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Abstract. The objective of this paper is to study the φ-recurrent nature and application of LP-Sasakian manifold

associated with η̈-Ricci soliton. Initially, we introduce an example to show the existance of LP Sasakian manifold

equipped with η̈-Ricci soliton. The idea of Ricci soliton recognized as a generalization of an Einstein metric and

governing as the solution of partial differential equations representing Ricci flow. Some conditions have been obtained

representing the nature of soliton (expanding, unchanged and shrinkingness) in pseudo projective, Weyl projective and

semi generlized curvature with φ-recurrent condition. The application of η̈-Ricci Soliton on spacetime also discussed.

1. Introduction

The notion of symmetry in mathematical structures is commonly considered a fundamental

aspect of mathematics, especially in the areas of Ricci soliton and paracontact geometry. In

order to analyse compact three-dimensional manifold with positive Ricci curvature, Hamilton [13]

explored the concept of Ricci flow before four decades. The idea of Ricci soliton recognized as a

generalization of an Einstein metric and governing as the solution of partial differential equations

representing Ricci flow. In case of Ricci flow, the Riemannian metric is proportional to 1
2 Lg + Ric

and this proportionality constant is called the soliton constant. The Ricci flow in terms of soliton
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constant λ (say) is defined by the following equation [13]:

1
2
(Lvg)(G, K) + S(G, K) + λg(G, K) = 0. (1.1)

In (1.1), L is considered as Lie derivative along the complete vector field v and the Ricci tensor is

denoted by S for all G, K vector fields in χ(M) (an algebra of tangent vector fields). Here, if the λ

has positive (negative) value then we say expanding (compacting) soliton and is called unchanged

in nature (steady) for λ = 0.

The concept of Ricci soliton on f−Kenmotsu manifold consisting almost conformal tensor has

been generalized by Hui, Yadav and Patra [17]. They elaboarated φ-Ricci symmetric and cyclic

Ricci parallel f−Kenmotsu manifold. Results on torse forming vector field have been obtained

on Yamabe soliton by Mandal and Hui [19]. They apply semi-symmetric and projective semi-

symmetric connection to discuss the existence conditions on compacting, steady and expanding.

In [5] Chaubey and De investigated Riemannian manifolds equipped with Ricci soliton. In 2022

De, Sardar and De [11] extended the solitonic approch and defined Ricci-Yamabe soliton [11] by

considering a special vector field. By taking into account the pointwise collinear property with

characteristic vector field, Santu Dey [8] (2023) investigated the pointwise conformal Ricci soliton.

Chaturvedi, Bhagat and Khan [4] (2023) elaborated perfect dark fluids (as a dust, radiation and

stiff matter) associated with Bochner flat Lorentzian Kahler space-time including Ricci-Yamabe

soliton. Hui et al. [16] (2017) studied Ricci solitons on Ricci pseudo-symmetric (LCS)n-manifold.

In [10] (2023) U.C. De, M. N. I. Khan and A. Sardar elaborated h-Almost Ricci-Yamabe solitons

in paracontact geometry. Poddae, Balasubramanian and Sharma [27] (2024) extended the study

of Yamabe soliton in contact geometry. Haseeb and Chaubey [15] explained *-Ricci soliton on

LP Sasakian manifold. Pandey and Sharma ( [25, 26]) (2023-24) explored the Ricci soliton and

introduced the idea of generalized Z-Ricci soliton with generalized Z-tensor under the assumption

of Sasakian metric. Cho and Kimura [6] presented and defined the idea of η̈-Ricci soliton with

following system:

1
2
(Lvg)(G, K) + S(G, K) + λg(G, K) + µη̈(G)η̈(K) = 0. (1.2)

More specifically, the theory of (g, V,λ,µ) (η̈-Ricci soliton) simplifies to the Ricci soliton with

µ = 0. Majhi and Debabrata [18] (2019) extended η-Ricci soliton on LP-Sasakian manifold with

some interesting results. The para-Kenmotsu manifold with η̈ − ∗−Ricci soliton was described

by Sardar, De, and Gezer [29] (2023). Additionally, it has been explained the para-Kenmotsu

and para-Sasakian manifold admiting a gradient η̈ − ∗−Ricci soliton in dimension three. An

Einstein metric with ∗−conformal η̈-Ricci soliton is demonstrated by Sarkar and De [30] (2023).

