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Abstract. It has been noted that if the ∗-Ricci tensor used to define ∗-Ricci soliton is a constant multiple of the metric

tensor g(ei, e j), for all ei, e j orthogonal to characteristic vector field ξ, then the manifold is ∗-Einstein manifold. The

metric associated with ∗-Einstein manifold is ∗-Einstein metric, and the ∗-Ricci soliton is its generalization. In this

paper we study an almost ∗-Ricci soliton (g, W,λ) and an almost gradient ∗-Ricci soliton (g, grad (%) ,λ) by means of

mathematical operators on (2m + 1)-dimensional α-paraSasakian manifold S2m+1.

1. Introduction

A Ricci soliton is a self-similar solution to the Hamilton’s Ricci flow equation. R. S. Hamilton

in [1] given the evolution of a Riemannian metric over time t as

∂
∂t

gi j = −2Rici j, (1.1)

here Rici j is the Ricci tensor associated to the metric tensor gi j. This partial differential equation is

known as Ricci flow equation. Ricci solitons plays a significant role in understanding the singularity

of equation (1.1).

Definition 1.1. Let us consider a differentiable manifold M2m+1 with pseudo-Riemannian metric tensor g,
then (g, W,λ) which includes W as a vector field and λ as a smooth function, is known as an almost Ricci
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soliton if

£Wg + 2Ric− 2λg = 0, (1.2)

here £W is the Lie-derivative in the direction of W and Ric is the Ricci tensor of g. An almost Ricci soliton
on

(
M2m+1, g

)
is expanding if λ is negative, steady if λ is zero or shrinking if λ is positive.

Definition 1.2. Let us consider a differentiable manifold M2m+1 with pseudo-Riemannian metric tensor g
and taking W = D%, for some smooth function % on M2m+1, in the definition of an almost Ricci soliton,
then (g, D%,λ) is known as an almost gradient Ricci soliton if

∇∇%+ Ric− λg = 0. (1.3)

Remark 1.1. If W = 0 in equation (1.2) or % = 0 in equation (1.3), we have Ric = λg, which is the
definition of an Einstein metric and soliton constant λ becomes an Einstein constant. Thus, Ricci soliton is
a generalized notion of an Einstein metric, which has been a subject of intense study in differential geometry.

Similar to Ricci soliton, ∗-Ricci soliton is a self-similar solution to partial differential equations

known as ∗-Ricci flow equation and were firstly introduced by G. Kaimakamis and K. Panagiotidou

[2], where they replace Ricci tensor in equation (1.2) by ∗-Ricci tensor and it is given as

Ric∗ (X1, X2) =
1
2
(trace

{
ϕ · R (X1,ϕX2)

}
) , (1.4)

for any vector fields X1 and X2 on M2m+1. The concept of ∗-Ricci tensor has been given by S.

Tachibana in [3] on almost Hermitian manifolds and again defined on real hypersurfaces in non-

flat complex space forms by T. Hamada in [4]. Following that, other authors studied ∗-Ricci tensor

and ∗-Ricci soliton in various ambient spaces [5–9, 11, 12, 14].

Almost Ricci solitons and almost gradient Ricci solitons were studied in both Riemannian and

pseudo-Riemannian manifolds. Interest of theoretical physicist increases towards the study of

Ricci solitons as (1.2) is a special case of an Einstien field equation. Several authors have been

studied almost Ricci soliton and almost gradient Ricci soliton on paracontact manifolds [15,20–25].

The study of paracontact manifolds have been started in 1985 [28], and after that focused on

paraSasakian manifolds. Recently, the authors of [29] have given the study of ∗-Ricci soliton and

almost gradient ∗-Ricci soliton within the frame-work of Sasakian manifold.

In the fields of submanifold theory, soliton theory, tangent bundles, and related topics, numer-

ous geometors have investigated geometric and topological characteristics concerning symmetry.

Their works from references ( [10, 15–20, 26, 27]) are a great place to start when looking for ideas

and a desire to learn more about symmetry.

The above research works give us motivation to study almost ∗-Ricci solitons and almost gradient

∗-Ricci solitons on paracontact geometry, particularly, onα-paraSasakian manifold. α-paraSasakian

manifold as a subclass of paracontact manifold have been defined by S. Zamkovoy and G. Nakova

in [30].
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Sectional study of this paper includes: In Sect.2, we give basic definition of a α-para-Sasakian

manifold S2m+1 and its subclasses paraSasakian manifold and paraCosymplectic manifold C2m+1.

We also give an example of S2m+1 for better understanding. Further, we find some curvature

identities on S2m+1. In Sect.3, firstly we define an almost ∗-Ricci soliton (g, W,λ) on S2m+1 and

then discuss some properties of S2m+1 with (g, W,λ). Also, we give an example of ∗-Ricci soliton

on S2m+1. In Sect.4, we define Hessian of a smooth function which is used to define an almost

gradient ∗-Ricci solitons (g, grad (%) ,λ) on S2m+1 and then discuss some properties of S2m+1 with

(g, grad (%) ,λ). In last section, we give physical significance of a ∗-Ricci Soliton. Here are the

following results we will focus in the present paper:

Theorem 1.1. If S2m+1 is a α-paraSasakian manifold with an almost ∗-Ricci soliton (g, W,λ) which
includes W as paracontact vector field, then the metric g is ∗-Ricci soliton.

Theorem 1.2. If S2m+1 is a α-paraSasakian manifold admitting a ∗-Ricci soliton (g, W,λ), then either the
soliton vector field W is killing or leaves ϕ invariant.

Theorem 1.3. If S2m+1 is a α-paraSasakian manifold admitting an almost gradient ∗-Ricci soliton, then
S2m+1 is quasi Einstein manifold.

2. α-paraSasakianManifold S2m+1

Consider a differentiable manifold M2m+1, then M2m+1 is known as an almost paracontact manifold
if it is enriched with (ϕ, η, ξ)-structure (paracontact structure) and satisfies

η (ξ) =1, ϕ2 = I− η⊗ ξ,

ϕξ =0, η ◦ϕ = 0.

 (2.1)

Also, an endomorphism ϕ induces an almost paracomplex structure on each fiber of D = ker
(horizontal distribution) i.e., the eigendistribution corresponding to eigenvalues +1 and −1, the

eigensubbundles D+ and D− have equal dimension m. Here, I is the identity transformation, ϕ

is a (1, 1)-tensor field, ξ is a characteristic vector field and η is a differential one-form on M2m+1.

Consider a pseudo-Riemannian metric tensor g, such that

g (ϕX1,ϕX2) = −g(X1, X2) + η(X1)η(X2), (2.2)

then g is compatible with paracontact structure. Here signature of g is (m + 1, m) and η(X1) =

g (X1, ξ), for any vector field X1 on M2m+1.

