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Abstract. In this article, a new system of Functional Equations is proposed. The Ulam-Hyers stability of this class of
equations is investigated using the product, sum, and mixed product-sum of powers of norms, as well as the general
control function. The stability analysis is carried out in random and fuzzy normed spaces using fixed point and direct
methods. One of the unique and interesting aspects of this study is that, three new and different kinds of FEs have been

introduced and the stability analysis is derived for all three equations simultaneously.

1. INTRODUCTION

A fundamental field of mathematics called FEs offers a wide range of solutions to algebraic,
analytical, applied, theoretical, and topological problems. Several mathematicians, including
Abel, D" Alembert, Babbage, Cauchy, Euler, Gauss, Legendre, and Schroder have made significant
contributions to the advancement of this domain. FEs is one of the key areas of modern research
that is gaining traction among researchers worldwide. Due to their numerous applications, FEs
are drawing the attention of more and more mathematical and empirical researchers. FEs are
studied in several branches of mathematics such as number theory, abstract algebra, queueing
theory, probability theory, differential geometry, and differential equations [1-3].

If any function from a given set of functions that approximates the equation is comparable to an

exact solution of the equation, the equation is said to be stable in that set of functions. The study
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of stability is essential to FEs because it serves as an efficient and comprehensive tool for assessing
the error that occurs when substituting functions that only approximately satisfy some equations
with the optimal solutions to those equations. In modern parlance, an equation is said to be stable
within a specific type of function if every function in that classification that considerably satisfies
the equation is comparable to an exactsolution of the equation. In the recent years, mathematicians
have explored a wide range of stability problems using various FEs (algebraic, logarithmic,radical,
andreciprocal). [4-8,23].

In 1940, Ulam brought up a key research problem on the stability of group homomorphisms
[9]. In the following year, Hyers [10] identified an answer to Ulam’s question for the Cauchy
additive FE. A couple of decades later, Rassias [11] generalised Hyers’ result, and Gavruta [12]
then continued to expand on Rassias’ findings by incorporating unbounded control functions.
Presently,the stability concept established by Rassias and Gavruta is typically referred to as the
”generalised Hyers-Ulam stability” of FEs. The Ulam stability can be analysed using a multitude
of methods, the most common of which is the fixed-point technique, which is predicated on a basic
outcome from fixed-point theory [13-17].

Mihet et al. [18] explored the Ulam stability of the following Cauchy FE in random normed

spaces.
Z(B1+ $2) = Z($1) + Z($2)
Kim et al. [19] proposed a generalised version of Cauchy additive FE

(931—13 (%2 B3 (5133 By

+‘133)+Z +§B1)+Z 332)22(%1—1-%2-1-‘133)

Furthermore, the authors deduced the Ulam stability of the above equation in fuzzy Banach
spaces for any non-zero fixed integer n. It should go without saying that an equation such as the
one- above can only be satisfied if a function Z is additive. As a natural outcome, the equation is
commonly referred to as the Cauchy additive FE, and the Cauchy additive function isits general
solution.Ghaffari et al. [20] documented the stability of cubic mappings in fuzzy normed spaces,
while Baktash et al. [21] discussed the stability of cubic and quartic mappings in random normed
spaces. Ravi et al. [22] employed the fixed-point technique to estimate the fuzzy stability of the
generalised square root FE in multiple variables. Recently Agilan et.al exploring the stability
results in various additive functional equation through various normed spaces such as [23-28]

Quite recently, Al-Ali et al. [29] studied the generalised Ulam-Hyers stability (GUHS) of a
generalised p-radical FE

and inhomogeneous p—radical FE

k
Z|A Y B = Y Z(Bi) + G(Br, Bz, Ba)

i=1 i=1




Int. J. Anal. Appl. (2024), 22:201 3

in 2-Banach spaces.
Inspired by previous studies on FEs and their stability analyses, this article introduces a novel
system of FEs and establishes the GUHS of various general control functions of the below equa-

tionsusing direct and fixed point approaches in fuzzy and random normed spaces.

