,l

1 + 3nα0,l
, for l = 0, 1, 2. Therefore, the proof is

complete. �

Theorem 2.1 provides solutions to the system described by (2.3). This system consists of three

difference equations, which govern the sequences αn, βn, and γn. The theorem states that these

sequences can be expressed as follows:

• αn follows a pattern where α3n, α3n+1, and α3n+2 are given by certain expressions involving

α0, β0, and γ0.

• βn follows a similar pattern where β3n, β3n+1, and β3n+2 are expressed in terms of α0, β0, and

γ0.

• γn also follows a similar pattern where γ3n, γ3n+1, and γ3n+2 are determined by α0, β0, and

γ0.

These expressions provide a comprehensive understanding of the behavior of the system over

successive iterations, offering a way to compute αn, βn, and γn for any n ≥ 0 based on the initial

values α0, β0, and γ0.

Consequently, we obtain the following result.
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Theorem 2.2. Let
{
pn, qn, rn

}
n≥−2 be solutions of system (2.1). Then

{
pn

}
n≥−2 ,

{
qn

}
n≥−2 and {rn}n≥−2 are

given by the following formulas for n = 0, 1, . . .

p3n−k = p−k

n−1∏
j=0

α3(n− j)−k

β3(n− j)−(k+1)
,

q3n−k = q−k

n−1∏
j=0

β3(n− j)−k

γ3(n− j)−(k+1)
,

r3n−k = r−k

n−1∏
j=0

γ3(n− j)−k

α3(n− j)−(k+1)
,

for k = 0, 1, 2, where {αn}n≥0 ,
{
βn

}
n≥0 and

{
γn

}
n≥0 are the solutions for the system (2.3) given in (2.4).

Proof. The solutions of the system described in (2.1) can be determined by using the previously

established notations (2.2). The solutions take the following form:

pn =
αn

qn−1rn−2
, qn =

βn

rn−1pn−2
, rn =

γn

pn−1qn−2
. (2.5)

Using (2.5), we obviously have

p3n =
α3n

β3n−1
p3(n−1), q3n =

β3n

γ3n−1
q3(n−1), r3n =

γ3n

α3n−1
r3(n−1), (2.6)

p3n−1 =
γ3nr3(n−1)

r3nβ3n−2
p3(n−1)−1, q3n−1 =

α3np3(n−1)

p3nγ3n−2
q3(n−1)−1, r3n−1 =

β3nq3(n−1)

q3nα3n−2
r3(n−1)−1, (2.7)

and which system (2.6) (resp. (2.7)) can be solved recursively, yielding:

p3n = p0

n−1∏
j=0

α3(n− j)

β3(n− j)−1
, q3n = q0

n−1∏
j=0

β3(n− j)

γ3(n− j)−1
, r3n = r0

n−1∏
j=0

γ3(n− j)

α3(n− j)−1
,

(resp. p3n−1 = p−1

n−1∏
j=0

γ3(n− j)r3(n− j−1)

r3(n− j)β3(n− j)−2
, q3n−1 = q−1

n−1∏
j=0

α3(n− j)p3(n− j−1)

p3(n− j)γ3(n− j)−2
, r3n−1 = r−1

n−1∏
j=0

β3(n− j)q3(n− j−1)

q3(n− j)α3(n− j)−2
).

From (2.5), we further have:

p3n−2 =
β3n

q3nr3n−1
, q3n−2 =

γ3n

r3np3n−1
, r3n−2 =

α3n

p3nq3n−1
.

�

From Theorems (2.1) − (2.2), we derive the following theorem, elucidating the structure of solu-

tions for the system described by (2.1).

Theorem 2.3. Assume
{
pn, qn, rn

}
are solutions to the system represented in (2.1). Considering arbitrary

nonzero real numbers p−l, q−l, r−l for l ∈ {0, 1, 2} as initial values, the solutions for the system (2.1) can be
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expressed as follows:

p3n = p0

n−1∏
j=0

1 + (3 (n− j) − 1) p0q−1r−2

1 + 3 (n− j) p0q−1r−2
,

p3n−1 = p−1

n−1∏
j=0

1 + (3 (n− j) − 2) r0p−1q−2

1 + (3 (n− j) − 1) r0p−1q−2
,

p3n−2 = p−2

n−1∏
j=0

1 + 3 (n− j− 1) q0r−1p−2

1 + (3 (n− j) − 2) q0r−1p−2
,

q3n = q0

n−1∏
j=0

1 + (3 (n− j) − 1) q0r−1p−2

1 + 3 (n− j) q0r−1p−2
,

q3n−1 = q−1

n−1∏
j=0

1 + (3 (n− j) − 2) p0q−1r−2

1 + (3 (n− j) − 1) p0q−1r−2
,

q3n−2 = q−2

n−1∏
j=0

1 + 3 (n− j− 1) r0p−1q−2

1 + (3 (n− j) − 2) r0p−1q−2
,

r3n = r0

n−1∏
j=0

1 + (3 (n− j) − 1) r0p−1q−2

1 + 3 (n− j) r0p−1q−2
,

r3n−1 = r−1

n−1∏
j=0

1 + (3 (n− j) − 2) q0r−1p−2

1 + (3 (n− j) − 1) q0r−1p−2
,

r3n−2 = r−2

n−1∏
j=0

1 + 3 (n− j− 1) p0q−1r−2

1 + (3 (n− j) − 2) p0q−1r−2
,

for n ≥ 1.