Definition 2.1. A differentiable manifold
(
M2m+1, g

)
is called (2m + 1)- dimensional almost paracontact

metric manifold if g is compatible with (ϕ, η, ξ)-structure.

From now on, we are taking M2m+1 as an almost paracontact metric manifold throughout this

paper.
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Definition 2.2. A manifold M2m+1 is called (2m + 1)-dimensional paracontact metric manifold if it
satisfies Ψ = dη, where Ψ is the fundamental 2-form given by Ψ(X1, X2) = g(ϕX1, X2), for any vector
fields X1 and X2 on M2m+1 [30].

Also, for a manifold M2m+1 we can find ϕ-basis which is a local orthonormal basis
{
Xi,ϕXi, ξ

}
such

that g (Xi, Xi) = 1 and g (ϕXi,ϕXi) = −1, i = 1, · · · , m.

Next, we give the definition as well as example of a α-paraSasakian manifold which is a subclass

of M2m+1:

Definition 2.3. A manifold M2m+1 is said to be α-paraSasakian manifold S2m+1 if

(∇X2ϕ)X1 = αg (X2, X1) ξ− αη (X1)X2, (2.3)

where X1 and X2 are vector fields on M2m+1 and α (, 0) is a constant [30].

Example 2.1. Let S3 := R3 (ϕ, η, ξ), where ξ = e3 and given the one-form η and an endomorphism ϕ as:
ϕe1 = e2, ϕe2 = e1 − ye3, ϕe3 = 0, η = ydx + dz ( (x, y, z), being the cartesian coordinates and e1 = ∂

∂x ,
e2 = ∂

∂y , e3 = ∂
∂z and the metric tensor g = dx2

− dy2 + η ⊗ η. Then S3 is α-paraSasakian manifold S3.
By further computation we have the following coefficients of Levi-Civita connection as

∇e1e1 = ye2, ∇e1e2 = ∇e2e1 =
1
2

ye1 +
1
2

(
1− y2

)
e3, ∇e2e2 = 0,

∇e1e3 = ∇e3e1 =
1
2

e2, ∇e2e3 = ∇e3e2 =
1
2
(e1 − ye3) , ∇e3e3 = 0. (2.4)

Using Eqs. (2.3) and (2.4), we have α = 1
2 .

Remark 2.1. If α = 1 in equation (2.3) and Ψ(X1, X2) = dη (X1, X2) for any vector fields X1 and X2 on
S2m+1, then α-paraSasakian manifold S2m+1 is called paraSasakian manifold.

Remark 2.2. If α = 0 in equation (2.3), then α-paraSasakian manifold S2m+1 is called paracosymplectic
manifold C2m+1.

Proposition 2.1. For a α-paraSasakian manifold S2m+1, we have

∇X1ξ = αϕX1, (2.5)

for any vector field X1 on S2m+1.

Proof. By using equation (2.3), we get the required result. �

Proposition 2.2. For a α-paraSasakian manifold S2m+1, we have

(∇X3η)X1 = αg (X1,ϕX3) , (2.6)

for any vector fields X1 and X3 on S2m+1.

Proof. By using equation (2.5), we get the required result. �
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2.1. Curvature Properties of S2m+1. The curvature tensor R on a manifold S2m+1 with pseudo-

Riemannian metric g is given as

R (X1, X2)X3 = [∇X1 ,∇X2 ]X3 −∇[X1,X2]X3, (2.7)

where X1, X2 and X3 are vector fields on S2m+1.

Proposition 2.3. For a α-paraSasakian manifold S2m+1, we have the following curvature properties

R (X1, X2) ξ = α2 (η (X1)X2 − η (X2)X1) , (2.8)

R (X1, ξ)X2 = α2 (g (X1, X2) ξ− η (X2)X1) , (2.9)

R (X1, ξ) ξ = α2 (η (X1) ξ−X1) , (2.10)

Ric (X1, ξ) = − 2mα2η (X1) , (2.11)

Qξ = − 2mα2ξ, (2.12)

where X1, X2 and X3 are vector fields on S2m+1.

Proof. By using equation (2.3), (2.5) and (2.7), we get the required expressions for curvature tensor

R. �

Proposition 2.4. For a α-paraSasakian manifold S2m+1, we have

R (X1, X2,ϕX3, X4) +R (X1, X2, X3,ϕX4) = αg (X2, X3) dη (X1, X4)

− αg (X2, X4) dη (X1, X3) + αg (X1, X4) dη (X2, X3) − αg (X1, X3) dη (X2, X4) , (2.13)

R (ϕX1,ϕX2,ϕX3,ϕX4) −R (X1, X2, X3, X4) = α2g (X2, X3) η (X1) η (X4)

− α2g (X2, X4) η (X1) η (X3) + α2g (X1, X4) η (X2) η (X3) − α
2g (X1, X3) η (X2) η (X4) , (2.14)

where X1, X2, X3 and X4 are vector fields on S2m+1.

Proof. By using the definition of curvature tensor and equation (2.3) and (2.5), we get

R (X1, X2)ϕX3 =α2g (X2, X3)ϕX1 − α
2g (ϕX1, X3)X2 + α2g (ϕX2, X3)X1

− α2g (X1, X3)ϕX2 + ϕR (X1, X2)X3, (2.15)

and scalar product of the above equation with X4 gives equation (2.13). Futher, replacing X1 −→

ϕX1, X2 −→ ϕX2 and X4 −→ ϕX4 in equation (2.13), then the use of equation (2.2), (2.9) and (2.15)

gives equation (2.14). �

Proposition 2.5. For a α-paraSasakian manifold S2m+1, we have

Ric (X1,ϕX2) + Ric (ϕX1, X2) = −αdη (X1, X2) . (2.16)

Also for Xi ⊥ ξ, i = 1 · · · 2m

Ric (X1,ϕX2) + Ric (ϕX1, X2) = 0. (2.17)

Proof. By using Proposition 2.4, we get the required result i.e. equation (2.16). Also for equation

(2.17), taking {Xi, i = 1 · · · 2m} orthogonal to ξ in equation (2.14). �
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Proposition 2.6. On a α-paraSasakian manifold S2m+1, we have

Qϕ = ϕQ− α2ϕ, (2.18)

where Q is a Ricci operator.

Proof. By using the definition of Ricci operator i.e., g (QX1, X2) = Ric (X1, X2) and equation (2.6)

and (2.16), we have

−ϕQX1 + QϕX1 = −α2ϕX1,

which gives the required result. �

Remark 2.3. For a α-paraSasakian manifold S2m+1 with {Xi ⊥ ξ, i = 1 · · · 2m}, the Ricci operator Q
commutes with an endomorphism ϕ.

Proposition 2.7. For a α-paraSasakian manifold S2m+1, we have

(∇X1Q) ξ = − α
(
QϕX1 + 2mα2ϕX1

)
, (2.19)

(∇ξQ) = α3ϕ, (2.20)

for any vector field X1 on S2m+1 and Q is the Ricci operator.