Z(g VI + \/3322133) + Z(Z VP2 + - Msl)

~ (B ) ) + 2V (1.)
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s %q\/$§+$3ﬂ32+$%+é\/%3+%%1+$3
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_(s+£)z\/$l+313$2+32]+z \/Bz+323133+33 13)

This is the first study in the literature that introduces a system of FEs and investigates the stability
of these equations simultaneously in fuzzy and random normed spaces. This kind of research has
not been performed on FEs before, which adds a significant weightage to this article. Hence, this
study is unique and will be a substantial contribution to the available literature on the study of
FEs.

2. GENERAL SOLUTION
In this section, let us consider §* and 3" to be real vector spaces.
Lemma 2.1. If an odd mapping Z : §* — 3I" satisfies the FE
Z(P1+B2) = Z(P1) + Z(B2) (2.1)
then Z : §* — 3" satisfies the FE (1.1) for all B4, B2, Uz € F".

Proof. If B1 = P, = 01in (2.1), then Z(0) = 0. Replacing P1 by —P, in (2.1), the following result is
obtained: Z(—P,) = —Z(B2) for all B, € F*. Replacing P, by B in (2.1),

Z(2%1) = 2Z(%1) (2.2)
for all By € F*. By induction of n,
Z(i’l%l) =n Z(gnl) (23)
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Taking B; = g VB1P2 and P> = £ VvP2P3 in (2.1) and using (2.3),
Z(g VP2 + - \/‘Bz‘Ba) = ZZ(«/%%) + 2 (VP2%s)
for all By, P> € F*. Taking P; = g P3B2 and B> = £ VP2P1 in (2.1) and using (2.3),

Z(g VT2 + - \/‘Bﬂh) - Zzwwsz) + 2 (VP2P)

for all B4, B, € F*. Adding (2.4), (2.5), we reach Equation (1.1).
Z(g T+ - «/inziﬁs) + Z(Z VP2 + «/sxzzﬂsl)

_ (g + :) Z(VB1B2) + Z(VB2P3)]

for all g131,132,7/[3 S 3*.

3. Fuzzy StasiLity Resurrs:DiRECT METHOD

3.1. Basics of Fuzzy Normed Spaces. Basics of Fuzzy normed spaces one can see [30-34].

(2.4)

(2.5)

(2.6)

Definition 3.1. Let §" be a real linear space. A function M : F* X R — [0, 1](the so-called fuzzy subset) is

said to be a fuzzy norm on §F* if for all By, P2 € F and all 5,0 € R,

(F1) 9R(Bq,c) =0forc<0;

(F2) By = 0ifand only if R(Bq,c) = 1forall ¢ > 0;

(F3) N(cPy,T) =N (P1, 5)ifc #0;

(F4) N(B1+ P2, s+ T) = min{R(B1,s), R(Bo, T)};

(F5) (B4, ) is a non-decreasing function on R and limg_,oN(V1,T) = 1;
(F6)  for By # 0,9 (P4, -) is continuous on R.

The pair (F*, M) is called a fuzzy normed linear space. NW(F*, T") can be regarded as the truth-value

of the statement the norm of By is less than or equal to the real number 7.

Here, &*-linear space, (3*, N')-fuzzy normed space and (Y, %')-fuzzy Banach space.

Z:F -3

GZ(P1, B2, Bs) = Z(Z B+ - \/‘132‘33) + Z(Z VB2 + - Jsmsl)

_(g+§) Z(VB1B2) - Z( VP83 )]

&
Theorem 3.1. let the mapping & : F° — I*such that for some M with 0 < (%) <1

N (R (2991, 2°%1, 7%y, ), 0) 2 W (MK ($1,%1,%1), 9)
forall By € F*, then
lim 9 (R (2°%1, 2°%,, @f’%) , @%) =1.

k—o0

(3.1)

(3.2)
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Suppose that a function Z : §* — I* satisfies the inequality

N(GZ(B1, B2, P3), O) = N (K(PB1, P2, B3), D) (3.3)
Then the limit
o ($1) =N - lim %ﬁf” (3.4)
exists for all By € §* and the mapping o : § — I* such that
W(Z(P1) — (1), D) = W (K(P1, 1, B1),2017 - M)) (3.5)

with & € {-1,1} be fixed and 9 = (g + Z).