The system under study, as titled in the subsection, is investigated when k > 0. The system is

represented by the following equations:

pn+1 =
pn−(6k+2)

1 + qn−2krn−(4k+1)pn−(6k+2)
, qn+1 =

qn−(6k+2)

1 + rn−2kpn−(4k+1)qn−(6k+2)
, (2.8)

rn+1 =
rn−(6k+2)

1 + pn−2kqn−(4k+1)rn−(6k+2)
,

which is an extension of the system described in (2.1). A scheme for the system (2.8) is presented

as follows:

n + 1 −2k−1
−→ n− 2k −2k−1

−→ n− (4k + 1) −2k−1
−→ n− (6k + 2) . (2.9)
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This scheme allows us to express the system (2.8) as a set of equations for specific indices:

p(2k+1)(l+1)+t =
p(2k+1)(l−2)+t

1 + q(2k+1)l+tr(2k+1)(l−1)+tp(2k+1)(l−2)+t
,

q(2k+1)(l+1)+t =
q(2k+1)(l−2)+t

1 + r(2k+1)l+tp(2k+1)(l−1)+tq(2k+1)(l−2)+t
,

r(2k+1)(l+1)+t =
r(2k+1)(l−2)+t

1 + p(2k+1)l+tq(2k+1)(l−1)+tr(2k+1)(l−2)+t
,

where t ranges from 1 to 2k + 1, and l is a non-negative integer. Using the notations:

ψ(t)
l = p(2k+1)l+t,

ξ(t)l = q(2k+1)l+t,

ϕ(t)
l = r(2k+1)l+t, t ∈ {1, . . . , 2k + 1} ,

with l ≥ −3 and t ranging from 1 to 2k + 1, a set of (2k + 1)-systems analogous to system (2.1) can

be derived. This discussion leads to the introduction of the following theorem.

Theorem 2.4. Suppose that
{
pn, qn, rn

}
are solutions to the system represented in (2.1). Additionally,

consider arbitrary nonzero real numbers p−l, q−l, r−l for l ∈ {0, 1, . . . , 6k + 2} as the initial values. In this
case, the solutions for the system (2.1) can be expressed as follows:

p3(2k+1)l+t = pt

l−1∏
j=0

1 + (3 (l− j) − 1) ptqt−(2k+1)rt−2(2k+1)

1 + 3 (l− j) ptqt−(2k+1)rt−2(2k+1)
,

p(2k+1)(3l−1)+t = pt−(2k+1)

l−1∏
j=0

1 + (3 (l− j) − 2) rtpt−(2k+1)qt−2(2k+1)

1 + (3 (l− j) − 1) rtpt−(2k+1)qt−2(2k+1)
,

p(2k+1)(3l−2)+t = pt−2(2k+1)

l−1∏
j=0

1 + 3 (l− j− 1) qtrt−(2k+1)pt−2(2k+1)

1 + (3 (l− j) − 2) qtrt−(2k+1)pt−2(2k+1)
,

q3(2k+1)l+t = qt

l−1∏
j=0

1 + (3 (l− j) − 1) qtrt−(2k+1)pt−2(2k+1)

1 + 3 (l− j) qtrt−(2k+1)pt−2(2k+1)
,

q(2k+1)(3l−1)+t = qt−(2k+1)

l−1∏
j=0

1 + (3 (l− j) − 2) ptqt−(2k+1)rt−2(2k+1)

1 + (3 (l− j) − 1) ptqt−(2k+1)rt−2(2k+1)
,

q(2k+1)(3l−2)+t = qt−2(k2+1)

l−1∏
j=0

1 + 3 (l− j− 1) rtpt−(2k+1)qt−2(2k+1)

1 + (3 (l− j) − 2) rtpt−(2k+1)qt−2(2k+1)
,

r3(2k+1)l+t = rt

l−1∏
j=0

1 + (3 (l− j) − 1) rtpt−(2k+1)qt−2(2k+1)

1 + 3 (l− j) rtpt−(2k+1)qt−2(2k+1)
,
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r(2k+1)(3l−1)+t = rt−(2k+1)

l−1∏
j=0

1 + (3 (l− j) − 2) qtrt−(2k+1)pt−2(2k+1)

1 + (3 (l− j) − 1) qtrt−(2k+1)pt−2(2k+1)
,

r(2k+1)(3l−2)+t = rt−2(2k+1)

l−1∏
j=0

1 + 3 (l− j− 1) ptqt−(2k+1)rt−2(2k+1)

1 + (3 (l− j) − 2) ptqt−(2k+1)rt−2(2k+1)
,

for n ≥ 1, t ∈ {1, . . . , 2k + 1}.

2.2. System (1.1) when κ = −τ = +1. In this subsection, it is assumed that
{
pn, qn, rn

}
represent a

solution to the following system

pn+1 =
pn−2

1− qnrn−1pn−2
, qn+1 =

qn−2

1− rnpn−1qn−2
, rn+1 =

rn−2

1− pnqn−1rn−2
, (2.10)

which is considered as special cases of system (1.1) when κ = −τ = +1 and k = 0. Using the

notations (2.2), we obtain the following equivalent system

αn+1 =
βn

1− βn
, βn+1 =

γn

1− γn
,γn+1 =

αn

1− αn
. (2.11)

The solutions to the last system of difference equations are provided in the following theorem:

Theorem 2.5. Let
{
αn, βn,γn

}
n≥0 be solutions of system (2.10). Then {αn}n≥0 ,

{
βn

}
n≥0 and

{
γn

}
n≥0 are

given by the following formulas for n = 0, 1, . . .

{αn}n≥0 :


α3n = J3n (α0)

α3n+1 = J3n+1 (β0)

α3n+2 = J3n+2 (γ0)

,
{
βn

}
n≥0 :


β3n = J3n (β0)

β3n+1 = J3n+1 (γ0)

β3n+2 = J3n+2 (α0)

and
{
γn

}
n≥0 :


γ3n = J3n (γ0)

γ3n+1 = J3n+1 (α0)

γ3n+2 = J3n+2 (β0)

,

where Jn (x) = x
1−nx ,and α0, β0 and γ0 are computed from (2.2).