The ∗−conformal η̈-Ricci soliton admitting (κ,µ)-almost Kenmotsu structure studied in [30] and

proved that Hn+1(−4)×Rn and η̈-Ricci soliton are locally isometric. Siddiqui, Oguzhan [31] (2020)

considered η-Ricci soliton on Kenmotsu manifold with generalized symmetric metric connection.

Shivaprasanna, Haque and Somashekhara [35] (2020) elaborated η-Ricci soliton on f-Kenmotsu
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manifolds. Almia and Upreti [1] (2023) discussed certain properties of η-Ricci soliton on η-

Einstein para-Kenmotsu manifold. Mert and Atceken [21] (2023) explored almost η-Ricci solitons

on pseudosymmetric Lorentzian generalized Sasakian space form. Haseeb, Bilal, Chaubey and

Khan [14] studied geometry of indefinite Kenmotsu manifold as η-Ricci-Yamabe solitons.

On the other hand, the Sasakian manifold, under φ-recurrentness, was investigated by De et

al. [12]. They demonstrated that, a Sasakian structure with a non-vanishing sectional curvature are

similar to locallyφ-symmetric manifolds, that implies the co-directionality of the characteristic and

associated vector fields. By discribing the non-existence of generalized projectively φ-recurrent

condition, Shaikh, Prakasha, and Ahmad [32] developed the concept on generalized φ-recurrent

on LP Sasakian structure. Matsumoto [20] (1989) illustrated LP-Sasakian manifold and examined

by Venkatesha, Bagewadi and Pradeep [38] (2011). Pandey and Chaturvedi continued this inves-

tigation by examining the Lorentzian metric and semi-symmetric constraints [23], [24]. In 2019,

Vardhana, Venkatesha and Hui [39] examined semi generlized φ-recurrent conformal Ricci soliton

on (LCS)n manifold.

Motivated by the above study, we are interested to investigate some new results on η̈-Ricci soliton

under LP-Sasakian structure consisting special vector field. In this paper, covariant derivative

operator is taken as ∇, the metric g assumes as a Lorentzian metric, the Riemann and Ricci

curvature consider by R and S respectively and the scalar tensor by r.

We organize our paper in the following way: After the preliminaries (section 2), an example

of η̈-Ricci soliton established to prove the existence of the considered manifold (section 3). In the

next section 4, φ-recurrent properties have been discussed with LP-Sasakian structure on η̈-Ricci

soliton. The next three subsequent sections (section: 5, 6 and 7) deal with pseudo projective, Weyl

projective and semi generalized φ recurrent conditions. In the last section, application of η̈-Ricci

soliton has been illustrated.

2. Preliminaries

An n-dimensional differentiable manifold (Mn, g) permitting a (1, 1) tensor field φ, a contravari-

ant vector field ξ, a 1-form η̈, and a Lorentzian metric g, is called an LP-Sasakian manifold, if the

following conditions hold [33]:

η̈(ξ) = −1,

φ2G = G + η̈(G)ξ,

g(φG,φK) = g(G, K) + η̈(G)η̈(K),

g(G, ξ) = η̈(G),

(2.1)

(∇Gφ)K = g(G, K)ξ+ η̈(K)G + 2η̈(G)η̈(K)ξ. (2.2)

φξ = 0, η̈(φG) = 0. (2.3)
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If we consider

ω(G, K) = g(φG, K), (2.4)

then closed 1-form η̈ provides the following in LP-Sasakian manifold

(∇Gη̈)(K) = ω(G, K), ω(G, ξ) = 0, (2.5)

for all the vector fields G, K, where ω denotes the symmetric (0,2) tensor.