S

Proof. Assuming & = 1 and replacing (1, B2, B3) by (B1, B1, P1) in (3.3), the result is obtained

as

N (2Z(2B1) —22Z(B1), D) = W (]K(P1,P1,%1), D) (3.6)
Replacing *¥; by 2*PB1 in (3.6), then
7 @k-l—l
N (% ~Z(7"By), %) > W (K(ZP1, 7°P1, 7"%1), O) (3.7)
Using (3.1), (F3) in (3.7), the equation becomes
Z(Z1y) L O , O
m(T_Z(@ %1)/ E) Zm (R(‘BllgBllgBl)/ W) (38)

We know that it is easy to verify from (3.8), that

Z(PPy)  Z(9*P) O , O
9’t( @(k+1) - @k ’ 29 . @k) >N (R(g‘Blr g’Bl/ §131)/ W) (39)
Replacing © by MED in (3.9), the result is obtained as
Z(7P)  Z(7*B1) MFO )
( <9(k+1) l) - (@k 1),2@@k)2% <R(%1/%1/$1)/D) (310)
and
Z(7"1) S 12(2%1)  Z2(2'%1)
-2 Zé T (3.11)
for all ; € F*. From equations (3.10) and (3.11),
2(7"p1) © MO
N|———=-Z , .
7% ) ; 297
k

T (Z(2MBy) Z(2'By) M D
9(i+1) gi 29 .gi

v
s,
=

-

\Y
~ o~
Il
_ O

min| J{N (](B1,B1,PB1), O)}

i

>N (K(P1,B1,B1), O) (3.12)

Il
o
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Replacing 1 by 2% in (3.12) and using (3.1), (F3),

Z(Z1)  Z(2"P) N MO s 0
gﬁ( gltm) —— gm ,Zo‘ 29 . glitm) >N (R(BLBLSBQ,W) (3.13)
Replacing © by M™9O in (3.13),
Z(Zm)  Z(7"B) "N M9
m (@(k-‘rm) ) - (@m )’ 2@ 91 ( (g‘Bllg‘Bl/EBl) ) (314)
Using (F3) in (3.14),then
Z(Zpy)  Z(2"P1) , r
‘ﬁ( g0m T gm ,D) >N R(%L%L‘BQ,W (3.15)
i=m  29-9

1
for all B; € F and all © > 0 and all m, k > 0. SmceO<M<@andZ( ) < oo, the Cauchy

i=0
Za)
@k
3*,N) is a fuzzy Banach space, this sequence converges to some point &7 (1) € I*. So one can
y P q S P

criterion for convergence and (F5) implies that { } is a Cauchy sequence in (3%, N). Since
define the mapping <7 : §* — 3" by
gk
/(1) =9~ fim ZZED

k— o0

for all B; € F*. Substituting m = 0in (3.15),
Z(9*
m(% K(P1, P, 1), ————
Lizo 29-9'
for all B; € " and all © > 0. Letting L — oo in (3.16) and using (F6),
N(Z(P1) = (P1), D) =N (K(B1,PB1,P1),20(2 - M))

for all B1 € §* and all © > 0.
To prove o7 satisfies the equation(1.1),
Replacing (B1, B2, B3) by (2FB1, 25B2, Z°P3) in (3.3), respectively, the result is obtained as

O

—Z(‘Bl),D) > 0 (3.16)

R (D2, 795, 793, 0) 2 R (R(7 %1, 7%, 793), 70) (3.17)

Now,

W(Z(g \/‘131‘13z+£\/‘132‘133)+2(g ToPs + - Msz)
- (B 2l - 2V )
Zmin{ (sz%( VBB + - \/ﬂszﬂ33)——z(@k(p ‘Bl‘Ber ‘BziBa)),

o (BB + LV - L 2( (B Vs + LB,
(o ; J- g2 oem+ v

U'IO

)
)

ol
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7
({5 e 2Jlremml o (5 )l £)
A sl )
n( Lz (@k(’?«/@mﬁ \/‘132‘133)) Z(@k(s\/‘ﬁz‘ﬁawL x/aslasz))
o (7 (5 o -z ) 2}
(3.18)

Using (3.17) and (F5) in (3.18),

ER(ﬁ(g VP2 + g \/332%3) + %(g PBoPs + g ‘131‘132)

- (g + g) [ (\B1B2) — o ( \/332‘133)]/9)
> min{1,1,1,1,W (K(Z*B1, 7"P2, 7%3), 7°0))}
> W (R(Z"P1, 7*By, 7*%3), 74D)