Proof. By replacing the expression derived from the last recurrence relation in (2.3) into the second

equation, and subsequently incorporating this result into the first recurrence relation in (2.3), we

arrive at the following:

αn+1 =
αn−2

1− 3αn−2
, n ≥ 2.

Likewise, we get

βn+1 =
βn−2

1− 3βn−2
, γn+1 =

γn−2

1− 3γn−2
, n ≥ 2.

Using the follownig notations αn,l = α3n+l, βn,l = β3n+l and γn,l = γ3n+l, for n ≥ 0 with l = 0, 1, 2,

we obtain:

αn+1,l =
αn,l

1− 3αn,l
, βn+1,l =

βn,l

1− 3βn,l
, γn+1,l =

γn,l

1− 3γn,l
,

for n ≥ 0 with l = 0, 1, 2. Since the three recurrence relations are similar, let’s use the first recurrence

relation for the next transformation 1 − 3αn,l = α̃n
/
α̃n−1 . By simplifying, we obtain the same

difference equation α̃n+1 − 2α̃n + α̃n−1 = 0, n ≥ 0. So, we have α̃n =
n− (n + 1) α̃0

n (1− α̃0) − 1
and αn,l =

α0,l

1− 3nα0,l
, for l = 0, 1, 2. Therefore, the proof is complete. �
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From Theorems (2.2) and (2.5), we establish the following theorem concerning the structure of

solutions for the system denoted by (2.10).

Theorem 2.6. Suppose that
{
pn, qn, rn

}
are solutions to the system represented in (2.10). Considering

arbitrary nonzero real numbers p−l, q−l, r−l for l ∈ {0, 1, 2} as the initial values, the solutions for the system
(2.10) can be expressed as follows:

p3n = p0

n−1∏
j=0

1− (3 (n− j) − 1) p0q−1r−2

1− 3 (n− j) p0q−1r−2
,

p3n−1 = p−1

n−1∏
j=0

1− (3 (n− j) − 2) r0p−1q−2

1− (3 (n− j) − 1) r0p−1q−2
,

p3n−2 = p−2

n−1∏
j=0

1− 3 (n− j− 1) q0r−1p−2

1− (3 (n− j) − 2) q0r−1p−2
,

q3n = q0

n−1∏
j=0

1− (3 (n− j) − 1) q0r−1p−2

1− 3 (n− j) q0r−1p−2
,

q3n−1 = q−1

n−1∏
j=0

1− (3 (n− j) − 2) p0q−1r−2

1− (3 (n− j) − 1) p0q−1r−2
,

q3n−2 = q−2

n−1∏
j=0

1− 3 (n− j− 1) r0p−1q−2

1− (3 (n− j) − 2) r0p−1q−2
,

r3n = r0

n−1∏
j=0

1− (3 (n− j) − 1) r0p−1q−2

1− 3 (n− j) r0p−1q−2
,

r3n−1 = r−1

n−1∏
j=0

1− (3 (n− j) − 2) q0r−1p−2

1− (3 (n− j) − 1) q0r−1p−2
,

r3n−2 = r−2

n−1∏
j=0

1− 3 (n− j− 1) p0q−1r−2

1− (3 (n− j) − 2) p0q−1r−2
,

for n ≥ 1.

The system under study, as titled in the subsection, is investigated when k > 0. The system is

represented by the following equations:

pn+1 =
pn−(6k+2)

1− qn−2krn−(4k+1)pn−(6k+2)
, qn+1 =

qn−(6k+2)

1− rn−2kpn−(4k+1)qn−(6k+2)
, (2.12)

rn+1 =
rn−(6k+2)

1− pn−2kqn−(4k+1)rn−(6k+2)
,
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which is an extension of the system described in (2.10). Utilizing the scheme (2.9), the system

(2.12) is reformulated as follows:

p(2k+1)(l+1)+t =
p(2k+1)(l−2)+t

1− q(2k+1)l+tr(2k+1)(l−1)+tp(2k+1)(l−2)+t
,

q(2k+1)(l+1)+t =
q(2k+1)(l−2)+t

1− r(2k+1)l+tp(2k+1)(l−1)+tq(2k+1)(l−2)+t
,

r(2k+1)(l+1)+t =
r(2k+1)(l−2)+t

1− p(2k+1)l+tq(2k+1)(l−1)+tr(2k+1)(l−2)+t
,

where t ranges from 1 to 2k + 1, and l is a non-negative integer. This discussion leads to the

introduction of the following theorem.

Theorem 2.7. Suppose that
{
pn, qn, rn

}
are solutions to the system represented in (2.10). Additionally,

consider arbitrary nonzero real numbers p−l, q−l, r−l for l ∈ {0, 1, . . . , 6k + 2} as the initial values. In this
case, the solutions for the system (2.10) can be expressed as follows:

p3(2k+1)l+t = pt

l−1∏
j=0

1− (3 (l− j) − 1) ptqt−(2k+1)rt−2(2k+1)

1− 3 (l− j) ptqt−(2k+1)rt−2(2k+1)
,

p(2k+1)(3l−1)+t = pt−(2k+1)

l−1∏
j=0

1− (3 (l− j) − 2) rtpt−(2k+1)qt−2(2k+1)

1− (3 (l− j) − 1) rtpt−(2k+1)qt−2(2k+1)
,

p(2k+1)(3l−2)+t = pt−2(2k+1)

l−1∏
j=0

1− 3 (l− j− 1) qtrt−(2k+1)pt−2(2k+1)