Proof. Since,

0 = £ξ (QX1) −Q (£ξX1) = ∇ξQX1 −∇QX1ξ−Q (∇ξX1) + Q (∇X1ξ) ,

then equation (2.5) and (2.18) gives equation (2.20).

Further, covariant differentiation of equation (2.12) along an arbitrary vector field X1 and (2.5)

gives equation (2.19). �

Definition 2.4. A manifold S2m+1 with pseudo-Riemannian metric g is known as ∗-quasi Einstein manifold
if

Ric∗ (X1, X2) = a1 g (X1, X2) + a2 η (X1) η (X2) , (2.21)

here a1 and a2 are given as non-zero functions, η as a one-form and Ric∗ as a ∗-Ricci tensor which is defined
in equation (1.4). If a2 = 0 in equation (2.21) then S2m+1 is a ∗-Einstein manifold.

3. Almost ∗-Ricci Solitons on S2m+1

Similar to Ricci soliton, ∗-Ricci soliton is a generalized notion of ∗-Einstein metric and it is self-

similar solution to the partial differential equations known as ∗-Ricci flow equation.

Also, ∗-Ricci flow on a pseudo-Riemannian manifold S2m+1 will be defined as:

∂g
∂t

= −2Ric∗ (X1, X2) , (3.1)

for any vector fields X1 and X2 on S2m+1. Here g is a smooth symmetric metric tensor and Ric∗ is a

∗-Ricci tensor given in equation (1.4).
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Now, consider a differentiable manifold S2m+1 with pseudo-Riemannian metric g then, (g, W,λ)

is called an almost ∗-Ricci soliton on S2m+1 if

(£W g + 2Ric∗ − 2λg ) (X1, X2) = 0, (3.2)

for any vector fields X1 and X2 on S2m+1. Here £W: Lie derivation along W, Ric∗: ∗-Ricci tensor,

which is given in equation (1.4) and λ: a smooth function.

Remark 3.1. An almost ∗-Ricci soliton on S2m+1 is expanding if λ is negative, steady if λ is zero or
shrinking if λ is positive.

Theorem 3.1. For a α-paraSasakian manifold S2m+1, the ∗-Ricci tensor can be expressed as

Ric∗ (X1, X2) = −Ric (X1, X2) +

(
α2

2
− α2 (2m− 1)

)
g (X1, X2) −

3α2

2
η (X1) η (X2) , (3.3)

where X1 and X2 are vector fields on S2m+1.

Proof. Covariant differentiation of eq. (2.8) in the direction of X3 on S2m+1 and the use of equation

(2.5) gives

(∇X3R) (X1, X2) ξ+ αR (X1, X2)ϕX3 = α3g (X1,ϕX3)X2 − α
3g (X2,ϕX3)X1, (3.4)

contracting equation (3.4) w.r.t an orthonormal frame {ei} of TS2m+1, we left with

(divR) (X1, X2) ξ+ αg (R (X1, X2)ϕei, ei) = −2α3g (ϕX1, X2) .

Now, by using contracted Bianchi identity the above equation becomes

g ((∇X1Q)X2 − (∇X2Q)X1, ξ) + αg (R (X1, X2)ϕei, ei) = −2α3g (ϕX1, X2) .

By virtue of equation (2.19) it follows from the above equation that

g (R (X1, X2)ϕei, ei) = 2α2 (2m− 1) g (ϕX1, X2) − g (X1, QϕX2) − g (ϕQX2, X1) .

Replacing X2 −→ ϕX2 and using equation (1.4), we get

2Ric∗ (X1, X2) = 2α2 (2m− 1) g (ϕX1,ϕX2) + g (QϕX1,ϕX2) + g (ϕQX1,ϕX2) .

Since Qϕ = ϕQ − α2ϕ, and the use of equation (2.1) and (2.12), gives the required expression for

∗-Ricci tensor, i.e. equation (3.3). �

Corollary 3.1. For a α-paraSasakian manifold S2m+1, ∗-Ricci operator and ∗-scalar curvature can be
expressed as

Q∗X1 = −QX1 +

(
α2

2
− α2 (2m− 1)

)
X1 −

3α2

2
η (X1) ξ, (3.5)

τ∗ = − τ− 4m2α2 + mα2, (3.6)

where X1 and X2 are vector fields on S2m+1.
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Proof. The expression for ∗-Ricci operator i.e. equation (3.5) can be easily obtained by using

equation (3.3). Now, by contracting equation (3.3) we get the required expession for the ∗-scalar

curvature, i.e., equation (3.6). �

Corollary 3.2. For a α-paraSasakian manifold S2m+1 with {Xi ⊥ ξ, i = 1 · · · 2m}, the ∗-Ricci tensor is
given as

Ric∗ (X1, X2) = −Ric (X1, X2) − α
2 (2m− 1) g (X1, X2) − α

2η (X1) η (X2) , (3.7)

where X1 and X2 are vector fields on S2m+1.

Proof. With the help of equation (2.17) in the proof of Theorem 3.1, we get the required expression

for ∗-Ricci tensor. �

Proposition 3.1. For a α-paraSasakian manifold S2m+1, we have

(∇X1Q∗) ξ =α

(
QϕX1 −

(
α2

2
− α2 (2m− 1)

)
ϕX1

)
, (3.8)

(∇ξQ∗) = − α3ϕ, (3.9)

for any vector field X1 on S2m+1. Here Q∗ is the ∗-Ricci operator.

Proof. Replacing X1 −→ ξ in equation (3.5),

Q∗ξ = −Qξ+
(
α2

2
− α2 (2m− 1)

)
ξ−

3α2

2
ξ, (3.10)

covariant differentiation of equation (3.10) along vector field X1 gives

(∇X1Q∗) ξ = − (∇X1Q) ξ−
3α3

2
ϕX1,

then equation (2.19) gives equation (3.8).

Further, covariant differentiation of equation (3.10) along vector field ξ gives

(∇ξQ∗) ξ = − (∇ξQ) ξ,

then equation (2.20) gives equation (3.9). �

Proposition 3.2. For a α-paraSasakian manifold S2m+1 admitting an almost ∗-Ricci soliton, we have

(£Wη) (ξ) = λ = −η (£Wξ) , (3.11)

where λ is a smooth function.

Proof. By using Proposition 3.1, equation (3.2) can be written as

(£Wg) (X1, X2) =2Ric (X1, X2) +
{
2α2 (2m− 1) + 2λ− α2

}
g (X1, X2)

+3α2η (X1) η (X2) .

