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Abstract. The basic purpose of this article is to define the Green’s function in order to provide the solution of fractional

differential equations in the presence of general analytic kernel. Using the technique of Laplace and Fourier transforms,

we construct the Green’s function for ordinary and partial fractional differential equations. The presented results will

provide the generalization of some models existing in the literature. Some examples are also provided to prove the

results for some particular cases.

1. Introduction

For the person studying elementary calculus, the idea of differentiation is common but fractional

calculus fascinates the mathematicians to think about the differentials of the real order. Since, not a

single model of fractional differentiation and integration exist, Riemann-Liouville (RL) [1] approach

provides base to the subject of fractional calculus.

RL fractional integral operator I of arbitrary order p of a function g is defined as [1]

RL
I

p
c+g(t) =

1
Γ(p)

∫ t

c
(t−w)p−1g(w)dw,

where Re(p) > 0 and c is the constant of integration.

Also, the RL fractional differentialD of a function g with p as the order of the differentiation [1] is

defined as follow
RL
D

p
c+g(t) =

dξ

dtξ
(

RL
I
ξ−p
c+ g (t)

)
, (1.1)

where Re(p) > 0, c is the constant of differentiation and ξ = bRe(p)c+ 1.

Received: Aug. 25, 2024.

2020 Mathematics Subject Classification. 26A33, 44A10.

Key words and phrases. fractional differential equations; analytic kernel; Green’s function.

https://doi.org/10.28924/2291-8639-22-2024-188
ISSN: 2291-8639

© 2024 the author(s).

https://doi.org/10.28924/2291-8639-22-2024-188


2 Int. J. Anal. Appl. (2024), 22:188

RL fractional integral and integral operators are used to solve differintegral problems with

initial conditions and have a broad number of applications in the modeling of bioengineering

problems [2], chaotic systems [3], controllability [4], Stokes problems [5], thermoelasticity [6],

financial modeling [7] and many other complex phenomena.

RL definition was later modified by Caputo [8] by interchanging differential and integral oper-

ators in (1.1) which is defined as

C
D

p
c+g(t) = RL

I
ξ−p
c+

(
dξ

dtξ
g(x)

)
, Re(p) ≥ 0, ξ = bRe(p)c+ 1.

Caputo’s fractional order model is often used in modeling and analysis [9–11]. Indeed, if the

process of describing the time dependance of the point does not have physical interpretation then

it may be difficult or impossible to calculate fractional order initial conditions. In most of the cases,

initial value conditions illustrate some important properties of the solution at the starting point

of the process, e.g, initial value conditions of the fractional differential conditions ensures that the

solution is unique [11].

Another special case, for solving fractional integral equations, is Prabhakar fractional model [12].

P
q,vI

p,u
c+ g(t) =

∫ t

c
(t−w)p−1Eq

q,p (v(t−w)q) g(w)dw, Re(p) > 0, Re(q) > 0. (1.2)

The Mittag-Leffler function [13] used in (1.2) is defined as

Eu
q,p(x) =

∞∑
n=0

Γ(u + n)
Γ(u)Γ(qn + p)n!

xn.

Also Parabhakar fractional differential is defined with same parameters as

P
q,vDp,u

c+ g(t) =
dξ

dtξ
(P

q,vIξ−q,−u
c+ g(t)), Re(p) > 0, Re(q) > 0, ξ = Rebpc+ 1.

Although it is older than some of the other models but now it has begun to attract attention, and

its application has been discovered, e.g. in theory of dielectrics and stochastic processes [12]. This

model also has been generalized [14] to use 4-parameter Mittag-Leffler function and its properties

has been inspected in many other papers [15, 16, 25–27].

Atangana-Baleanu fractional model (also known as AB-model) [17] involving Mittag-Leffler

function with one parameter (Mittag-Leffler function with one parameter is defined in [18]) is

stated below:

ABR
D

p
c+g(t) =

B(p)
1− p

d
dt

∫ t

c
Ep

(
−p

1− p
(t−w)p

)
g(w)dw, 0 < p < 1,

ABC
D

p
c+g(t) =

B(p)
1− p

∫ t

c
Ep

(
−p

1− p
(t−w)p

)
g′(w)dw, 0 < p < 1.

where B(p) is a normalization function. Using this model, we are able to describe a different type

of physical models (e.g. motion of bodies under certain forces) of complex systems. Non-singular

Mittag-Leffler kernel has wide application in fractional calculus and is more easily used from the

numerical viewpoint, this has been studied for example in [19].
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Another fractional model known as Generalized Proportional Fractional (or GPF) model [20]

defines the fractional differential operator with two parameters as:

GPF
I

p,q
c+g(t) =

1
qpΓ(p)

∫ t

c
exp

(
q− 1

q
(t−w)

)
(t−w)p−1g(w)dw,

0 < q ≤ 1, Re(p) > 0.

Since, there are multiple ways of defining fractional integral and derivatives: RL, Caputo,

tempered, Marchaud, Hilfer, and Atangana-Baleanu, to name but a few [1, 17]. These diverse

definitions may be categorized into general classes according to their structure and properties [18].