1− (3 (l− j) − 2) qtrt−(2k+1)pt−2(2k+1)
,

q3(2k+1)l+t = qt

l−1∏
j=0

1− (3 (l− j) − 1) qtrt−(2k+1)pt−2(2k+1)

1− 3 (l− j) qtrt−(2k+1)pt−2(2k+1)
,

q(2k+1)(3l−1)+t = qt−(2k+1)

l−1∏
j=0

1− (3 (l− j) − 2) ptqt−(2k+1)rt−2(2k+1)

1− (3 (l− j) − 1) ptqt−(2k+1)rt−2(2k+1)
,

q(2k+1)(3l−2)+t = qt−2(k2+1)

l−1∏
j=0

1− 3 (l− j− 1) rtpt−(2k+1)qt−2(2k+1)

1− (3 (l− j) − 2) rtpt−(2k+1)qt−2(2k+1)
,

r3(2k+1)l+t = rt

l−1∏
j=0

1− (3 (l− j) − 1) rtpt−(2k+1)qt−2(2k+1)

1− 3 (l− j) rtpt−(2k+1)qt−2(2k+1)
,

r(2k+1)(3l−1)+t = rt−(2k+1)

l−1∏
j=0

1− (3 (l− j) − 2) qtrt−(2k+1)pt−2(2k+1)

1− (3 (l− j) − 1) qtrt−(2k+1)pt−2(2k+1)
,

r(2k+1)(3l−2)+t = rt−2(2k+1)

l−1∏
j=0

1− 3 (l− j− 1) ptqt−(2k+1)rt−2(2k+1)

1− (3 (l− j) − 2) ptqt−(2k+1)rt−2(2k+1)
,

for n ≥ 1, t ∈ {1, . . . , 2k + 1}.
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2.3. System (1.1) when κ = −τ = −1. In this subsection, it is assumed that
{
pn, qn, rn

}
represent a

solution to the following system

pn+1 =
pn−2

−1 + qnrn−1pn−2
, qn+1 =

qn−2

−1 + rnpn−1qn−2
, rn+1 =

rn−2

−1 + pnqn−1rn−2
, (2.13)

which is considered as special cases of system (1.1) when κ = −τ = −1 and k = 0. Using the

notations (2.2), we obtain the following equivalent system

αn+1 =
βn

−1 + βn
, βn+1 =

γn

−1 + γn
,γn+1 =

αn

−1 + αn
. (2.14)

The solutions to the last system of difference equations are provided in the following theorem:

Theorem 2.8. Let
{
αn, βn,γn

}
n≥0 be solutions of system (2.13). Then {αn}n≥0 ,

{
βn

}
n≥0 and

{
γn

}
n≥0 are

given by the following formulas for n = 0, 1, . . .

{αn}n≥0 :


α3n = I(1)n (α0)

α3n+1 = I(2)n (β0)

α3n+2 = I(1)n (γ0)

,
{
βn

}
n≥0 :


β3n = I(1)n (β0)

β3n+1 = I(2)n (γ0)

β3n+2 = I(1)n (α0)

and
{
γn

}
n≥0 :


γ3n = I(1)n (γ0)

γ3n+1 = I(2)n (α0)

γ3n+2 = I(1)n (β0)

,

where I(1)n (x) =
x

(−1)n + (n− 2 [n/2]) x
, I(2)n (x) =

x

(−1)n+1
− (n− 1− 2 [n/2]) x

, α0, β0 and γ0 are

computed from (2.2).

Proof. By replacing the expression derived from the last recurrence relation in (2.3) into the second

equation, and subsequently incorporating this result into the first recurrence relation in (2.3), we

arrive at the following:

αn+1 =
αn−2

−1 + αn−2
, n ≥ 2.

Likewise, we get

βn+1 =
βn−2

−1 + βn−2
, γn+1 =

γn−2

−1 + γn−2
, n ≥ 2.

Using the follownig notations αn,l = α3n+l, βn,l = β3n+l and γn,l = γ3n+l, for n ≥ 0 with l = 0, 1, 2,

we obtain:

αn+1,l =
αn,l

−1 + αn,l
, βn+1,l =

βn,l

−1 + βn,l
, γn+1,l =

γn,l

−1 + γn,l
,

for n ≥ 0 with l = 0, 1, 2. Since the three recurrence relations are similar, let’s use the first recurrence

relation for the next transformation αn,l − 1 = α̃n
/
α̃n−1 . By simplifying, we obtain:

α̃n+1 − α̃n−1 = 0, n ≥ 0.

So, we have α̃n =
α̃0 + (α̃0 − 1) (−1)n + 1
α̃0 − (α̃0 − 1) (−1)n + 1

and αn,l =
α0,l

(−1)n +

n−1∑
j=0

(−1) j
α0,l

, for l = 0, 1, 2. There-

fore, the proof is complete. �

From Theorems (2.2) and (2.8), the following theorem is established concerning the structure of

solutions for the system denoted by (2.13).
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Theorem 2.9. Assume
{
pn, qn, rn