Letting k — oo in (3.19) and using (3.2),then

(3.19)

m(d(g T+ %2%3)+w(’§¢%2ﬂ33+§v$1%2)

—(g + g)[mM) —ﬁi(\/‘Bz‘B3)],D) =1 (320)

Using (F2), we arrive

o (g VBB + - \/‘132‘133) + (g VP2Bs + \/ilsl%z)
p r

— (a + ;) [%( VB1P2) + . ( V§B2$3)]

Finally <7 satisfies the additive functional equation (1.1).
In order to prove <7 (1) is unique.

k 1 ( ok
m(d((Bl)_d/(%l)/D) _ %("d<@ gBl) _ 4 (@ gBl),D)

gk gk
, A (P*B)  Z(2"B,) © Z(P*By) o' (P*PBy) O
2 mm{iﬁ( gk - gk E)’m( gk - gk ’ E)}
k _
> (9, 29, 94), )
20 9%(9 - M
> 9?' (R((‘B]/ (‘Bl/ sBl)/ 25\/(]‘ >)
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Since
. 209K(2-M)
lim = o0,
k— o0 ZMk
the result is obtained as
o 20 75(2 - M)
kll_)ﬂgom (R(gBlnglzs‘Bl)/ AT 1.

Finally,
R (P1) - o' ($1), D) = 1
for all B € F* and all © > 0, hence &7 (PB1) = &’ (P1). Therefore o7 (P1) is unique.

Corollary 3.1. Let the mapping Z : §* — 3" satisfies

N (A,D),

m(AZ3ﬁﬂms 9), s#1;
N (GZ(B1,%2,%3),0) = €N (A H? LIHIP, ) S * %,’

W (A (T, IHE + 23, 1K), ©), s # &

Then there exists a unique additive mapping o/ : §* — JI* such that

N (A,2|2 -1]D),

N (BAIBIF,212 - 7°19),

R (AP, 212 - 7%19),
N (4AIB117,212 - 2%D)

N(Z(B1) - ($1), D) 2

(3.21)

(3.22)

3.2. Fuzzy Stability Results:Fixed Point Method. The following part of the section details some

fundamental concepts of fixed point theory see [35]. To prove the stability result the following are

defined:
0; is a constant such that

and Z is the set such that

Theorem 3.2. Let the mapping Z : § — 3" for which there exists a function & : F*>

condition
: ’ k k k k
lim 9 (8 (51, 62, 81%3), 5{0) =
and satisfying the inequality
N (G Z(EBL g‘BZ/ sB3>/ D) > n’ (R(g‘Bl/ g‘BZ/ §B3)’ D)

If there exists L = L(i) such that the function

P = E(P1) = 3

— 3 with the

(3.23)

(3.24)
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has the property
W (L5 (5:%1),0) = W (S($1), D), V1 € 5,0 >0. (3.25)
Then there exists a additive mapping o7 : §* — 3J* such that
1=
R(Z(81) - QB1),0) > L7681, ), Vi1 €5, 626)

where 9 = (g + Z).

S

Proof. Let the general metric d on Z, such that

d(a, B) = inf {KBN(0, )N (a(P1) — B(PB1), D) =N (K& (B1),D),B1 € F, 0> 0}.

1

It is easy to see that (Z,d) is complete. T : Z — Z is defined as Ta(B1) = 6-0((61%1)' forall B; € F".
1

Ifa,peZ thend(a,p) <K

= N (a(P1) - p($1),0) 2 W (K& ($1),0)

N %N [X(%iBl) —ﬁ(éé?l),D)Zm/ (651@@(61%1)/9)

= N (Ta(P1) - TH(P1), D) = W (KLE(P1), D)

= d(Ta(P1), TB(PB1)) <KL

= d(Ta,TB) < Ld(a, B) (3.27)

for all a,p € Z. Therefore, T is a strictly contractive mapping on Z with Lipschitz constant L.