In 2019, a fractional model proposed by Fernandez et al. [1] which involves general analytic

kernels. This model merges above mentioned fractional models due to the analytic kernel. It

smooths the way for solving dynamical systems [21]. Basic definitions and important features of

this model are defined in the section stated below.

The arrangement of this paper is as follows: since in the first section, some previous models

are discussed and physical applications of the models were stated. Now in Section 2, some basic

definition of the fractional model with GAK are stated. Also some of the useful results for GAK

are described. Green’s function approach for RL fractional model is defined which provides base

to main results of the paper. In Section 3, at first, we proof some necessary results that was used

in our main results. We define the Green’s function for fractional differential operator with MAK

and also proof important properties of the Green’s function. We provide the general prove for

finding the Green’s function of n-term ordinary linear fractional differential equation with MAK.

An example is stated for result which satisfies RL fractional Green’s function for particular values.

At the end of the section, fractional Green’s function for partial differential equations is stated

using Laplace and Fourier transforms. In Section 4, we conclude the paper.

2. Materials andMethods

Fractional model with GAK [1] is fractional model with two parameters defined on the analytic

disc. These analytic kernels are also known as non singular kernels due to there analytic behavior.

Fractional integral with analytic kernel is stated below:

Definition 2.1. [1] Let [c, d] ∈ R, p, q be complex parameters with Re(p) > 0, Re(q) > 0 and R ∈ R+

satisfying R > (d − c)Re(q). Let A be the complex function analytic on the disc D(0, R) and defined on the
disc by locally uniformly convergent power series

A(x) =
∞∑

m=0

bmxm, (2.1)

where the coefficients bn = bn(p, q) may depend on complex parameters if required.

Using analytic kernel (2.1), a modified form of analytic kernel is also defined by Fernendez et

al. [1] that is
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Definition 2.2. [1] For any analytic function (2.1), modified analytic function AΓ is defined as

AΓ(x) =
∞∑

m=0

bmΓ(qm + p)xm. (2.2)

The series (2.2) has radius of convergence given by

lim
m→∞

∣∣∣∣∣ bm

bm+1
(qm + q + p)−q

∣∣∣∣∣ .
Remark 2.1. If the series defined for AΓ converges then the series for A also converges but converse is not
true.

Definition 2.3. [1] Fractional integral operator with GAK, operating on the function g from closed interval
[c, d] to R as

A
I

p,q
c+g(t) =

∫ t

c
(t−w)p−1A

(
(t−w)q

)
g(w)dw. (2.3)

The integral operator defined in (2.3) provides the generalization of RL fractional model [1],

Prabhakar fractional model [12], AB fractional model [17] and GPF fractional model [20].

Theorem 2.1. [1] For terminologies defined in Definition 2.1, for any function g ∈ L1[c, d], there exists a
locally uniformly convergent power series for the integral operator A

I
p,q
c+g as a function on [c, d]

A
I

p,q
c+g(t) =

∞∑
m=0

bmΓ(qm + p)RL
I

qm+p
c+ g(t).

Moreover, the integral operator defined in (2.3) can also be written in the form of MAK (2.2) as

A
I

p,q
c+g(t) = AΓ(

RL
I

q
c+)

RL
I

p
c+g(t).

Theorem 2.2. [1] Suppose c, d, A be as in Definition 2.1 and p1, p2, q be the fixed complex parameters with
positive real parts and g ∈ L1[c, d]. The semigroup property

A
I

p1,q
c+ ◦

A
I

p2,q
c+ g(t) = A

I
p1+p2,q
c+ g(t),

is uniformly valid (regardless of complex parameters and function g) if and only if the condition stated below
holds for all non-negative integers.∑

m+n=k

bm(p1, q)bn(p2, q)B(qm + p1, qn + p2) = bk(p1 + p2, q).

Theorem 2.3. [1] Suppose c, d, A be as in Definition 2.1 and p1, p2, q1, q2 ∈ C with positive real parts and
g ∈ L1[c, d]. The semigroup property

A
I

p1,q1
c+ ◦

A
I

p2,q2
c+ g(t) = A

I
p1+p2,q1+q2
c+ g(t),

cannot be uniformly valid for any complex parameters p1, p2, q1, q2 and g.

Now in correspondence with fractional integral with general analytic kernels, differential oper-

ator is also defined as follow:
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Definition 2.4. [1] Fractional derivative with general analytical kernel is defined in both RL and Caputo
forms. The operator is defined as follows

A
RLD

p,q
c+g(t) =

dξ

dtξ
(

A
I

p′,q′

c+ g (t)
)

(2.4)

A
CD

p,q
c+g(t) = A

I
p′,q′

c+

(
dξ

dtξ
g(t)

)
,

where ξ ∈ N. The value of p
′

, q
′

may depends of the analytic kernel. For example, Riemann-Liouville
operator, we must have p

′

= ξ− p, q
′

= 0.

Much of applied mathematics is dedicated to the study of differential equations and their

solutions. Almost any dynamic process in nature can be modeled by some ordinary or partial

differential equation. Since, integral transforms have wide application in solving fractional integral

and differential equations so these transformations are also defined for the fractional integral with

GAK using convolution property. For the transformation of the functions, Theorem 2.1 is used.