}
are solutions to the system represented in (2.13). Additionally, consider

arbitrary nonzero real numbers p−l, q−l, r−l for l ∈ {0, 1, 2} as the initial values. In this case, the solutions
for the system (2.13) can be expressed as follows:

p3n = p0

n−1∏
j=0

(−1)n− j−1 + (n− j− 1− 2 [(n− j− 1) /2]) p0q−1r−2

(−1)n− j + (n− j− 2 [(n− j) /2]) p0q−1r−2
,

p3n−1 = p−1

n−1∏
j=0

(−1)n− j
− (n− j− 2− 2 [(n− j− 1) /2]) r0p−1q−2

(−1)n− j−1 + (n− j− 1− 2 [(n− j− 1) /2]) r0p−1q−2
,

p3n−2 = p−2

n−1∏
j=0

(−1)n− j−1 + (n− j− 1− 2 [(n− j− 1) /2]) q0r−1p−2

(−1)n− j
− (n− j− 2− 2 [(n− j− 1) /2]) q0r−1p−2

,

q3n = q0

n−1∏
j=0

(−1)n− j−1 + (n− j− 1− 2 [(n− j− 1) /2]) q0r−1p−2

(−1)n− j + (n− j− 2 [(n− j) /2]) q0r−1p−2
,

q3n−1 = q−1

n−1∏
j=0

(−1)n− j
− (n− j− 2− 2 [(n− j− 1) /2]) p0q−1r−2

(−1)n− j−1 + (n− j− 1− 2 [(n− j− 1) /2]) p0q−1r−2
,

q3n−2 = q−2

n−1∏
j=0

(−1)n− j−1 + (n− j− 1− 2 [(n− j− 1) /2]) r0p−1q−2

(−1)n− j
− (n− j− 2− 2 [(n− j− 1) /2]) r0p−1q−2

,

r3n = r0

n−1∏
j=0

(−1)n− j−1 + (n− j− 1− 2 [(n− j− 1) /2]) r0p−1q−2

(−1)n− j + (n− j− 2 [(n− j) /2]) r0p−1q−2
,

r3n−1 = r−1

n−1∏
j=0

(−1)n− j
− (n− j− 2− 2 [(n− j− 1) /2]) q0r−1p−2

(−1)n− j−1 + (n− j− 1− 2 [(n− j− 1) /2]) q0r−1p−2
,

r3n−2 = r−2

n−1∏
j=0

(−1)n− j−1 + (n− j− 1− 2 [(n− j− 1) /2]) p0q−1r−2

(−1)n− j
− (n− j− 2− 2 [(n− j− 1) /2]) p0q−1r−2

,

for n ≥ 1.

The system under study, as titled in the subsection, is investigated when k > 0. The system is

represented by the following equations:

pn+1 =
pn−(6k+2)

−1 + qn−2krn−(4k+1)pn−(6k+2)
, qn+1 =

qn−(6k+2)

−1 + rn−2kpn−(4k+1)qn−(6k+2)
, (2.15)

rn+1 =
rn−(6k+2)

−1 + pn−2kqn−(4k+1)rn−(6k+2)
,
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which is an extension of the system described in (2.13). Utilizing the scheme (2.9), the system

(2.15) is reformulated as follows:

p(2k+1)(l+1)+t =
p(2k+1)(l−2)+t

−1 + q(2k+1)l+tr(2k+1)(l−1)+tp(2k+1)(l−2)+t
,

q(2k+1)(l+1)+t =
q(2k+1)(l−2)+t

−1 + r(2k+1)l+tp(2k+1)(l−1)+tq(2k+1)(l−2)+t
,

r(2k+1)(l+1)+t =
r(2k+1)(l−2)+t

−1 + p(2k+1)l+tq(2k+1)(l−1)+tr(2k+1)(l−2)+t
,

where t ranges from 1 to 2k + 1, and l is a non-negative integer. This discussion leads to the

introduction of the following theorem.

Theorem 2.10. Suppose that
{
pn, qn, rn

}
are solutions to the system represented in (2.13). Additionally,

consider arbitrary nonzero real numbers p−l, q−l, r−l for l ∈ {0, 1, . . . , 6k + 2} as the initial values. In this
case, the solutions for the system (2.13) can be expressed as follows:

p3(2k+1)l+t = pt

l−1∏
j=0

(−1)l− j−1 + (l− j− 1− 2 [(l− j− 1) /2]) ptqt−(2k+1)rt−2(2k+1)

(−1)l− j + (l− j− 2 [(l− j) /2]) ptqt−(2k+1)rt−2(2k+1)

,

p(2k+1)(3l−1)+t = pt−(2k+1)

l−1∏
j=0

(−1)l− j
− (l− j− 2− 2 [(l− j− 1) /2]) rtpt−(2k+1)qt−2(2k+1)

(−1)l− j−1 + (l− j− 1− 2 [(l− j− 1) /2]) rtpt−(2k+1)qt−2(2k+1)

,

p(2k+1)(3l−2)+t = pt−2(2k+1)

l−1∏
j=0

(−1)l− j−1 + (l− j− 1− 2 [(l− j− 1) /2]) qtrt−(2k+1)pt−2(2k+1)

(−1)l− j
− (l− j− 2− 2 [(l− j− 1) /2]) qtrt−(2k+1)pt−2(2k+1)

,

q3(2k+1)l+t = qt

l−1∏
j=0

(−1)l− j−1 + (l− j− 1− 2 [(l− j− 1) /2]) qtrt−(2k+1)pt−2(2k+1)

(−1)l− j + (l− j− 2 [(l− j) /2]) qtrt−(2k+1)pt−2(2k+1)

,

q(2k+1)(3l−1)+t = qt−(2k+1)

l−1∏
j=0

(−1)l− j
− (l− j− 2− 2 [(l− j− 1) /2]) ptqt−(2k+1)rt−2(2k+1)

(−1)l− j−1 + (l− j− 1− 2 [(l− j− 1) /2]) ptqt−(2k+1)rt−2(2k+1)

,

q(2k+1)(3l−2)+t = qt−2(k2+1)

l−1∏
j=0

(−1)l− j−1 + (l− j− 1− 2 [(l− j− 1) /2]) rtpt−(2k+1)qt−2(2k+1)