Throughout the paper, we assume that LP-Sasakian manifold admits a special vector field defined

by ( [11], [2], [9])

∇Gξ = η̈(G)ξ−G. (2.6)

If (Mn, g) has to be supposed an LP-Sasakian structure (φ, ξ, η̈, g) then the following relation

obtained trivially:

R(ξ, G)K = η̈(K)G− g(G, K)ξ, (2.7)

R(G, K)ξ = η̈(G)K − η̈(K)G, (2.8)

S(G, ξ) = −2η̈(G), (2.9)

S(φG,φK) = S(G, K) + 2η̈(G)η̈(K), (2.10)

(∇Gη̈)K = η̈(G)η̈(K) − g(G, K), (2.11)

for all the the vector fields G, K.

By taking V = ξ in (1.2) and using (2.6), we get

S(G, K) = (1− λ)g(G, K) − (µ+ 1)η̈(G)η̈(K). (2.12)

The above equation yields

QG = (1− λ)G− (µ+ 1)η̈(G)ξ, (2.13)

S(G, ξ) = (µ− λ+ 2)η̈(G), (2.14)

r = n(1− λ) + (µ+ 1). (2.15)

As a consequence, the covariant differentiation of Ricci curvature yields

(∇HS)(K, ξ) = ∇HS(K, ξ) − S(∇HK, ξ) − S(K,∇Hξ). (2.16)

The following lemma will be used in the subsequent sections:
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Lemma 2.1. [12] Let us consider the tuples (Mn, g) of φ-recurrent LP-Sasakian structure then ξ and ρ
(characteristic and one-form vector fields respectively) seems co-directional and given by

A(H) = −η̈(H)η̈(ρ). (2.17)

The replacement by ξ to the field H in (2.17) gives

A(ξ) = η̈(ρ). (2.18)

3. Existence of η̈-Ricci Soliton on LP SasakianManifold

Let us consider a 3-dimensional manifold M3 = {(G, K, U) : U , 0}. Let the set {b1, b2, b3},

denotes the basis on M3, in the term of partial differential equations is given by

b1 = bu ∂
∂k

, b2 = bu(
∂
∂g

+
∂
∂k

), b3 =
∂
∂u

. (3.1)

Let g be a Lorentzian metric defined by: g(b1, b1) = g(b2, b2) = 1, g(b3, b3) = −1, g(b1, b2) =

g(b1, b3) = g(b2, b3) = 0, then Koszul formula yields

∇b1b1 = −b3, ∇b1b2 = 0, ∇b1b3 = −b1,

∇b2b1 = 0, ∇b2b2 = −b3, ∇b2b3 = −b2,

∇b3b1 = 0, ∇b1b3 = 0, ∇b3b3 = 0.

(3.2)

By considering the 1-form η̈ and the (1, 1) tensor field φ as:

η̈(U) = g(U, b3),

φ(b1) = −b1, φ(b2) = −b2, φ(b3) = 0,

the Riemann and the Ricci curvature coefficients obtain as

R(b1, b2)b3 = 0, R(b2, b3)b3 = −b2, R(b1, b3)b3 = −b1,

R(b1, b2)b2 = b1, R(b2, b3)b2 = −b3, R(b1, b3)b2 = 0,

R(b1, b2)b1 = −b2, R(b2, b3)b1 = 0, R(b1, b3)b1 = −b3.

(3.3)

S(b1, b1) = S(b2, b2) = 2, S(b3, b3) = −2. (3.4)

From (2.12), the Ricci curvature coefficients can be calculated

S(b1, b1) = S(b2, b2) = (1− λ) and S(b3, b3) = (λ− µ− 2). (3.5)

Since, the data (λ,µ) = (−1,−1) verifies the equation of η̈-Ricci soliton (1.2), therefore the metric

defined by (3.1) represents the η̈-Ricci soliton satisfying LP Sasakian manifold.
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4. φ-Recurrentness on η̈-Ricci Soliton

Definition 4.1. An LP-Sasakian manifold is said to be φ-recurrent if there exists a non-zero 1-form A such
that ( [22], [7], [28]

φ2(∇HR)(G, K)U = A(H)R(G, K)U, (4.1)

for arbitrary vector fields G, K, U, H.