Put X2 = ξ in the above equation and using equation (2.11) it follows that

(£Wg) (X1, ξ) = 2λη (X1) . (3.12)
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Next, Lie-differentiating equation η (X1) = g (X1, ξ) along W, we have

(£Wη) (X1) − g (£Wξ, X1) − (£Wg) (X1, ξ) = 0. (3.13)

Again, Lie-differentiating equation g (ξ, ξ) = 1 along W, we have

g (£Wξ, ξ) = −λ. (3.14)

Now, using equation (3.12), (3.13) and (3.14), we get the required result. �

Definition 3.1. A vector field W on an almost paracontact pseudo-Riemannian manifold M2m+1 is called
an infinitesimal paracontact transformation if

£Wη = %η, (3.15)

for a scalar function % on M2m+1 and £W is the Lie differentiation along W [31].

Remark 3.2. If % in equation (3.15) is identically zero, then a vector field W on M2m+1 is infinitesimal
strict paracontact transformation.

Theorem 3.2. Let us consider a α-paraSasakian manifold S2m+1 with an almost ∗-Ricci Soliton (g, W,λ)

and potential vector field W is an infinitesimal paracontact transformation which leaves both ∗-Ricci tensor
and Ricci tensor invariant, then W is an infinitesimal strict paracontact transformation if and only if an
almost ∗-Ricci Soliton on S2m+1 is steady.

Proof. Since infinitesimal paracontact transformation W leaves both ∗-Ricci tensor and Ricci tensor

invariant, we have

(£WRic∗) (X1, X2) = 0, and (£WRic) (X1, X2) = 0. (3.16)

Also,

(£WRic∗) (X1, ξ) = 0, and (£WRic) (X1, ξ) = 0. (3.17)

Taking Lie-derivation of equation (3.3), then using equation (2.11), (3.15) and (3.17), we get

Ric∗ (X1, £Wξ) = −Ric (X1, £Wξ) +

{
3α2

2
− 2mα2

}
g (X1, £Wξ)

+

{
9λα2

2
− 3%α2

− 4mλα2
}
η (X1) .

Replacing X1 −→ ξ and using equation (2.11), (3.3) and (3.14), we get

3% = λ (3− 4m) ,

which gives the required result. �
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Proof of Theorem 1.1. Consider a α-paraSasakian manifold S2m+1 with an almost ∗-Ricci soliton

(g, W,λ) which includes W as a paracontact vector field, then the defining property of W gives

£Wdη = dLWη = d%η = d%∧ η+ % (dη) . (3.18)

Further, ν = η∧ (dη)m , 0 on S2m+1, then the Lie-differentiation of this along W gives

£Wν = (m + 1) %ν. (3.19)

Also, the formula £Wν = (div W) ν and above equation gives

div W = (m + 1) %. (3.20)

On the other hand, the trace of equation (3.2) gives

div W = λ (2m + 1) + τ−mα2 + 4m2α2. (3.21)

Now, from equation (3.20) and (3.21), we have

τ = −λ (2m + 1) + mα2
− 4m2α2 + (m + 1) %.

Next, the Lie-differentiation of η (X1) = g (X1, ξ) along W, and the use of equation (3.3) and (3.15)

gives

£Wξ = (% − 2λ) ξ, (3.22)

taking scalar product of equation (3.22) with ξ, we have

g (£Wξ, ξ) = (% − 2λ) ,

from equation (3.14), we get % = λ. Using this in equation (3.15) and (3.22), we have

£Wη = λη

£Wξ = −λξ

 . (3.23)

Now, the Lie-differentiation of dη (X1, X2) = αg (ϕX1, X2) along W, and the use of equation (3.3)

and (3.15) gives

2 (£Wϕ)X1 = −4QϕX1 + 2
{
% − 2λ+ 3α2

− 4mα2
}
ϕX1 + (X1%) ξ− η (X1)D%. (3.24)

Replacing X1 −→ ξ, we get

2 (£Wϕ) ξ = (X1%) ξ− η (X1)D%. (3.25)

Now, the Lie-differentiation of ϕξ = 0 along W, and the use of equation (3.23) gives

(£Wϕ) ξ = 0, (3.26)

using the above equation in equation (3.25), we get

d% = (ξ%) η. (3.27)

Taking exterior derivative of the above equation and using d2 = 0 and η∧ η = 0, we get d% = 0,

which implies % is constant, and hence λ is also constant. �
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3.1. ∗-Ricci solitons on S2m+1. An almost ∗-Ricci soliton on S2m+1 is called a ∗-Ricci soliton if λ in

equation (3.2) is constant.

Theorem 3.3. Consider a α-paraSasakian manifold S2m+1 with ∗-Ricci Soliton (g, W,λ), then S2m+1 is a
quasi-Einstein manifold and expression for the Ricci tensor is given as

Ric (X1, X2) = −
(
λ
2
+ α2 (2m− 1)

)
g (X1, X2) +

(
λ
2
− α2

)
η (X1) η (X2) , (3.28)

where X1 and X2 are vector fields on S2m+1.

Proof. Consider a α-paraSasakian manifold S2m+1 admitting a ∗-Ricci Soliton (g, W,λ). With the

help of Proposition 3.1, equation (3.2) can be written as

(£Wg) (X1, X2) = 2Ric (X1, X2) +
{
2α2 (2m− 1) + 2λ− α2

}
g (X1, X2)

+3α2η (X1) η (X2) , (3.29)

covariant differentiation of equation (3.29) in the direction of X3 on S2m+1 gives

(∇X3£Wg) (X1, X2) = 2 (∇X3Ric) (X1, X2) + 3α3g (X1,ϕX3) η (X2)

+3α3g (X2,ϕX3) η (X1) . (3.30)

According to [32], we have(
£W∇X3g−∇X3 £Wg−∇[W,X3]g

)
(X1, X3) = −g ( (£W∇) (X3, X1) , X2)

−g ( (£W∇) (X3, X2) , X1) .

By the parallelism of pseudo-Riemannian metric the above equation gives

(∇X3£Wg) (X1, X2) = g ( (£W∇) (X3, X1) , X2) + g ( (£W∇) (X3, X2) , X1) . (3.31)

Now, using equation (3.30) in (3.31), we have

g ( (£W∇) (X3, X1) , X2) + g ( (£W∇) (X3, X2) , X1) = 2 (∇X3Ric) (X1, X2)

+ 3α3g (X1,ϕX3) η (X2) + 3α3g (X2,ϕX3) η (X1) .

By a straight forward combinatorial combination equation gives

g ( (£W∇) (X1, X2) , X3) = − (∇X3Ric) (X1, X2) + (∇X1Ric) (X2, X3)

+ (∇X2Ric) (X3, X1) − 3α3g (X1,ϕX3) η (X2) − 3α3g (X2,ϕX3) η (X1) . (3.32)

Now, replacing X2 −→ ξ and using equation (2.1),

(£W∇) (X1, ξ) = −2αQϕX1 − 2α3
(
2m−

3
2

)
ϕX1. (3.33)

Further, covariant differentiation of equation (3.33) in the direction of X2 on S2m+1 gives

(∇X2 (£W∇)) (X1, ξ) = − (£W∇) (X1,αϕX2) − 2α (∇X2Q)ϕX1 + 2α2η (X1)QX2

+ 2α4
(
2m−

3
2

)
η (X1)X2 + 3α4g (X1, X2) ξ.
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Now, using this equation in the given commutation formula [32]

(£WR) (X1, X2)X3 = (∇X1 (£W∇)) (X2, X3) − (∇X2 (£W∇)) (X1, X3) .