(−1)l− j
− (l− j− 2− 2 [(l− j− 1) /2]) rtpt−(2k+1)qt−2(2k+1)

,

r3(2k+1)l+t = rt

l−1∏
j=0

(−1)l− j−1 + (l− j− 1− 2 [(l− j− 1) /2]) rtpt−(2k+1)qt−2(2k+1)

(−1)l− j + (l− j− 2 [(l− j) /2]) rtpt−(2k+1)qt−2(2k+1)

,

r(2k+1)(3l−1)+t = rt−(2k+1)

l−1∏
j=0

(−1)l− j
− (l− j− 2− 2 [(l− j− 1) /2]) qtrt−(2k+1)pt−2(2k+1)

(−1)l− j−1 + (l− j− 1− 2 [(l− j− 1) /2]) qtrt−(2k+1)pt−2(2k+1)

,

r(2k+1)(3l−2)+t = rt−2(2k+1)

l−1∏
j=0

(−1)l− j−1 + (l− j− 1− 2 [(l− j− 1) /2]) ptqt−(2k+1)rt−2(2k+1)

(−1)l− j
− (l− j− 2− 2 [(l− j− 1) /2]) ptqt−(2k+1)rt−2(2k+1)

,

for n ≥ 1, t ∈ {1, . . . , 2k + 1}.
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2.4. System (1.1) when κ = τ = −1. In this subsection, it is assumed that
{
pn, qn, rn

}
represent a

solution to the following system

pn+1 =
pn−2

−1− qnrn−1pn−2
, qn+1 =

qn−2

−1− rnpn−1qn−2
, rn+1 =

rn−2

−1− pnqn−1rn−2
, (2.16)

which is considered as special cases of system (1.1) when κ = τ = −1 and k = 0. Using the

notations (2.2), we obtain the following equivalent system

αn+1 =
βn

−1− βn
, βn+1 =

γn

−1− γn
,γn+1 =

αn

−1− αn
. (2.17)

The solutions to the last system of difference equations are provided in the following theorem:

Theorem 2.11. Let
{
αn, βn,γn

}
n≥0 be solutions of system (2.16). Then {αn}n≥0 ,

{
βn

}
n≥0 and

{
γn

}
n≥0 are

given by the following formulas for n = 0, 1, . . .

{αn}n≥0 :


α3n = F(1)

n (α0)

α3n+1 = F(2)
n (β0)

α3n+2 = F(1)
n (γ0)

,
{
βn

}
n≥0 :


β3n = F(1)

n (β0)

β3n+1 = F(2)
n (γ0)

β3n+2 = F(1)
n (α0)

and
{
γn

}
n≥0 :


γ3n = F(1)

n (γ0)

γ3n+1 = F(2)
n (α0)

γ3n+2 = F(1)
n (β0)

,

where F(1)
n (x) =

x
(−1)n

− (n− 2 [n/2]) x
, F(2)

n (x) =
x

(−1)n+1 + (n− 1− 2 [n/2]) x
, and α0, β0 and γ0

are computed from (2.2).

Proof. By replacing the expression derived from the last recurrence relation in (2.3) into the second

equation, and subsequently incorporating this result into the first recurrence relation in (2.3), we

arrive at the following:

αn+1 =
αn−2

−1− αn−2
, n ≥ 2.

Likewise, we get

βn+1 =
βn−2

−1− βn−2
, γn+1 =

γn−2

−1− γn−2
, n ≥ 2.

Using the follownig notations αn,l = α3n+l, βn,l = β3n+l and γn,l = γ3n+l, for n ≥ 0 with l = 0, 1, 2,

we obtain:

αn+1,l =
αn,l

−1− αn,l
, βn+1,l =

βn,l

−1− βn,l
, γn+1,l =

γn,l

−1− γn,l
,

for n ≥ 0 with l = 0, 1, 2. Since the three recurrence relations are similar, let’s use the first recurrence

relation for the next transformation −1 − αn,l = α̃n
/
α̃n−1 . By simplifying, we obtain the same

difference equation: α̃n+1 − α̃n−1 = 0, n ≥ 0. So, we have α̃n =
α̃0 + (α̃0 − 1) (−1)n + 1
α̃0 − (α̃0 − 1) (−1)n + 1

and

αn,l =
α0,l

(−1)n
−

n−1∑
j=0

(−1) j
α0,l

, for l = 0, 1, 2. Therefore, the proof is complete. �

From Theorems (2.2) and (2.11), the following theorem is established concerning the structure of

solutions for the system denoted by (2.16).
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Theorem 2.12. Assume
{
pn, qn, rn

}
are solutions to the system represented in (2.16). Additionally, consider

arbitrary nonzero real numbers p−l, q−l, r−l for l ∈ {0, 1, 2} as the initial values. In this case, the solutions
for the system (2.16) can be expressed as follows:

p3n = p0

n−1∏
j=0

(−1)n− j−1
− (n− j− 1− 2 [(n− j− 1) /2]) p0q−1r−2

(−1)n− j
− (n− j− 2 [(n− j) /2]) p0q−1r−2

,

p3n−1 = p−1

n−1∏
j=0

(−1)n− j + (n− j− 2− 2 [(n− j− 1) /2]) r0p−1q−2

(−1)n− j−1
− (n− j− 1− 2 [(n− j− 1) /2]) r0p−1q−2

,

p3n−2 = p−2

n−1∏
j=0

(−1)n− j−1
− (n− j− 1− 2 [(n− j− 1) /2]) q0r−1p−2

(−1)n− j + (n− j− 2− 2 [(n− j− 1) /2]) q0r−1p−2
,

q3n = q0

n−1∏
j=0

(−1)n− j−1
− (n− j− 1− 2 [(n− j− 1) /2]) q0r−1p−2

(−1)n− j
− (n− j− 2 [(n− j) /2]) q0r−1p−2

,

q3n−1 = q−1

n−1∏
j=0

(−1)n− j + (n− j− 2− 2 [(n− j− 1) /2]) p0q−1r−2

(−1)n− j−1
− (n− j− 1− 2 [(n− j− 1) /2]) p0q−1r−2

,

q3n−2 = q−2

n−1∏
j=0

(−1)n− j−1
− (n− j− 1− 2 [(n− j− 1) /2]) r0p−1q−2

(−1)n− j + (n− j− 2− 2 [(n− j− 1) /2]) r0p−1q−2
,

r3n = r0

n−1∏
j=0

(−1)n− j−1
− (n− j− 1− 2 [(n− j− 1) /2]) r0p−1q−2

(−1)n− j
− (n− j− 2 [(n− j) /2]) r0p−1q−2

,

r3n−1 = r−1

n−1∏
j=0

(−1)n− j + (n− j− 2− 2 [(n− j− 1) /2]) q0r−1p−2

(−1)n− j−1
− (n− j− 1− 2 [(n− j− 1) /2]) q0r−1p−2

,

r3n−2 = r−2

n−1∏
j=0

(−1)n− j−1
− (n− j− 1− 2 [(n− j− 1) /2]) p0q−1r−2

(−1)n− j + (n− j− 2− 2 [(n− j− 1) /2]) p0q−1r−2
,

for n ≥ 1.

The system under study, as titled in the subsection, is investigated when k > 0. The system is

represented by the following equations:

pn+1 =
pn−(6k+2)

−1− qn−2krn−(4k+1)pn−(6k+2)
, qn+1 =

qn−(6k+2)

−1− rn−2kpn−(4k+1)qn−(6k+2)
, (2.18)

rn+1 =
rn−(6k+2)

−1− pn−2kqn−(4k+1)rn−(6k+2)
,

which is an extension of the system described in (2.16). Utilizing the scheme (2.9), the system

(2.18) is reformulated as follows:

p(2k+1)(l+1)+t =
p(2k+1)(l−2)+t

−1− q(2k+1)l+tr(2k+1)(l−1)+tp(2k+1)(l−2)+t
,
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q(2k+1)(l+1)+t =
q(2k+1)(l−2)+t

−1− r(2k+1)l+tp(2k+1)(l−1)+tq(2k+1)(l−2)+t
,

r(2k+1)(l+1)+t =
r(2k+1)(l−2)+t

−1− p(2k+1)l+tq(2k+1)(l−1)+tr(2k+1)(l−2)+t
,

where t ranges from 1 to 2k + 1, and l is a non-negative integer. This discussion leads to the

introduction of the following theorem.

Theorem 2.13. Suppose that
{
pn, qn, rn

}
are solutions to the system represented in (2.16). Additionally,

consider arbitrary nonzero real numbers p−l, q−l, r−l for l ∈ {0, 1, . . . , 6k + 2} as the initial values. In this
case, the solutions for the system (2.16) can be expressed as follows:

p3(2k+1)l+t = pt

l−1∏
j=0

(−1)l− j−1
− (l− j− 1− 2 [(l− j− 1) /2]) ptqt−(2k+1)rt−2(2k+1)

(−1)l− j
− (l− j− 2 [(l− j) /2]) ptqt−(2k+1)rt−2(2k+1)

,

p(2k+1)(3l−1)+t = pt−(2k+1)

l−1∏
j=0

(−1)l− j + (l− j− 2− 2 [(l− j− 1) /2]) rtpt−(2k+1)qt−2(2k+1)

(−1)l− j−1
− (l− j− 1− 2 [(l− j− 1) /2]) rtpt−(2k+1)qt−2(2k+1)

,

p(2k+1)(3l−2)+t = pt−2(2k+1)

l−1∏
j=0

(−1)l− j−1
− (l− j− 1− 2 [(l− j− 1) /2]) qtrt−(2k+1)pt−2(2k+1)

(−1)l− j + (l− j− 2− 2 [(l− j− 1) /2]) qtrt−(2k+1)pt−2(2k+1)

,

q3(2k+1)l+t = qt

l−1∏
j=0

(−1)l− j−1
− (l− j− 1− 2 [(l− j− 1) /2]) qtrt−(2k+1)pt−2(2k+1)

(−1)l− j
− (l− j− 2 [(l− j) /2]) qtrt−(2k+1)pt−2(2k+1)

,

q(2k+1)(3l−1)+t = qt−(2k+1)

l−1∏
j=0

(−1)l− j + (l− j− 2− 2 [(l− j− 1) /2]) ptqt−(2k+1)rt−2(2k+1)

(−1)l− j−1
− (l− j− 1− 2 [(l− j− 1) /2]) ptqt−(2k+1)rt−2(2k+1)

,

q(2k+1)(3l−2)+t = qt−2(k2+1)

l−1∏
j=0

(−1)l− j−1
− (l− j− 1− 2 [(l− j− 1) /2]) rtpt−(2k+1)qt−2(2k+1)

(−1)l− j + (l− j− 2− 2 [(l− j− 1) /2]) rtpt−(2k+1)qt−2(2k+1)

,

r3(2k+1)l+t = rt

l−1∏
j=0

(−1)l− j−1
− (l− j− 1− 2 [(l− j− 1) /2]) rtpt−(2k+1)qt−2(2k+1)

(−1)l− j
− (l− j− 2 [(l− j) /2]) rtpt−(2k+1)qt−2(2k+1)