Applicability of (2.1) on (4.1) yields

(∇HR)(G, K)U + η̈((∇HR)(G, K)U)ξ = A(H)R(G, K)U. (4.2)

Contracting (4.2), we obtain

(∇HS)(K, U) = A(H)S(K, U). (4.3)

Replacing U = ξ in (4.3) and together with (2.9) produces

(∇HS)(K, ξ) = −2A(H)η̈(K). (4.4)

On the other hand (2.16) yields the following with the help of (2.6), (2.9) and (2.11)

(∇HS)(K, ξ) = −2g(H, K) + S(K, H). (4.5)

Using (4.4) in (4.5), we get

S(H, K) = 2g(H, K) − 2A(H)η̈(K). (4.6)

Using lemma (2.1), equation (4.6) reduces to

S(H, ξ) = 2η̈(H)[1− η̈(ρ)]. (4.7)

Using (2.14) and (2.18) in (4.7), we get

λ = µ+ A(ξ). (4.8)

Therefore, we have

Theorem 4.1. Let (Mn, g) be an LP Sasakian φ recurrent space in the context of η̈-Ricci soliton then
solitonic behaviour depends on 1-form A and explained by:
• A(ξ) ∈ (−µ, ∞) provides expanding nature,
• A(ξ) ∈ (−∞,−µ) gives shrinking nature,
• A(ξ) = −µ reflects that neither expand nor compact (steady).
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5. Pseudo Projective φ-Recurrentness on η̈-Ricci Soliton

Definition 5.1. In an LP-Sasakian manifold (Mn, g), the pseudo-projective curvature tensor P̄ is defined
by ( [37], [3], [36])

P̄(G, K)U = aR(G, K)U + b [S(K, U)G− S(G, U)K]−
r
n
(

a
n− 1

+ b) [g(K, U)G− g(G, U)K].
(5.1)

Definition 5.2. An LP-Sasakian manifold is said to be pseudo-projective φ-recurrent if there exists a
non-zero 1-form A such that [22]

φ2(∇HP̄)(G, K)U = A(H)P̄(G, K)U, (5.2)

for arbitrary vector fields G, K, U, H.

Equation (2.1) and (5.2) give

(∇HP̄)(G, K)U + η̈((∇HP̄)(G, K)U)ξ = A(H)P̄(G, K)U. (5.3)

Contracting, we have

(∇HS)(K, U) = A(H)[S(K, U) −
r
n

g(K, U)]. (5.4)

Replacing U = ξ in (5.4) and using (2.9) and (2.1) result out

(∇HS)(K, ξ) = −
dr(H)

n
η̈(K) −A(H)[(2 +

r
n
]η̈(K). (5.5)

Since r is constant in (2.15), we get from (5.5)

(∇HS)(K, ξ) = −A(H)η̈(K)[2 +
r
n
]. (5.6)

In view of (5.6) and (4.5), we have

S(H, K) = 2g(H, K) −A(H)η̈(K)[(2 +
r
n
]. (5.7)

Using lemma (2.1) in above, we get

S(H, ξ) = η̈(H)[2− η̈(ρ)
r
n
]. (5.8)

With the help of (2.14), (2.15) and (2.18), equation (5.8) releases

λ =
µ+ A(ξ)

(3n−µ−1)
n

1 + nA(ξ)
. (5.9)

Therefore, we can state

Theorem 5.1. Let (Mn, g) be a pseudo projective LP Sasakian φ recurrent space in the context of η̈-Ricci
soliton then solitonic behaviour is dependent on one-form A and given by
• A(ξ) > −