Replacing X3 −→ ξ,

(£WR) (X1, X2) ξ = (£W∇) (X1,αϕX2) − (£W∇) (X2,αϕX1) − 2α (∇X1Q)ϕX2

+ 2α2η (X2)QX1 + 2α4
(
2m−

3
2

)
η (X2)X1 + 2α (∇X2Q)ϕX1

− 2α2η (X1)QX2 − 2α4
(
2m−

3
2

)
η (X1)X2. (3.34)

Replacing X2 −→ ξ and using equation (2.1), (2.20)

(£WR) (X1, ξ) ξ = 4α2
{
QX1 + (2m− 1)α2X1 + α2η (X1) ξ

}
. (3.35)

Taking Lie-derivative of (2.10) along W and using equation (2.9), (2.8) and (2.10)

(£WR) (X1, ξ) ξ = −α2g (X1, £Wξ) ξ+ 2α2η (£Wξ)X1 + α2 (£Wη) (X1) ξ.

Now with the help of Proposition 3.2 and equation (3.35), (3.12) and (3.13), we get

Ric (X1, X2) = −
(
λ
2
+ α2 (2m− 1)

)
g (X1, X2) +

(
λ
2
− α2

)
η (X1) η (X2) , (3.36)

where X1 and X2 are vector fields on S2m+1 and S2m+1 is quasi Einstein manifold, which is the

required result. �

Proof of Theorem 1.2. Consider a α-paraSasakian manifold S2m+1 with ∗-Ricci Soliton (g, W,λ).

With the help of equation (3.36), equation (3.29) reduces to

(£Wg) (X1, X2) = λg (X1, X2) + λη (X1) η (X2) . (3.37)

Taking covariant differentiation of equation (3.36) along X3 on S2m+1 and using equation (2.5), we

get

(∇X3Ric) (X1, X2) =
(
λ
2
− α2

) {
αg (X1,ϕX3) η (X2) + αg (X2,ϕX3) η (X2)

}
,

with the help of above equation, equation (3.32) reduces to

(£W∇) (X1, X2) = λα
{
ϕX1η (X2) + ϕX2η (X1)

}
. (3.38)

Covariant differentiation of equation (3.38) in the direction of X3 on S2m+1 and equation (2.5) gives

(∇X3£W∇) (X1, X2) = λα2g (X1,ϕX3)ϕX2 + λα2g (X2,ϕX3)ϕX1

−2λα2η (X1) η (X2)X3 + λα2η (X1) g (X3, X2) ξ+ λα2η (X2) g (X3, X1) ξ.

By using the above equation in equation (3.34), we get

(£WR) (X3, X1)X2 =2λα2g (X1,ϕX3)ϕX2 + λα2g (X2,ϕX3)ϕX1 − λα
2g (X2,ϕX1)ϕX3

+ λα2η (X1) g (X3, X2) ξ− λα
2η (X3) g (X1, X2) ξ

+ 2λα2η (X2) η (X3)X1 − 2λα2η (X1) η (X2)X3.
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Now, contraction of the above equation over X3 gives

(£WRic) (X1, X2) = 2λα2g (X1, X2) − 2λα2 (2m + 1) η (X1) η (X2) . (3.39)

Lie-differentiating equation (3.36) in the direction of W and using equation (3.37), we get

(£WRic) (X1, X2) =
(
λ
2
− α2

)
(£Wη) (X1) η (X2) +

(
λ
2
− α2

)
(£Wη) (X2) η (X1)

− λ
(
λ
2
+ α2 (2m− 1)

)
g (X1, X2) − λ

(
λ
2
+ α2 (2m− 1)

)
η (X1) η (X2) (3.40)

Now, comparison of equation (3.39) with (3.40) and use of equation (3.37) gives(
λ
2
− α2

)
(£Wη) (X1) η (X2) +

(
λ
2
− α2

)
(£Wη) (X2) η (X1)

= λ
(
λ
2
+ α2 (2m + 1)

)
g (X1, X2) + λ

(
λ
2
− α2 (2m + 3)

)
η (X1) η (X2) . (3.41)

Replacing X1 −→ ϕ2X1 and X2 −→ ϕX2 in the above equation then we have

λ
(
λ
2α

+ α (2m + 1)
)

dη (X1, X2) = 0.

Since dη is non-vanishing everywhere on S2m+1

λ
(
λ
2α

+ α (2m + 1)
)
= 0. (3.42)

Then, we have either λ = 0 or λ = −2 (2m + 1)α2.

Case I : If λ = 0, then equation (3.37) gives W is Killing vector field and equation (3.36) gives

S2m+1 is quasi-Einstein i.e.

Ric (X1, X2) = −α
2 (2m− 1) g (X1, X2) − α

2η (X1) η (X2) .

Case II : If λ = −2 (2m + 1)α2, then using this value of λ in (3.41), we have(
λ
2
− α2

)
(£Wη) (X1) η (X2) +

(
λ
2
− α2

)
(£Wη) (X2) η (X1)

= −4λα2 (m + 1) η (X1) η (X2) .

Replacing X2 −→ ξ and X1 −→ ϕX1, we have(
λ
2
− α2

)
(£Wη) (ϕX1) = 0.

Since λ = −2 (2m + 1)α2 then λ , 2α2, which implies

(£Wη) (ϕX1) = 0. (3.43)

Further using λ = −2 (2m + 1)α2 in equation (3.36), we have

Ric (X1, X2) = 2α2g (X1, X2) − 2α2 (m + 1) η (X1) η (X2) . (3.44)

Replacing X1 −→ ϕX1 in equation (3.43), we have

(£Wη) (X1) = −2 (2m + 1)α2η (X1) . (3.45)
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Also,

£Wξ = 2 (2m + 1)α2ξ.