Theorem 2.4. [1] Assume c = 0, d ∈ R+, p, q and A be as in Definition 2.1 and g ∈ L2[c, d] with Laplace
transform g. Then Laplace transform of (2.3) is given as

AI
p,q
0+g(s) = s−pAΓ(s−q)ḡ(s),

where AΓ is defined in Definition 2.2.

Theorem 2.5. [1] Using the terminologies defined in Definition 2.1 with c = −∞ and d ∈ R+ and
g ∈ L2[c, d] with Fourier transform g̃. Fourier transform for fractional integral (2.3) is defined as

˜AI
p,q
+ g(s) = k−peipπ/2AΓ(k−qeiqπ/2)g̃(s),

where AΓ is defined in Definition 2.2.

Main purpose of this article is to find the solution of fractional differential equations in a more

easier way. Construction of Green’s function is one of the important method to get the solutions

of the ordinary and partial differential problems. Inspiring from the work of researches in [22–24],

we construct the Green’s function for the fractional differential problems with MAK which absorbs

most of the fractional models in it, so that using fractional differential operator with MAK provides

the solution of many differential problems involving other models. For the verification of our

results, we gave solution of RL problems as particular case.

2.1. Green’s Function Approach for RL Fractional Differential Operators. We can find the solu-

tion of initial value nonhomogeneous problem for ordinary fractional linear differential equation

with constant coefficients using only its Green’s function [13]. Due to this result, the solution

of homogeneous equation with nonhomogeneous initial value conditions reduced to find only

the fractional Green’s functions. Fractional Green’s function for RL fractional derivative is stated

below:
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Definition 2.5. [13] Consider nonhomogeneous fractional differential equation of function g ∈ L1[0, T]
with homogeneous condition

0Ltx(t) = g(t);
[

0D
σm−1
t x(t)

]
t=0

= 0, m = 1, 2, · · · , n, (2.5)

where

0Ltx(t) = 0D
σn
t x(t) +

n−1∑
m=1

fm(t) 0D
σn−m
t x(t) + fn(t)x(t)

0D
σm
t = 0D

pm
t 0D

pm−1
t · · · 0D

p1
t 0; Dσm−1

t = 0D
pm−1
t 0D

pm−1
t · · · 0D

p1
t

σm =
m∑

j−1

p j, 0 < p j < 1, j = 1, 2, · · · , n.

Then function G(t, w) satisfying the following conditions:

(1) wLtG(t, w) = 0 for every w ∈ (0, t);
(2) limw→t−0

(
wD

σm−1
t G(t, w)

)
= δm,n, m = 0, 1, · · · , n,

(δm,n is Kronecker’s delta);
(3) limw,t→+0

w<t

(
wD

σm
t G(t, w)

)
= 0; m = 0, 1, · · · , n− 1,

is called Green’s function of (2.5).

To find the fractional Green’s function of a nonhomogeneous initial value problem, Laplace

transform method is used.

Example 2.1. [13] Consider RL differential equation with p as the order of differentiation and a is the
constant of integration,

a RL
0 D

p
t+x(t) = g(t); x(0) = 0. (2.6)

Solution 2.1. By taking Laplace transform of (2.6), we get

x̄(s) =
1

asp .

By using convolution property of inverse Laplace transform, we get Green’s function of (2.6) as

x(t) =
tp−1

aΓ(p)

x(t) =
1

aΓ(p)

∫ t

0
(t−w)p−1g(w)dw, (2.7)

where (2.7) provides the solution of (2.6).

3. Results

In the following section, we will provide some supporting results which will be used to prove

properties of Green’s function with MAK.
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3.1. Green’s Function Approach for Fractional Differential Operator with MAK. Considering a

general nonhomogeneous problem involving modified analytic kernel (2.2), then Green’s function

for the nonhomogeneous problem (stated below) will be evaluated to provide the solution.

Proposition 3.1. Let p, q ∈ C with Re(p) > 0, Re(q) > 0. Then for fractional integral (2.3), the equality
holds

A
RLD

p,q
0+

(∫ t

0
k(t, w)dw

)
=

∫ t

0

A
RLD

p,q
w+k(η, w)dw + lim

w→t−0
A
RLD

p−1,q
w+ k(η, w),

Proof. Consider

A
RLD

p,q
0+

(∫ t

0
k(t, w)dw

)
=

dξ

dtξ

(
A
I
ξ−p,q
0+

(∫ t

0
k(t, w)dw

))
,

by putting ξ = 1 and using Fubini’s Theorem, we get

A
RLD

p,q
0+

(∫ t

0
k(t, w)dw

)
=

d
dt

∫ t

0
k̃(t, w)dw,

where

k̃(t, w) =

∫ t

w
(t− η)−pA ((t− η)q) k(η, w)dη.

Now by using Leibnitz rule and k̃(t, w) we get the required result as

A
RLD

p,q
0+

(∫ t

0
k(t, w)dw

)
=

∫ t

0

∂
∂t

k̃(t, w)dw + lim
w→t−0

k̃(t, w)

=

∫ t

0

A
RLD

p,q
w+k(η, w)dw + lim

w→t−0
A
RLD

p−1,q
w+ k(η, w).

�

Now, to define the Green’s function, consider the nonhomogeneous equation subject to the

homogeneous constraints.