Replacing (*B1, B2, B3) by (B1, B4, P1) in (3.24),
N (2Z(.@SB1) —2.@Z(%1), D) > W (R(%l,gBl,gBl),D) . (328)
for all 1 € F*, © > 0. Using (F3) in (3.28),

Z('B 1
in( (@1) - Z(B1), D) > 0 (581,91, 91),9) (3.29)
for all B € F*, © > 0 with the help of (3.25) when i = 0, it follows from (3.29) that
Z
n(Z3 -z, 0) 2 w (Ls (), ©)
= d(TZ,Z)<L=1L'=L"" (3.30)

Replacing *¥; by %1 in (3.28), the result is obtained as

sl -o2(2) o) (a3 2. 2) o

With the help of (3.25) when i = 1, it follows from (3.31)
)
N ER(Z(‘Bl) - @Z(%),D) > W (1), D)

= d(Z,TZ)<1=1"=L"" (3.32)
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Then from (3.30) and (3.32),
d(Z,TZ) < L' < o0

It follows that a fixed point . of T in Z exists such that

. Z(2"P1)
o/($1) = N lim —=7—=

Replacing (B1, P2, B3) by (0:%1, 0P, 6;B3) in (3.24),

. VP eF, 0> 0. (3.33)

1 ,
N gDZ(éi%ll 0iPB2,6iP3), O =N (9(51‘%1, 0iB2,6;B3), 51-(9) (3.34)
i
for all © > 0 and all B4, By, B3 € F*. Using the same technique as in the Theorem 3.1, the function
& §* — J* can be proved to satisfy the functional equation (1.1).

since 7 is a unique fixed point of T in the set
A={ZeZd(Z ) < oo},
4/ is a unique function such that
N(Z(P1) - ($1),0) 2 W (K& (P1), D) (3.35)

Using the fixed point alternative again, we get

1
d(2, o) < =2 d(Z,T2)

Ll—i
= dZ, )< 1T
[
= R(Z(B) - (91, 0) 2 W L), D), 636
for all B; € F* and O > 0. Hence proved. O
Corollary 3.2. Let the mapping Z : §* — J* satisfies
W (A D),
W (AT, I, 2), 51
N(GZ(SBL i132/ %3)/ D) > (337)
% (AT, IHilF, ©), s# 3
R (A (T, MGl + T2 I1H601%), D), s # 4
Then there exists a additive mapping o/ : §* — 3J* such that
N (A,212 -1|9),
N (A °,219 - 2°|D
11, 2| D), (3.38)

R (AIB117,212 - 2*19),

(
N (Z(B1) -/ ($1), D) 2 E
W (4AIB4], 212 — 7%19)
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Proof. Setting

A,

3
A Y IHF,
i=1

K(PB1, Bo, P3) = 2
Al A,
[l

3 3
A(H I+ ) ||%»||3S].
i=1 i=1

for all B4, B>, B3 € F*. Then,

N’ (RSB, 5B, 61B3),6£0)
N (A, 5k>:>)

W AZIIWIIS = ]

W AHII%IIS,éf_?’S 0

[H I +Z ||7~(||35) ot

— lask — oo,

~

N

— lask — o,
— lask — oo,

— lask — oo.

Thus, (3.23) is holds. But &($1) = 18 (%,

N

, %1) has the property

' (Lélé"(éi‘Bl),D) > W (£(B1), D) VP € F, 0 > 0.

i

Hence

N (A,290),
W (i, 20),
60009 = (822 2)20) =1 g R e 20)
W (i, 20)
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Now,
/(A
2'2%’(29),|5%1||S 20), igllfm(?é)> ))
(1 ! = , f
o (5o, 0) = m(éﬁ( ol 20), | WS @11) )
& W (63716 (1), D).
W (£ (25 lowi,29)

Now from (3.26), the following cases for conditions (i) and (ii) are proved.
Type:l L= 2 ! fors =0ifi =0

R(Z(B1) - ($1), D) z*ﬁ'( 7

1_—@_1@@(‘31)19)
— 9 (=2 yIF, ©) = W (AIRIF,2(2-1)9).
2(7-1) '
Type:2 L= 23 fors=0ifi=1

R (Z(P1) - 7 (P1), D) = sn(

1- ‘go(%l)’D)

(A A L
=% (2(1 —y Il ,D) =W (A1, 2(1- 2)9).