,

r(2k+1)(3l−1)+t = rt−(2k+1)

l−1∏
j=0

(−1)l− j + (l− j− 2− 2 [(l− j− 1) /2]) qtrt−(2k+1)pt−2(2k+1)

(−1)l− j−1
− (l− j− 1− 2 [(l− j− 1) /2]) qtrt−(2k+1)pt−2(2k+1)

,

r(2k+1)(3l−2)+t = rt−2(2k+1)

l−1∏
j=0

(−1)l− j−1
− (l− j− 1− 2 [(l− j− 1) /2]) ptqt−(2k+1)rt−2(2k+1)

(−1)l− j + (l− j− 2− 2 [(l− j− 1) /2]) ptqt−(2k+1)rt−2(2k+1)

,

for n ≥ 1, t ∈ {1, . . . , 2k + 1}.

3. Numerical Examples

In this section, several numerical examples are provided to illustrate and support the theoretical

results from the previous section.
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Example 3.1. The first example focuses on the difference equation system

pn+1 =
pn−8

1 + qn−2rn−5pn−8
, qn+1 =

qn−8

1 + rn−2pn−5qn−8
, rn+1 =

rn−8

1 + pn−2qn−5rn−8
, (3.1)

n = 0, 1, . . . The starting point of the sequence is determined by the initial conditions, which are specified
as follows: p− j = 1.2 j,, q− j = 0.6 j − 1 and r− j = 1 − 0.09 j, j = 0, . . . , 8. The plot of the system (3.1) is
shown in Figure 1.
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p n, q
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n

Plot of system (3.1)

p
n

q
n

r
n

Figure1.This figure shows the solutions of the system represented by (3.1)

when p− j = 1.2 j, , q− j = 0.6 j− 1 and r− j = 1− 0.09 j, j = 0, . . . , 8.

Example 3.2. The second example focuses on the difference equation system

pn+1 =
pn−8

1− qn−2rn−5pn−8
, qn+1 =

qn−8

1− rn−2pn−5qn−8
, rn+1 =

rn−8

1− pn−2qn−5rn−8
, (3.2)

n = 0, 1, . . . The starting point of the sequence is determined by the initial conditions, which are specified
as follows: p− j = 1.2 j,, q− j = −0.6 j− 1 and r− j = 1 + 0.09 j, j = 0, . . . , 8. The plot of the system (3.2) is
shown in Figure 2.
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Figure2. This figure shows the solutions of the system represented by (3.2)

when p− j = 1.2 j, , q− j = −0.6 j− 1 and r− j = 1 + 0.09 j, j = 0, . . . , 8.

Example 3.3. The third example focuses on the difference equation system

pn+1 =
pn−8

−1 + qn−2rn−5pn−8
, qn+1 =

qn−8

−1 + rn−2pn−5qn−8
, rn+1 =

rn−8

−1 + pn−2qn−5rn−8
, (3.3)

n = 0, 1, . . . The starting point of the sequence is determined by the initial conditions, which are specified
as follows: p− j = 1.2 j,, q− j = 0.6 j + 1 and r− j = 1 − 0.09 j, j = 0, . . . , 8. The plot of the system (3.3) is
shown in Figure 3.
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Figure3. This figure shows the solutions of the system represented by (3.3)

when p− j = 1.2 j, , q− j = 0.6 j + 1 and r− j = 1− 0.09 j, j = 0, . . . , 8.

Example 3.4. The fourth example focuses on the difference equation system

pn+1 =
pn−8

−1− qn−2rn−5pn−8
, qn+1 =

qn−8

−1− rn−2pn−5qn−8
, rn+1 =

rn−8

−1− pn−2qn−5rn−8
, (3.4)

n = 0, 1, . . . The starting point of the sequence is determined by the initial conditions, which are specified
as follows: p− j = 0.7 j,, q− j = −0.6 j + 1 and r− j = 1− 0.09 j, j = 0, . . . , 8. The plot of the system (3.4) is
shown in Figure 4.
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Figure4. This figure shows the solutions of the system represented by (3.4)

when p− j = 0.7 j, , q− j = −0.6 j + 1 and r− j = 1− 0.09 j, j = 0, . . . , 8.

4. Conclusion

This paper has formulated solutions to several systems of nonlinear difference equations in three

dimensions. The obtained formulas are expressed as solutions to homogeneous linear difference

equations with constant coefficients associated with the respective systems. It’s worth noting

that these methods can be extended to equations more general than those discussed in (1.1). For

instance, the approach can be applied to s−dimensional systems of nonlinear difference equations,

ω(1)
n+1 =

ω(1)
n−(6k+2)

±1±ω(2)
n−2kω

(3)
n−(4k+1)

ω(1)
n−(6k+2)

,ω(2)
n+1 =

ω(2)
n−(6k+2)

±1±ω(3)
n−2kω

(4)
n−(4k+1)

ω(2)
n−(6k+2)

, . . . ,

ω(s)
n+1 =

ω(s)
n−(6k+2)

±1±ω(1)
n−2kω

(2)
n−(4k+1)

ω(s)
n−(6k+2)

, n ∈N0, s ∈N∗,

with initial values ω( j)
−i , i ∈ {0, 1, . . . , 3k + 2} , j ∈ {1, 2, . . . , s} are arbitrary nonzero real numbers. In

the context of open problems, it is worth noting that the solution of this type of nonlinear difference

equations is closely related to the Fibonacci sequence. This intriguing connection introduces
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avenues for further investigation into the interplay between nonlinear dynamics and the well-

known Fibonacci sequence, presenting open problems that could deepen our understanding of

these mathematical structures.
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