Moreover, operating d in equation (3.45). Note that d commutes with £W, we have

(£Wdη) (X1, X2) = −2 (2m + 1)α3g (ϕX1, X2) . (3.46)

Next, the Lie-derivative of equation dη (X1, X2) = αg (ϕX1, X2) along the vector field W and the

use of equation (3.37) gives

(£Wdη) (X1, X2) = −2 (2m + 1)α3g (ϕX1, X2) + αg ((£Wϕ)X1, X2) , (3.47)

comparing the above equation with (3.46), we get (£Wϕ) = 0. Thus, from case I and case II, we get

either the soliton vector field W is killing or leaves ϕ invariant, which is the required result. �

Example 3.1. Consider a paraSasakian manifold S2m+1 of dimension (2m + 1), m > 1 and if the paraholo-
morphic sectional curvature does not depend on the paraholomorphic section at a point then the curvature
tensor is given by

R (X1, X2)X3 =
k− 3

4
{
g (X2, X3)X1 − g (X1, X3)X2

}
+

k + 1
4

{
η (X1) η (X3)X2

− η (X2) η (X3)X1 − g (X2, X3) η (X1) ξ+ g (X1, X3) η (X2) ξ

+ g (X2,ϕX3)ϕX1 − g (X1,ϕX3)ϕX2 + 2g (ϕX1, X2)ϕX3
}

. (3.48)

where X1, X2 and X3 are vector fields on S2m+1.
Next, contraction of the above equation over X1 gives

Ric (X1, X2) =
m (k− 3)

2
{
g (X1, X2)

}
−

k + 1
2

{
m η (X1) η (X2) + g (ϕX1,ϕX2)

}
. (3.49)

As we know, a paraSasakian manifold with constant paraholomorphic sectional curvature is a paraSasakian
space form, and we can find the expression of ∗-Ricci tensor on such space form.
Now, taking S2m+1 with constant paraholomorphic sectional curvature k and using equation (3.49) in
equation (3.3), we get

Ric∗ (X1, X2) =
{
(m + 1) k + (m− 2)

}
g (ϕX1,ϕX2) , (3.50)

for any vector fields X1 and X2 on S2m+1. Here, if we choose k = 2−m
m+1 then S2m+1 becomes ∗-Ricci flat.

Again, using equation (3.49) in equation (3.7), we get

Ric∗ (X1, X2) =
{
(m + 1) k + (m− 1)

}
g (X1, X2) , (3.51)

for any vector fields X1, X2 ⊥ ξ on S2m+1 and S2m+1 becomes ∗-Einstein. Thus, any paraSasakian space
form S2m+1 (k) with {Xi ⊥ ξ, i = 1 · · · 2m} on S2m+1 is ∗-Einstein.
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4. Almost Gradient ∗-Ricci Solitons on S2m+1

In this section, firstly we define mathematical operators gradient and Hessian on S2m+1. So,

consider a manifold S2m+1 with pseudo-Riemannian metric g and % : S2m+1
−→ R is a smooth

function over S2m+1. Then, the gradient (first order differential operator) ∇ : C1
(
S2m+1

)
−→

Γ
(
TS2m+1

)
of a function % is given as:

g (∇% (x) , X1) = X1% (x) ,

for any vector field X1 on S2m+1 and Hessian ( covariant derivative of the gradient operator ) of a

function % is given as:

∇
2% (X1, X2) = X1X2% − (∇X1X2) %,

for any vector fields X1 and X2 on S2m+1.

Definition 4.1. An almost ∗-Ricci soliton is known as an almost gradient ∗-Ricci soliton if W of equation
(3.2) is of gradient type, i.e.. W = grad (%) and satisfies:

(Hess (%) + Ric∗ − λg) (X1, X2) = 0, (4.1)

where X1, X2 and X3 are vector fields on S2m+1 and the Hessian of % is given as: Hess (%) (X1, X2) :=

g (∇X1ξ, X2).

Proof of Theorem 1.3. Consider a α-paraSasakian manifold S2m+1 admitting an almost gradient

∗-Ricci soliton, then equation (4.1) gives

∇X1D%+ Q∗X1 − λX1 = 0, (4.2)

here Q∗ is ∗-Ricci operator and D is gradient operator of metric g. By using the expression of ∗-Ricci

tensor the above equation reduces to

∇X1D% = QX1 +

{
α2 (2m− 1) + λ−

α2

2

}
X1 +

3α2

2
η (X1) ξ. (4.3)

Covariant differentiation of equation (4.3) in the direction of X2 on S2m+1 gives

∇X2∇X1D% = (∇X2Q)X1 + Q (∇X2X1) +

{
α2 (2m− 1) + λ−

α2

2

}
∇X2X1

+ (X2λ)X1 +
3α3

2
g (X1,ϕX2) ξ+

3α2

2
η (∇X2X1) ξ+

3α3

2
η (X1)ϕX2, (4.4)

using differential equations (4.4) and (4.3) in the expression of the curvature tensor given in (2.7),

we get

R (X1, X2)D% = (∇X1Q)X2 − (∇X2Q)X1 + (X1λ)X2 − (X2λ)X1

+ 3α3g (X2,ϕX1) ξ−
3α3

2
η (X1)ϕX2 +

3α3

2
η (X2)ϕX1. (4.5)
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Now, the scalar product of equation (4.5) with ξ and the use of equation (2.19) gives

g (R (X1, X2)D%, ξ) = αg (QϕX2, X1) − αg (QϕX1, X2) + (X1λ) η (X2)

− (X2λ) η (X1) + 3α3g (X2,ϕX1) . (4.6)

Replacing X2 −→ ξ in (4.6) and using (2.8) and (2.12), we get

ξ
(
λ− α2%

)
η (X1) = X1

(
λ− α2%

)
,

writing the above equation as

ξ
(
λ− α2%

)
η = d

(
λ− α2%

)
,

operating exterior differentiation operator d in the above equation and using d2 = 0, we have(
ξ
(
λ− α2%

))
dη = d

(
ξ
(
λ− α2%

))
η, (4.7)

Also, wedge product of equation (4.7) with one-form η and the use of η∧ η = 0 gives(
ξ
(
λ− α2%

))
dη∧ η = 0.

As η∧ dη , 0 everywhere on S2m+1, we have ξ
(
λ− α2%

)
= 0. Which implies

λ− α2% = c, c is constant. (4.8)

Setting X1 = ξ in equation (4.5), then the scalar product of resulting equation with X1 and the use

of (2.19) and (2.20) gives

g (R (ξ, X2)D%, X1) =g (QϕX2, X1) + (ξλ) g (X1, X2) − (X2λ) η (X1)

+ α3
(
2m−

1
2

)
g (ϕX2, X1) ,

using equation (2.8) in the above equation, we have

α2 (ξ%) g (X1, X2) − α
2η (X1) (X2%) =g (QϕX2, X1) + (ξλ) g (X1, X2) − (X2λ) η (X1)

+ α3
(
2m−

1
2

)
g (ϕX2, X1) ,

using equation (4.8) and (2.18) in the above equation, we have

αQϕX1 + α3
(
2m−

3
2

)
ϕX1 = 0.