0Ltx(t) = g(t) (3.1)[
A
0D

σm−1,q
t x(t)

]
t=0

= 0; m = 1, 2, · · · , n, (3.2)

where

0Ltx(t) = A
0D

σn,q
t x(t) +

n−1∑
m=1

fm(t) A
0D

σn−m,q
t x(t) + fn(t)x(t)

A
0D

σm,q
t = A

0D
pm,q
t

A
0D

pm−1,q
t · · ·

A
0D

p1,q
t

A
0D

σm−1,q
t = A

0D
pm−1,q
t

A
0D

pm−1,q
t · · ·

A
0D

p1,q
t

σm =
m∑

j−1

p j, 0 < p j < 1, j = 1, 2, · · · , n,

and g(t) ∈ L1(0, T), i.e. ∫ T

0
|g(t)|dt < ∞.
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For the simplicity of notation we can also write f (t) = 0 for t > T.

Definition 3.1. The function G(t, w) satisfying the following conditions

(C1) wLtG(t, w) = 0 for every w ∈ (0, t);
(C2) limw→t−0

(
A
wD

σm−1,q
t G(t, w)

)
= δm,n, m = 1, 2, · · · n,

(δm,n is Kronecker’s delta).
(C3) limw,t→+0

w<t

(
A
wD

σm,q
t G(t, w)

)
= 0, m = 1, 2, · · · , n− 1,

is called the Green’s function of (3.1).

Theorem 3.1. The function x(t) =
∫ t

0 G(t, w)g(w)dw is the solution of the problem (3.1) and (3.2).

Proof. Using Proposition 3.1 and (C2), we have

A
RLD

σn,q
0+ x(t) = A

RLD
pn
0+

∫ t

0

A
RLD

σn−1,q
w+ G(t, w)g(w)dw

=

∫ t

0

A
RLD

pn,q
w+

(
A
RLD

σn−1,q
w+ G(t, w)g(w)

)
dw+

lim
w→t−0

A
RLD

pn,q
w+

(
A
RLD

σn−1,q
w+ G(t, w)g(w)

)
=

∫ t

0

A
RLD

σn,q
w+ G(t, w)g(w)dw + g(t).

Consider

0Ltx(t) = A
0D

σn,q
t x(t) +

n−1∑
m=1

fn(t) A
0D

σn−m,q
t x(t) + fn(t)x(t)

=

∫ t

0

A
RLD

σn,q
w+ G(t, w)g(w)dw +

n−1∑
m=1

fm(t)
∫ t

0

A
RLD

σn−m,q
w+ G(t, w)g(w)dw

+ fn(t)
∫ t

0
G(t, w)g(w)dw + g(t), w ∈ (0, 1)

= g(t).

�

Theorem 3.2. For fractional differential equation (2.4) with constant coefficients, we have G(t, w) =

G(t−w).

Proof. This is obvious because in such a case Green’s function can be obtained by using Laplace

transform. �

Theorem 3.3. Appropriate derivatives of the Green’s function G(t−w) form a set of linearly independent
solutions of a homogeneous equation g(t) ≡ 0 in (3.1) with initial condition (3.2) equals to bm where
m = 1, 2, · · · , n defined in Definition 3.1.
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Proof. Assume 0 < p < σn, then

0Ltxp,q(t) = 0Lt
(

A
RLD

p,q
0+G(t, w)

)
.

By using condition (C3) and (C1), we have

0Ltxp,q(t) = A
RLD

p,q
0+ ( 0LtG(t, w))

= 0.

Also,

A
D
σn−p−1
0+ xp,q(t) = A

D
σn−p−1,q
0+

A
D

p,q
0+G(t, w)

= A
D
σn−1,q
0+ G(t, w),

by using condition (C2), we have

A
D
σn−p−1
0+ xp,q(t)

∣∣∣∣
t=0

= A
D
σn−1,q
0+ G(t, w)

∣∣∣∣
t=0

= 1.

�

Laplace transform of fractional differential operator with GAK [1] is defined as follow:

Theorem 3.4. Assume c = 0, d > 0, p, q, A be as in Definition 2.1, and let x ∈ L2[a, b]. The function
A
D

p,q
a+x(t) has a Laplace transform given by the following form.

A
D

p,q
a+x(s) = sn−p′AΓ(s−q′) ˆx(s). (3.3)

Proof. Consider (2.4) and taking Laplace transform on both sides, we have

L

(
A
RLD

p,q
a+x(t)

)
= L

[
dξ

dtξ
(

A
I

p′,q′

a+ x(t)
)]

= sn
L

(
A
I

p′,q′

a+ x(t)
)
−

n−1∑
k=0

sk
(

AIp′,q′

a+ x(t)
)n−k−1


t=0

,

by using Laplace transform (2.5), we have

L

(
A
RLD

p,q
a+x(t)

)
= sn

(
s−p′AΓ(s−q′)x(s)

)
.

�

Green’s function is one from the important methods to find the solution of the differential

equations. Here, method for finding the Green’s function of fractional differential equation with

MAK (stated in (2.5)) using Laplace transform is introduced.