µn
3n−µ−1 , and A(ξ) > − 1

n implies expansion in nature,

• A(ξ) < −
µn

3n−µ−1 and A(ξ) < − 1
n implies compact in nature,

• A(ξ) = −
µn

3n−µ−1 found no variation in nature.
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6. Weyl Projective φ-Recurrentness on η̈-Ricci Soliton

Definition 6.1. The Weyl projective curvature tensor of (Mn, g) is given by

P(G, K)U = R(G, K)U −
1

n− 1
[S(K, U)G− S(G, U)K]. (6.1)

Definition 6.2. An LP-Sasakian manifold is said to be Weyl-projective φ-recurrent manifold if there exists
a non-zero 1-form A such that

φ2(∇HP)(G, K)U = A(H)P(G, K)U, (6.2)

for arbitrary vector fields G, K, U, H.

Equation (2.1) and (6.2) deliver

(∇HP)(G, K)U + η̈((∇HP)(G, K)U)ξ = A(H)P(G, K)U. (6.3)

Contracting (6.3) yields

(∇HS)(K, U) =
1

(n− 1)
A(H)[nS(K, U) − rg(K, U)]. (6.4)

Replacing U = ξ in (6.4) and using (2.9) and (2.1) reduce to

(∇HS)(K, ξ) =
1

(n− 1)
A(H)η̈(K)[2n + r]. (6.5)

With the help of (4.5), equation (6.5) yields

S(H, K) = 2g(H, K) −
1

(n− 1)
A(H)η̈(K)[2n + r]. (6.6)

The lemma (2.1) and (6.6) resulting

S(K, ξ) = [2 +
1

(n− 1)
A(ξ)(2n + r)]η̈(K). (6.7)

Using (2.14), (2.15) and (2.18) in (6.7), we have

λ =
(n− 1)µ−A(ξ)(3n− µ− 1)

n(1−A(ξ)) − 1
. (6.8)

Therefore, we conclude that

Theorem 6.1. Let (Mn, g) be a Weyl projective LP Sasakian φ recurrent space in the context of η̈-Ricci
soliton then solitonic behaviour of the flow is given by
• expanding flow obtain for A(ξ) <

(n−1)µ
3n−µ−1 and A(ξ) <

(n−1)
n ,

• shrinking flow obtain for A(ξ) >
(n−1)µ
3n−µ−1 and A(ξ) >

(n−1)
n ,

• flow maintains the same behaviour for A(ξ) =
(n−1)µ
3n−µ−1 .
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7. Semi Generalized φ-Recurrentness on η̈-Ricci Soliton

Definition 7.1. [39] An LP-Sasakian manifold satisfying the condition

φ2((∇ZR)(G, K)U) = A(Z)R(G, K)U + B(Z)g(K, U)G, (7.1)

is called a semi-generalized φ-recurrent manifold.

Using (2.1) in (7.1), we obtain

g((∇HR)(G, K)U, V) + η̈((∇HR)(G, K)U)η̈(V) =

A(H)g(R(G, K)U, V) + B(H)g(K, U)g(G, V).

(7.2)

Contracting above yields

(∇HS)(K, U) = A(H)S(K, U) + nB(H)g(K, U). (7.3)

Put U = ξ in (7.3) and using (2.1), (2.9) and (4.5), we get

S(H, K) = 2g(H, K) + η̈(K)[nB(H) − 2A(H)]. (7.4)

Equation (7.4) implies

S(φH,φK) = 2g(φH,φK) + η̈(φK)[nB(φH) − 2A(φH)]. (7.5)

S(φH,φK) = 2g(φH,φK). (7.6)

On using (2.1) and (2.10), (7.6) reduces to

S(H, K) = 2g(H, K). (7.7)

Using (2.14), above equation provides

λ = µ (7.8)

If the soliton becomes steady, we have λ = µ = 0 which implies non-existance of η̈-Ricci soliton

and therefore following statement can be stated

Theorem 7.1. There does not exist any proper steady type η̈-Ricci soliton on semi-generalized φ-recurrent
LP Sasakian space.