Replacing X1 −→ ϕX1 and the use of equation (2.12) gives

Ric (X1, X2) = −α
2
(
2m−

3
2

)
g (X1, X2) −

3α2

2
η (X1) η (X2) , (4.9)

which implies, S2m+1 is quasi-Einstein. By using equation (4.8) and (4.9) in (4.3), we have

∇X1Dλ = α2λX1,

for any vector field X1 on S2m+1. �
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4.1. Gradient ∗-Ricci solitons on S2m+1. An almost gradient ∗-Ricci soliton on S2m+1 is called a

gradient ∗-Ricci soliton if λ in equation (4.1) is constant.

Theorem 4.1. Consider a α-paraSasakian manifold S2m+1 with gradient ∗-Ricci soliton, then S2m+1 is
∗-Einstein manifold.

Proof. Consider a α-paraSasakian manifold S2m+1 with gradient ∗-Ricci soliton. By using equation

(4.2) in the definition of curvature tensor R given in (2.7), we get

R (X1, X2)D% = (∇X2Q∗)X1 − (∇X1Q∗)X2. (4.10)

Replacing X1 −→ ξ and X2 −→ X1 in (4.10), we get

R (ξ, X1)D% = (∇X1Q∗) ξ− (∇ξQ∗)X1. (4.11)

Also, taking scalar product of equation (4.10) with ξ, we get

g (R (ξ, X1)D%, ξ) = g ((∇X1Q∗) ξ, ξ) − g ((∇ξQ∗)X1, ξ) . (4.12)

By using Proposition 3.1, we get

g (R (ξ, X1)D%, ξ) = 0. (4.13)

Now, equation (3.5) and (4.13) gives

X1% = X1 (ξ%) .

Therefore, either % = 0 or % is constant. Thus, equation (4.2) gives

Ric∗ (X1, X2) = λg (X1, X2) ,

which is the definition of ∗-Einstein manifold. �

5. Conclusion

In differential geometry as well as in physics, Ricci soliton plays a very important role as they are

the generalized notion of an Einstein metric on Riemannian and pseudo-Riemannian manifolds.

Similar to Ricci soliton, a new notion have been defined by replacing Ricci tensor in soliton equation

to ∗-Ricci tensor, which is ∗-Ricci soliton. In physics literature, ∗-Ricci solitons were first introduced

as ∗-Einstein metric on Riemannian and pseudo-Riemannian manifolds.

As it is known, the concept of ∗-Ricci tensor has been defined only on complex and contact

manifolds. But in the literature, some categorizations are also available in terms of ∗-Ricci tensor.

Over the last few years, several authors have been studied ∗-Ricci soliton on different ambient

spaces. So, we study ∗-Ricci soliton on paracontact manifold, particularly, on α-paraSasakian

manifold. Also, the results we have found are playing a significant role in differential geometry

and in mathematical physics.



18 Int. J. Anal. Appl. (2024), 22:180

Author Contributions: Conceptualization, K.S., Kh.S., S.K.S. and M.N.I.K.; methodology, K.S.,

Kh.S., S.K.S. and M.N.I.K.; investigation,K.S., Kh.S., S.K.S. and M.N.I.K.; writing—original draft

preparation, K.S., Kh.S., S.K.S. and M.N.I.K.; writing—review and editing, K.S., Kh.S., S.K.S. and

M.N.I.K. All authors have read and agreed to the published version of the manuscript.

Acknowledgments: The Researchers would like to thank the Deanship of Graduate Studies and

Scientific Research at Qassim University for financial support (QU-APC-2024-9/1).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.

References

[1] R.S. Hamilton, The Ricci flow on surfaces, Mathematics and General Relativity, Contemp. Math. 71 (1988), 237–261.

https://cir.nii.ac.jp/crid/1573105975542168832.

[2] G. Kaimakamis, K. Panagiotidou, ∗-Ricci Solitons of Real Hypersurfaces in Non-Flat Complex Space Forms, J.

Geom. Phys. 86 (2014), 408–413. https://doi.org/10.1016/j.geomphys.2014.09.004.

[3] S. Tachibana, On Almost-Analytic Vectors in Almost-Kählerian Manifolds, Tohoku Math. J. 11 (1959), 247–265.

https://doi.org/10.2748/tmj/1178244584.

[4] T. Hamada, Real Hypersurfaces of Complex Space Forms in Terms of Ricci ∗-Tensor, Tokyo J. Math. 25 (2002),

473–483. https://doi.org/10.3836/tjm/1244208866.

[5] K. De, A Note on Gradient ∗-Ricci Solitons, Math. Sci. Appl. E-Notes 8 (2020), 79–85. https://doi.org/10.36753/

mathenot.727083.

[6] X. Chen, Real Hypersurfaces With ∗-Ricci Tensors in Complex Two-Plane Grassmannians, Bull. Korean Math. Soc.

54 (2017), 975–992. https://doi.org/10.4134/BKMS.B160414.

[7] R.S. Gupta, S. Rani, ∗-Ricci Soliton on GSSF with Sasakian Metric, Note Mat. 42 (2022), 95–108. https://doi.org/10.

1285/i15900932v42n1p95.

[8] R. Ma, D. Pei, ∗-Ricci Tensor on (κ,µ)-Contact Manifolds, AIMS Math. 7 (2022), 11519–11528. https://doi.org/10.

3934/math.2022642.

[9] M. Ben Ayed, K. El Mehdi, Multiplicity Results for the Scalar Curvature Problem on Half Spheres, Discr. Contin.

Dyn. Syst. 44 (2024), 1878–1900. https://doi.org/10.3934/dcds.2024013.

[10] S. Elsaeed, O. Moaaz, K.S. Nisar, M. Zakarya, E.M. Elabbasy, Sufficient Criteria for Oscillation of Even-Order

Neutral Differential Equations With Distributed Deviating Arguments, AIMS Math. 9 (2024), 15996–16014. https:

//doi.org/10.3934/math.2024775.

[11] B.B. Chaturvedi, P. Bhagat, M.N.I. Khan, Novel Theorems for a Bochner Flat Lorentzian Kahler Space-Time

Manifold with η-Ricci-Yamabe Solitons, Chaos Solitons Fractals: X 11 (2023), 100097. https://doi.org/10.1016/j.csfx.

2023.100097.

[12] A. Sardar, M.N.I. Khan, U.C. De, η-∗-Ricci Solitons and Almost co-Kähler Manifolds, Mathematics 9 (2021), 3200.

https://doi.org/10.3390/math9243200.

[13] N. Omar, S. Serra-Capizzano, B. Qaraad, F. Alharbi, O. Moaaz, E.M. Elabbasy, More Effective Criteria for Testing

the Oscillation of Solutions of Third-Order Differential Equations, Axioms 13 (2024), 139. https://doi.org/10.3390/

axioms13030139.

[14] K. De M.N.I. Khan, U.C. De, Almost co-Kähler Manifolds and (m,ρ)-Quasi-Einstein Solitons, Chaos Solitons

Fractals, 167 (2023), 113050. https://doi.org/10.1016/j.chaos.2022.113050.