Theorem 3.5. For p, q ∈ C with positive real parts and the arbitrary constant coefficients b′i s, the nth-term
fractional differential equation

bn
A
RLD

pn,q
0+ x(t) + bn−1

A
RLD

pn−1,q
0+ x(t) + · · ·+ b0

A
RLD

p0,q
0+ x(t) = g(t), (3.4)

has Green’s function.
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Proof. To find the Green’s function, consider homogeneous part of (3.4) as

bn
A
RLD

pn,q
0+ x(t) + bn−1

A
RLD

pn−1,q
0+ x(t) + · · ·+ b0

A
RLD

p0,q
0+ x(t) = 1.

Taking Laplace transform defined in (3.3) and simplifying, we get

bnL(
A
RLD

pn,q
0+ x(t)) + bn−1L(

A
RLD

pn−1,q
0+ x(t)) + · · ·+ b0L(

A
RLD

p0,q
0+ x(t)) =L(δ) bnsn

(
s−p

′

nAΓ(s−q′)
)
+ bn−1sn

(
s−p

′

n−1AΓ(s−q′)
)

+ · · ·+ b0sn
(
s−p

′

0AΓ(s−q′)
)  Gn(s) =1

Gn(s) =

 bnsn
(
s−p

′

nAΓ(s−q′)
)
+ bn−1sn

(
s−p

′

n−1AΓ(s−q′)
)

+ · · ·+ b0sn
(
s−p

′

0AΓ(s−q′)
) 

−1

, (3.5)

by using the (2.2), we have (3.5) as

Gn(s) =

 bnsn−p
′

nAΓ(s−q′) + bn−1sn−p
′

n−1AΓ(s−q′)

+ · · ·+ b0sn−p
′

0AΓ(s−q′)


−1

By using Definition 2.2, we have

Gn(s) =


bn

∑
∞

r=0 arΓ(q′r + p′n)sξ+p′n+rq′+

bn−1
∑
∞

r=0 arΓ(q′r + p′
(n−1))s

ξ+p′
(n−1)+rq′

+ · · ·+ b0
∑
∞

r=0 arΓ(q′r + p′0)s
ξ+p′0+rq′


−1

=

 bn
∑
∞

r=1 arΓ(q′r + p′n)sξ+p′n+rq′+∑n−1
k=0 bk

∑
∞

r=0 arΓ(q′r + p′k)s
ξ+p′k+rq′

−1

=


bna0Γ(p′n)sξ+p′n + bna1Γ(q′ + p′n)sξ+p′n+q′+

bn
∑
∞

r=2 arΓ(q′r + p′n)sξ+p′n+rq′+∑n−1
k=0 bk

∑
∞

r=0 arΓ(q′r + p′k)s
ξ+p′k+rq′


−1

=
s−ξ+p′n+q′

bna0Γ(p′n)

 s−q′ +
a1Γ(q′+p′n)

a0Γ(p′n)
+

∑
∞

r=2 arΓ(q′r+p′n)
a0Γ(p′n)

s(r−1)q′+∑n−1
k=0

∑
∞

r=0 bkarΓ(q′r+p′k)
bna0Γ(p′n)

sp′k−p′n+(r−1)q′


−1

.

Assuming a1Γ(q′+p′n)
a0Γ(p′n)

= A, we have the form

Gn(s) =
s−ξ+p′n+q′

bna0Γ(p′n)
1

s−q′ + A

 1 +
∑
∞

r=2
[arΓ(q′r+p′n)/a0Γ(p′n)]s(r−1)q′

s−q′+A
+∑n−1

k=0
∑
∞

r=0
[bkarΓ(q′r+p′k)/bna0Γ(p′n)]s

p′k−p′n+(r−1)q′

s−q′+A


−1

=
∞∑

m=0

s−ξ+p′n+q′

bna0Γ(p′n)
(−1)m

(s−q′ + A)m+1


∑
∞

r=2
arΓ(q′r+p′n)

a0Γ(p′n)
s(r−1)q′+∑n−1

k=0
∑
∞

r=0
bkarΓ(q′r+p′k)

bna0Γ(p′n)
sp′k−p′n+(r−1)q′


m

=
∞∑

m=0

s−ξ+p′n+q′

bna0Γ(p′n)
(−1)m

(s−q′ + A)m+1

m∑
k=0

 ∞∑
r=2

arΓ(q′r + p′n)
a0Γ(p′n)

s(r−1)q′


k

(3.6)
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×

n−1∑
k=0

∞∑
r=0

bkarΓ(q′r + p′k)

bna0Γ(p′n)
sp′k−p′n+(r−1)q′


k−m

. (3.7)

Since the series
∑
∞

r=0
bkarΓ(q′r+p′k)

bna0Γ(p′n)
sp′k−p′n+(r−1)q′ is convergent in disc with radius of convergence

defined as

0 < lim
r→∞

∣∣∣∣∣∣ar(q′r + p′ + q′)−q′

ar+1

∣∣∣∣∣∣ < 1
sq′

Now from (3.7), after simplification, we have

Gn(s) =
∞∑

m=0

(−1)m

m!bna0Γ(p′n)

m∑
k=0

 ∞∑
r=2

arΓ(q′r + p′n)
a0Γ(p′n)


k n−1∑

k=0

∞∑
r=0

bkarΓ(q′r + p′k)

bna0Γ(p′n)


k−m

×
m!s−q

′
−(ξ−p′n−2q′−k(r−1)q′−(k−m)(p′k−p′n+(r−1)q′))

(s−q′ + A)m+1
.