Corollary 7.1. Let (Mn, g) be a semi-generalized LP Sasakian φ recurrent space equipped with η̈-Ricci
soliton then is an Einstein manifold.

Corollary 7.2. Let (Mn, g) be a semi-generalized LP Sasakian φ recurrent space equipped with η̈-Ricci
soliton then it is either expanding or shrinking accordingly µ > 0 and µ < 0 respectively.

8. Space-time on η̈-Ricci Soliton

The Lorentzian para-Sasakian spacetime of dimension four is that we will study in this section.

With the cosmological constant κ, the Einstein’s field equation is given by
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S(G, K) −
r
2

g(G, K) + κg(G, K) = τT(G, K). (8.1)

T is the energy momentum (0, 2) type tensor for all vector fields G, K and τ indicates the gravita-

tional constant. A perfect fluid is described by energy momentum tensor T given by

T(G, K) = (ρ− p)A(G)A(K) + pg(G, K), (8.2)

where ρ: the density function, p: the pressure function and A: the one-form examined by g(G, V) =

A(G) and V denotes the flow vector. In terms of the fact that if the density function ρ and the

pressure p vanish in the same manner, then fluid substance is not pure. If the flow vector field in

LP-Sasakian spacetime is considered as characteristic vector field ξ then energy momentum tensor

consequently takes the form

T(G, K) = (ρ− p)η̈(G)η̈(K) + pg(G, K). (8.3)

Substituting (2.12) in (8.1), we get

T(G, K) = −
1
τ

[
(1− λ−

r
2
+ κ)g(G, K) − (µ+ 1)η̈(G)η̈(K)

]
. (8.4)

Therefore, we have

Theorem 8.1. The energy tensor of the perfect fluid spacetime on LP-Sasakian space in the context of η̈-Ricci
soliton, is given by

T(G, K) =
1
τ

[
(1− λ−

r
2
+ κ)g(G, K) − (µ+ 1)η̈(G)η̈(K)

]
.

compairing (2.9) and (2.14), we get

µ = λ− 4. (8.5)

Equation (8.4) and (8.5) provide the scalar curvature of energy tensor

Tsca =
1
τ
[5λ+ 4κ− 7]. (8.6)

Therefore, the statement can be given

Theorem 8.2. The scalar curvature of energy tensor of perfect fluid LP-Sasakian spacetime in the context
of η̈-Ricci soliton is given by

Tsca =
1
τ
[5λ+ 4κ− 7].

From (8.3) and (8.4), we obtain

1
τ

[
(1− λ−

r
2
+ κ)g(G, K) − (µ+ 1)η̈(G)η̈(K)

]
=

(ρ− p)η̈(G)η̈(K) + pg(G, K),
(8.7)

Put G = K = ξ in (8.7), yields

λ = −[2τ(ρ− 2p) + 1 + 2κ]. (8.8)
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Theorem 8.3. If a perfect fluid LP-Sasakian spacetime on η̈-Ricci soliton satisfies the field equation, then
soliton constant λ is given by

λ = −[2τ(ρ− 2p) + 1 + 2κ].

Corollary 8.1. If a perfect fluid LP-Sasakian spacetime equipped a η̈-Ricci soliton then cosmological constant
κ and soliton constant λ are related by

4κ+ 5λ = τTsca + 7.

Conclusion

In this paper, φ-recurrent characteristics have been studied on an n-dimensional LP Sasakian

structure equipped with η̈-Ricci soliton associated with special vector field. The properties such as

expanding, shrinking and steady have been discussed for pseudo-projective, Weyl-projective and

semi generalized φ-recurrent LP-Sasakian manifold associated with η̈-Ricci soliton. The energy

momentum and its scalar curvature have been illustrated in LP-Sasakian spacetime in the context

of η̈-Ricci soliton.
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