[15] A. Haseeb, S.K. Chaubey, F. Mofarreh, A.A.H. Ahmadini, A Solitonic Study of Riemannian Manifolds Equipped

with a Semi-Symmetric Metric ξ-Connection, Axioms 12 (2023), 809. https://doi.org/10.3390/axioms12090809.

https://cir.nii.ac.jp/crid/1573105975542168832
https://doi.org/10.1016/j.geomphys.2014.09.004
https://doi.org/10.2748/tmj/1178244584
https://doi.org/10.3836/tjm/1244208866
https://doi.org/10.36753/mathenot.727083
https://doi.org/10.36753/mathenot.727083
https://doi.org/10.4134/BKMS.B160414
https://doi.org/10.1285/i15900932v42n1p95
https://doi.org/10.1285/i15900932v42n1p95
https://doi.org/10.3934/math.2022642
https://doi.org/10.3934/math.2022642
https://doi.org/10.3934/dcds.2024013
https://doi.org/10.3934/math.2024775
https://doi.org/10.3934/math.2024775
https://doi.org/10.1016/j.csfx.2023.100097
https://doi.org/10.1016/j.csfx.2023.100097
https://doi.org/10.3390/math9243200
https://doi.org/10.3390/axioms13030139
https://doi.org/10.3390/axioms13030139
https://doi.org/10.1016/j.chaos.2022.113050
https://doi.org/10.3390/axioms12090809


Int. J. Anal. Appl. (2024), 22:180 19

[16] D.G. Prakasha, M.R. Amruthalakshmi, F. Mofarreh, A. Haseeb, Generalized Lorentzian Sasakian-Space-Forms

with M-Projective Curvature Tensor, Mathematics 10 (2022), 2869. https://doi.org/10.3390/math10162869.

[17] S. Kumar, M. Bilal, R. Prasad, A. Haseeb, Z. Chen, V-Quasi-Bi-Slant Riemannian Maps, Symmetry 14 (2022), 1360.

https://doi.org/10.3390/sym14071360.

[18] A. Haseeb, M. Bilal, S.K. Chaubey, A.A.H. Ahmadini, ξ-Conformally Flat LP-Kenmotsu Manifolds and Ricci-

Yamabe Solitons, Mathematics 11 (2022), 212. https://doi.org/10.3390/math11010212.

[19] U.C. De, Y.J. Suh, S.K. Chaubey, Semi-Symmetric Curvature Properties of Robertson–Walker Spacetimes, Z. Mat.

Fiz. Anal. Geom. 18 (2022), 368–381. https://doi.org/10.15407/mag18.03.368.

[20] J.T. Cho, M. Kimura, Ricci Solitons and Real Hypersurfaces in a Complex Space Form, Tohoku Math. J. 61 (2009),

205–212. https://doi.org/10.2748/tmj/1245849443.

[21] G. Calvaruso, A. Perrone, Ricci Solitons in Three-Dimensional Paracontact Geometry, J. Geom. Phys. 98 (2015),

1–12. https://doi.org/10.1016/j.geomphys.2015.07.021.

[22] U.C. De, K. Mandal, Ricci Almost Solitons and Gradient Ricci Almost Solitons in (k,µ)-Paracontact Geometry, Bol.

Soc. Paran. Mat. 37 (2017), 119–130. https://doi.org/10.5269/bspm.v37i3.33027.

[23] D.S. Patra, Ricci Solitons and Paracontact Geometry, Mediterr. J. Math. 16 (2019), 137. https://doi.org/10.1007/

s00009-019-1419-6.

[24] B.Y. Chen, Some Results on Concircular Vector Fields and Their Applications to Ricci Solitons, Bull. Korean Math.

Soc. 52 (2015), 1535–1547. https://doi.org/10.4134/BKMS.2015.52.5.1535.

[25] R. Sharma, A. Ghosh, Sasakian 3-Manifold as a Ricci Soliton Represents the Heisenberg Group, Int. J. Geom.

Methods Mod. Phys. 08 (2011), 149–154. https://doi.org/10.1142/s021988781100504x.

[26] M.N.I. Khan, S.K. Chaubey, N. Fatima, A. Al Eid, Metallic Structures for Tangent Bundles over Almost Quadratic

φ-Manifolds, Mathematics 11 (2023), 4683. https://doi.org/10.3390/math11224683.

[27] M.N.I. Khan, U.C. De, L.S. Velimirovic, Lifts of a Quarter-Symmetric Metric Connection from a Sasakian Manifold

to Its Tangent Bundle, Mathematics 11 (2022), 53. https://doi.org/10.3390/math11010053.

[28] S. Kaneyuki, F.L. Williams, Almost Paracontact and Parahodge Structures on Manifolds, Nagoya Math. J. 99 (1985),

173–187. https://doi.org/10.1017/s0027763000021565.

[29] A. Ghosh, D.S. Patra, ∗-Ricci Soliton Within the Frame-Work of Sasakian and (k,µ)-Contact Manifold, Int. J. Geom.

Methods Mod. Phys. 15 (2018), 1850120. https://doi.org/10.1142/s0219887818501207.

[30] S. Zamkovoy, G. Nakova, The Decomposition of Almost Paracontact Metric Manifolds in Eleven Classes Revisited,

J. Geom. 109 (2018), 18. https://doi.org/10.1007/s00022-018-0423-5.

[31] K. Matsumoto, Conformal Killing Vector Fields in a P-Sasakian Manifold, J. Korean Math. Soc. 14 (1977), 135–142.

[32] K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.

https://doi.org/10.3390/math10162869
https://doi.org/10.3390/sym14071360
https://doi.org/10.3390/math11010212
https://doi.org/10.15407/mag18.03.368
https://doi.org/10.2748/tmj/1245849443
https://doi.org/10.1016/j.geomphys.2015.07.021
https://doi.org/10.5269/bspm.v37i3.33027
https://doi.org/10.1007/s00009-019-1419-6
https://doi.org/10.1007/s00009-019-1419-6
https://doi.org/10.4134/BKMS.2015.52.5.1535
https://doi.org/10.1142/s021988781100504x
https://doi.org/10.3390/math11224683
https://doi.org/10.3390/math11010053
https://doi.org/10.1017/s0027763000021565
https://doi.org/10.1142/s0219887818501207
https://doi.org/10.1007/s00022-018-0423-5

	1. Introduction
	2. -paraSasakian Manifold S2m+1
	2.1. Curvature Properties of S2m+1

	3. Almost -Ricci Solitons on S2m+1
	Proof of Theorem 1.1
	3.1. -Ricci solitons on S2m+1
	Proof of Theorem 1.2

	4. Almost Gradient -Ricci Solitons on S2m+1
	Proof of Theorem 1.3
	4.1. Gradient -Ricci solitons on S2m+1

	5. Conclusion
	Author Contributions:
	Acknowledgments:
	 Conflicts of Interest:

	References