Type:3 L = Z° ! fors > 3ifi =0

s—1
R (2(8) - (00), ©) 2 9 (12, 9)
= (5t I, D) = (AR 2(5 - 7)),
Type:d L= P fors < 1ifi=1
R(Z(P1) - o ($1),0) 2 W (78 (1), )

3A
=W |00 °, 0= BAIB4IF,2(2° - 2)9).
(2(95__@)“131” ) BAIBIF, 2(7° - 2)0)
Type:5 L= 2% ! fors > 1ifi=0

@35—1

N(Z(P1) - (P1),0) 2 W (1_—@35_1

5’(‘131),53)
= (DI, O] = (AN, 2(2 - 7)),

205 - 5%)
Type:6 L = 21 fors < ifi =1

R(Z(B1) = ($1),©) = % ( £(91),9)

1-— @1—35
= (2, O] = (AR, 2(7% - 2)9).
2075~ )
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Type:7 L= 2% ! fors > 1ifi=0
g3s-1
1— 93-1
4A
—g|—=
(2(@ - 7%)
Type:8 L = 21 % fors < ifi=1

R(Z(B1) - (B1), 0) = m( g(snl),o)

11, D) = 9 (A1, 2(2 - 7%)9).

R(Z(F1) -/ ($1),0) 2 % (e (1), ©)

4N
=N—
(2(@35 -9)

Hence the proof is complete m]

B, D) = o (4AIB11%,2(7% - 2)9).

4. StaBiLITY REsurts: RANDOM NORMED Srace: DiRecT METHOD

4.1. Basics of Random Normed Spaces. Fundamentals of Random normed spaces one can see
[36—40].

Definition 4.1. A random normed space (briefly, RN-space) is a triple (§*, u, 7" ), where X is a vector
space, T is a continuous T —norm and 1 is a mapping from §* into DT satisfying the following conditions:
(RN1) ug, (7)) = N(T) forall T > 0 if and only if B1 = 0;

(RN2) o, (7)) = psg, (T /lal) for all B1 € F*, and o € R with a # 0;

(RN3) g, 45, (T +5) = T (usg, (7)), pisp, (s)) for all B1,Bp € F* and T,s > 0.

Let us take §&*- linear space , (3%, u, T) a complete RN-space.
A mapping DZ : §* — 3" is defined by

GZ (%1, %2, %s) = Z(Z T+ - \/‘132‘133) + Z(Z V2Ps + £

(B D) eV - 2

q
for all B1, P, B3 € F".
Theorem 4.1. Let the odd mapping Z : §* — I for which there exist a function 11 : F" — DT with

) . k+it1)j
lim T;2, (77_@(k+f)f‘B1,_@<k+i>i‘432,_02(k+i>f‘433 (9 (i) T)) =1

k— o0
= kh_)rg T gkip 1, 7%i%B2, 7¥i%3 (@k] T) (4.1)
such that
HGZ(% %2, %5) (T) 2 1 35,95 (T) (4.2)

forall By, B2, Bz € F and all T > 0.
Then there exists a additive mapping o7 : §* — J* satisfying

Har)-z(wn) (T) 2 T (Mg, g, o6, (9 e T)) (4.3)
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The mapping <f (V1) is defined as

Hor(p) (T) = lim py gy ) (T) (4.4)

k—oo
ki

forall By € F and all T > 0 with j = +1 and 9 = (;—] + Z).

S

Proof. Assuming j = 1 and applying (1, P2, ¥3) by (B1, B1, P1)in (4.2),

toz(py)-2225) (T) 2 19,,9,%, () (4.5)
It follows from (4.5) and (RN2) that

Mz, (T) 2 1939 297) (4.6)

Replacing B by P*P in (4.6),

Hz@k1g,)  z2(2ke,) (7) 2 Nkp, 7%, jkﬂsl(z-@(kﬂ) ) (4.7)

k1) T gk

We know that, it is easy to see that

@kqs] v Z(27%)  Z(9')
Z(*%P1) :Z :

Ty 7 (4.8)
i=0
for all B € F*. From equations (4.7) and (4.8),
H H%T?ﬂ_zwl)(ﬂ —H z?;g%_w?ﬁm(ﬂ
> TE vy, ) z@isy (T)
20 7
> Tk_o’?@“lil DiB,, DB, (2.@(1+1)T) (49)
In order to prove the convergence of the sequence
Z(2%B4)
9k ’
B1 is replaced by 21 in (4.9). The result is obtained as follows.
‘UZ(_@kerl\ ) (T) 2 Tf:_én@i+nz%1’@i+m%1,@i+n1$l (29(i+m+1)7")
W Z(%1)
= TP iy, o, o, 22 V1)
— 0asm — oo (4.10)
Thus Z(@—% is a Cauchy sequence. Since & is complete there exists a mapping .«7 : § — J*
K y seq . p ppmg & :