Within the disc we have the singularities at s−q′ = −A. Thus at the singular points, we have the

solution of the Laplace transform as

Gn(t) =
∞∑

m=0

(−1)m

m!bna0Γ(p′n)

m∑
k=0

 ∞∑
r=2

arΓ(q′r + p′n)
a0Γ(p′n)


k n−1∑

k=0

∞∑
r=0

bkarΓ(q′r + p′k)

bna0Γ(p′n)


k−m

× t−mq
′
+(ξ−p′n−2q′−k(r−1)q′−(k−m)(p′k−p′n+(r−1)q′))−1

× E(m)

−q′ ,ξ−p′n−2q′−k(r−1)q′−(k−m)(p′k−p′n+(r−1)q′)
(−At−q

′

).

�

Remark 3.1. For n = 0, 1, 2, ... we will get one-term differential equation, two-term differential equation
and so on.

Example 3.1. The nonhomogeneous fractional differential equation is given by

A
D

p,qx(t) + A
D

h,qx(t) = g(t); t > 0, (3.8)

with initial condition

A
RLD

p+qn−1x(0) = 0, ∀ n ∈ (0,∞),

where 0 < p ≤ 1 and q is fixed, has unique Green’s function.

Proof. Taking homogeneous part of (3.8) and applying Laplace transform, (3.8) gives

[
sξ−p′AΓ(s−q′) + sξ−h′AΓ(sq′)

]
x̄(s) =1

Ḡ(s)

 ∞∑
n=0

anΓ(p′ + q′n)sξ−p′−q′n +
∞∑

k=0

akΓ(h′ + q′k)sξ−h′−q′k

 =1
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G(s) =

 ∞∑
n=0

anΓ(p′ + q′n)sξ−p′−q′n +
∞∑

k=0

akΓ(h′ + q′k)sξ−h′−q′k


−1

=

 a0Γ(p′)sξ−p′ + a1Γ(p′ + q′)sξ−p′−q′ +
∑
∞

n=2 anΓ(p′ + q′n)sξ−p′+q′n∑
∞

k=0 akΓ(h′ + q′k)sξ−h′−q′k

−1

=
s−ξ+p′+q′

a0Γ(p′)

[
s−q′ +

a1Γ(p′+q′)
a0Γ(p′) +

∑
∞

n=2 anΓ(p′+q′n)sξ−p′−q′n+
∑
∞

k=0 akΓ(h′+q′k)sξ−h′−q′k

a0Γ(p′)

]−1

G(s) =
1

a0Γ(p′)
s−ξ+p′+q′

s−q′ +
a1Γ(p′+q′)

a0Γ(p)

[
1 + [

∑
∞

n=2 anΓ(p′+q′n)sq′(n−1)+
∑
∞

k=0 akΓ(h′+q′k)sξ−h′−q′k]/[a0Γ(p′)]
s−q′+[a1Γ(p′+q′)]/[a0Γ(p′)]

]−1

=
∞∑

m=0

(−1)m

[a0Γ(p′)]m+1

s−ξ+p′+q′(
s−q′ +

a1Γ(p′+q′)
a0Γ(p′)

)m+1

×

 ∞∑
n=2

anΓ(p′ + q′n)s−q′(n−1) +
∞∑

k=0

akΓ(h′ + q′k)sξ−h′−q′k


m

=
∞∑

m=0

(−1)m

[a0Γ(p′)]m+1

s−ξ+p′+q′(
s−q′ +

a1Γ(p′+q′)
a0Γ(p′)

)m+1

m∑
r=0

m
r


×

 ∞∑
n=2

anΓ(p′ + q′n)s−q′(n−1)


r  ∞∑

k=0

akΓ(h′ + q′k)sξ−h′−q′k


m−r

.

After simplification, we have the following expression of Laplace transform of Mittag-Leffler

function:

G(s) =
∞∑

m=0

(−1)m

m![a0Γ(p′)]m+1

m∑
r=0

m
r


 ∞∑

n=2

anΓ(p′ + q′n)


r

×

 ∞∑
k=0

akΓ(h′ + q′k)


m−r

m!s−ξ+p′+q′+−q
′
r(n−1)(m−r)(ξ−h′−q′k)(

s−q′ +
a1Γ(p′+q′)

a0Γ(p′)

)m+1
.

By taking the inverse Laplace transform, we have the Green’s function of (3.8), that is

g(t) =
∞∑

m=0

(−1)m

m![a0Γ(p′)]m+1

m∑
r=0

m
r


 ∞∑

n=2

anΓ(p
′

+ q
′

n)


r [∑

k = 0∞akΓ(h
′

+ q
′

k)
]m−r

× t−q
′
m+ξ−p

′
−2q

′
+q
′
(n−1)−(ξ−h

′
−kq

′
)(m−r)−1

× E(m)

−q′ ,ξ−p′−2q′+q′ (n−1)−(ξ−h′−kq′ )(m−r)

(
−a1Γ(p

′

+ q
′

)

a0Γ(p′)
t−q

′

)
.

�

Remark 3.2. In Example 3.1, if we have m = 0 them there must be r = 0, Also by substituting −q′ = p
and a1Γ(p′+q′)

a0Γ(p′) = b
a , we have the solution of two-term RL fractional differential equation (see P-154, [13]).
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3.2. Green’s Function for Partial Differential Equations with MAK. Since, the number of prob-

lems in multiple fields of science and engineering have been solved through fractional partial

differential equations using different fractional operators. In this section, we will provide a new

approach for solving partial differential problems using differential operator with GAK.

Theorem 3.6. For p, q ∈ C with positive real parts, the arbitrary constant coefficients b′i s and g(x, t) ∈
L1(0, 1), the nth-term fractional differential equation

bn
∂pn ,q

∂tpn ,q u(x, t) + bn−1
∂pn−1,q

∂tpn−1,q u(x, t) + · · ·+ b0
∂p0,q

∂tp0,q u(x, t)

+c j
∂

hj ,q

∂xhj ,q
u(x, t) + c j−1

∂
hj−1,q

∂xhj−1,q u(x, t) + · · ·+ c0
∂h0,q

∂xh0,q u(x, t)
= g(x, t), (3.9)

has Green’s function.

Proof. To find the Green’s function, we can write (3.9) as

bn
∂pn ,q

∂tpn ,q G(x, t) + bn−1
∂pn−1,q

∂tpn−1,q G(x, t) + · · ·+ b0
∂p0,q

∂tp0,q G(x, t)
+

∑ j
v=0 cv

∂hv ,q

∂xhv ,q G(x, t)
= g(x, t).

Applying Laplace transform with respect to t on above equation and simplifying, we get
bn

∑
∞

r=0 arΓ(q′r + p′n)sξ−p′n−rq′G(x, s)+
bn−1

∑
∞

r=0 arΓ(q′r + p′n−1)s
ξ−p′n−1−rq′G(x, s) + · · ·+

b0
∑
∞

r=0 arΓ(q′r + p′0)s
ξ−p′0−rq′G(x, s) +

∑ j
v=0 cv

dhv ,q

dxhv ,q G(x, s)

 = g(x, s),

applying Fourier transform with respect to x on above equation, we have
bn

∑
∞

r=0 arΓ(q′r + p′n)sξ−p′n−rq′G̃(ω, s)+

bn−1
∑
∞

r=0 arΓ(q′r + p′n−1)s
ξ−p′n−1−rq′G̃(ω, s)

+ · · ·+ b0
∑
∞

r=0 arΓ(q′r + p′0)s
p′0+rq′G̃(ω, s)

+
∑ j

v=0 cvωξ−h′veih′vπ/2AΓ(ω−q′eiq′π/2)G̃(ω, s)


= g̃(ω, s)

G̃(ω, s) =


bn

∑
∞

r=1 arΓ(q′r + p′n)sξ−p′n−rq′+∑n−1
k=0 bk

∑
∞

r=0 arΓ(q′r + p′k)s
ξ−p′k−rq′

+
∑ j

v=0 cvωξ−h′veih′vπ/2AΓ(ω−q′eiq′π/2)


−1

g̃(ω, s)

=


bna0Γ(p′n)sξ−p′n + bna1Γ(q′ + p′n)sξ−p′n−q′+

bn
∑
∞

r=2 arΓ(q′r + p′n)sξ−p′n−rq′+∑n−1
k=0 bk

∑
∞

r=0 arΓ(q′r + p′k)s
ξ−p′k−rq′+

+
∑ j

v=0 cvωξ−h′veih′vπ/2AΓ(ω−q′eiq′π/2)


−1

g̃(ω, s)

=
s−ξ+p′n+q′

bna0Γ(p′n)


s−q′ +

a1Γ(q′+p′n)
a0Γ(p′n)

+
∑
∞

r=2 arΓ(q′r+p′n)
a0Γ(p′n)

s(r−1)q′+∑n−1
k=0

∑
∞

r=0 bkarΓ(q′r+p′k)
bna0Γ(p′n)

sp′k−p′n+(r−1)q′+

+
∑ j

v=0
cvωξ−h′v eihvπ/2AΓ(ω−q′ eiq′π/2)

bna0Γ(p′n)
s−ξ+p′n+q′


−1

g̃(ω, s).
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Assuming a1Γ(q′+p′n)
a0Γ(p′n)

= A, we have the form

G̃(ω, s) =
s−ξ+p′n+q′

bna0Γ(p′n)
1

s−q′ + A

×


1 +

∑
∞

r=2
[arΓ(q′r+p′n)/a0Γ(p′n)]s(r−1)q′

s−q′+A
+∑n−1

k=0
∑
∞

r=0
[bkarΓ(q′r+p′k)/bna0Γ(pn)]s

p′k−p′n+(r−1)q′

s−q′+A

+
∑ j

v=0[cvωξ−h′v eih′vπ/2AΓ(ω−q′ eiq′π/2)]/[bna0Γ(p′n)]
s−q′+A

s−p′n−q′


−1

g̃(ω, s)

=
∞∑

m=0

s−ξ+p′n+q′

[bna0Γ(p′n)]m+1

(−1)m

(s−q′ + A)m+1

×


∑
∞

r=2 arΓ(q′r + p′n)s(r−1)q′+∑n−1
k=0

∑
∞

r=0 bkarΓ(q′r + p′k)s
p′k−p′n+(r−1)q′

+
∑ j

v=0 cvωξ−h′veih′vπ/2AΓ(ω−q′eiq′π/2)s−ξ+p′n+q′


m

g̃(ω, s)

G̃(ω, s) =
∞∑

m=0

s−ξ+p′n+q′

[bna0Γ(p′n)]m+1

(−1)m

(s−q′ + A)m+1

∑
k1+k2+k3=m

 m
k1, k2, k3


×

 ∞∑
r=2

arΓ(q′r + p′n)s
(r−1)q′


k1

n−1∑
k=0

∞∑
r=0

bkarΓ(q′r + p′k)s
p′k−p′n+(r−1)q′


k2

×


j∑

v=0

cvω
ξ−h′veih′vπ/2AΓ(ω

−q′eiq′π/2)s−ξ+p′n+q′


k3

g̃(ω, s)

=
∞∑

m=0

(−1)m

[bna0Γ(p′n)]m+1

∑
k1+k2+k3=m

 m
k1, k2, k3


 ∞∑

r=2

arΓ(q′r + p′n)


k1

×

n−1∑
k=0

∞∑
r=0

bkarΓ(q′r + p′k)


k2


j∑

v=0

cvω
ξ−h′veih′vπ/2AΓ(ω

−q′eiq′π/2)


k3

×
s−q′−(ξ−p′n−2q′−(r−1)q′k1−(p′k−p′n+(r−1)q′)k2−(−ξ+p′n+q′)k3)

(s−q′ + A)m+1
g̃(ω, s)

By taking inverse Laplace transform with respect to t and then inverse Fourier transform with

respect to x, we have the unique solution of the differential equation. �

Example 3.2. The nonhomogeneous fractional wave equation

A∂p,qu(x, t)
∂tp,q − c2∂

2u(x, t)
∂2x

= g(x, t); x ∈ R, t > 0, (3.10)

with initial conditions

A
RLD

p+qn−1u(x, 0) = 0
A
RLD

p+qn−2u(x, 0) = 0, ∀ n ∈ (0,∞), x ∈ R,
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where c is a constant and 1 < p ≤ 2, has unique Green’s function.

Proof. Applying Laplace transform with respect to t on equation (3.10) gives

g(x, s) =sξ−p′AΓ(s−q′)G(x, s) − c2 d2

du2 G(x, s). (3.11)

By taking Fourier transform with respect to x of (3.11), we get

G̃(w, s)

 ∞∑
n=0

anΓ(p′ + q′n)sξ−p′−q′n + c2w2

 = g̃(w, s),

which implies

G̃(w, s) =
g̃(w, s)∑

∞

n=0 anΓ(p′ + q′n)sξ−p′−q′n + c2w2

=
1

a0Γ(p′)

 (s−ξ+p′+q′ )̃g(w, s)

s−q′ +
a1Γ(p′+q′)

a0Γ(p′)


 1 +

∑
∞

n=2
anΓ(p′+q′n)

a0Γ(p′) sq′(n−1)+ c2w2
a0Γ(p′)

s−q′+
a1Γ(p′+q′)

a0Γ(p′)

s−ξ+p′+q′
−1

=
∞∑

m=0

(−1)m

a0Γ(p′)
s−ξ+p′+q′(

s−q′ +
a1Γ(p′+q′)

a0Γ(p′)

)m+1

 ∞∑
n=2

anΓ(p′ + q′n)
a0Γ(p′)

sq′(n−1) +
c2w2

a0Γ(p′)
s−ξ+p′+q′


m

× g̃(w, s)

=
∞∑

m=0

(−1)m

[a0Γ(p′)]m+1

s−ξ+p′+q′(
s−q′ +

a1Γ(p′+q′)
a0Γ(p′)

)m+1

m∑
k=0

 m
k

 [c2w2s−ξ+p+q
]m−k

×

 ∞∑
n=2

anΓ(p′ + q′n)sq′(n−1)


k

g̃(w, s).

Taking the inverse Laplace transform, we have Green’s function for (3.10). �

4. Discussion

Fractional calculus is a field enlightening the multiple areas of science and engineering. RL pro-

vides an origin to researchers for exploring the space of fractional calculus but there is not a single

general formula defining fractional differentiation. In 2019, Fernandez [1] gave a generalization of

fractional operators involving analytic kernel. In this article, we used the integral and differential

operators involving general analytic kernels to solve ordinary and partial differential problems.

5. Conclusions

In this work, we introduced Green’s function for the fractional differential operators involving

MAK, Green’s function for ordinary linear fractional differential equations is provided by the

means of Laplace transform and for partial differential equations by the means for joint Laplace

and Fourier transform generalizing the classical ways. The Laplace transform method is used
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to evaluate the complex fractional differential equations, so that we can easily calculate Green’s

function of the fractional differential equation. In order to obtain fractional term obtained by

Laplace transform in a more simple form, multinomial and binomial theorems allowed us to have

the required forms.

Since this model absorbs some previously introduced special cases in the course of fractional

calculus, it provides Green’s function for RL fractional model [1], Prabhakar fractional model [12],

AB fractional model [17] and GPF fractional model [20].
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