H-ﬂ(‘lﬁl)((r) - khr?o Hz(okiy, )(T)

ki
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Letting m = 0 and £ — oo in (4.10), the result is (4.3) for all *¥; € §* and all 7 > 0. Replacing
(P1, B2, B3) by (ZFPy, 25B,, 7%B3),

k
#jDZ(Qk‘BL-@k%L@W@a)(T) s n@k‘lﬁ,@k%z,@k‘l‘s(‘@ t)
= T?:rrnk_l(U@i+1331,@i+1$1,@1+1%1) (@(i+m+1)t) (4.11)

Taking L — oo on both sides, it can be seen that .7 satisfies (1.1) for all B4, B, B3 € F".
Therefore the mapping &7 : §* — 3" is additive.

Finally, to prove the uniqueness of the additive function .7 subject to (4.4), let us assume that
there exist a additive function .7’ which satisfies (4.3) and (4.4). Since o7 (2*P1) = Z* .7 (B1) and
A" (D*B1) = P*a’ (PBy) for all By € F* and all L € N, it follows from (4.4)

Har (9= (8) 2T) = Wy ( iy )= (hspy) 2L°T)
= Loy (P, )=Z( D)+ Z( Ryt (o) (2DT)
2 T(xu,;zf(@k‘l?l)—z(ﬁk‘li])(@k(r)/FZ(@’“B])—W/(Q"%)(@](T))
-T (Tfio(’7@<i+k+1>%1,@(i+k+l>m1,,@<f+k+l>q31) (29T,

i+k+1
Tzo(n@(i+k+1)1;1/@(i+k+1)m1’@(i+k+l)%l) (2.@(1+ + )T))

— O0ask — oo
Hence .27 is unique. O

Corollary 4.1. Let the mapping Z : §* — J* satisfies the inequality

na(7),
Mz i (T s#£3;
B, By,8 (T) > i=1 1/t (412)
HGZ(%1,%2,%3) Mt e (7 5%,
1.
(T i+ i) (T )y 8 # 5
Then there exists a unique additive function </ : §* — J* then
n2l9§\—1| (T)’
Moamye (T),
A9-2|
Hzw=er ) (T) = N sy (7)), (4.13)
AD-2%|
LTI )(fr),
2 |12-23|

forall By € F* and all T > 0.
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4.2. Stability Results: Random Normed Space: Fixed Point Method. Let ¥ be a vector space
and (Y, 4, T) be a complete RN-space.

Theorem 4.2. Let the mapping Z : F — I* for which there exist a function n : F> — DT with the

condition
B gy, gio, g, (9F1) = 1V B, B, B3 € 1,7 > 0 (4.14)
and satisfying
Gz Bo93) (T) = 191,309 (), ¥ B1, B2, B3 € P4, 7 > 0. (4.15)

There exists L = L(i) such that the function

PBi1— E(P1,T) =13, 9, 9, (27),

has the property
1
EP,T) < Lgé" (0i%B1,T), VB €F,T > 0. (4.16)
There exists a additive function o/ : §* — 3" satisfying
L1 )
Moz ($1)-Z(B1) (ET) > éa(glh,T), VB, e&,7T >0, (4.17)

here 9 = (g + f).

S

Proof. Let the general metric d on Z, such that
d(a,p) = inf [KBR(0,00)|tta(p,)-pepy) (KT) 2 &($1,T),$1 € §,T > 0}.

1
It is evident that (Z,d) is complete. T : Z — Z can be defined as Ta(P,) = ga(éi‘BQ, for all
Py € F. Now fora, B Z,d(a,B) <K l

= Ha(py)-h(wy) (KT) 2 &($1,T)

K7~
= Ha;By) B3y (5—) > 5(51‘31,7)

0; 0; 1

Kt
= HTa(,)-TB(B1) (6_1) > E(P1,T)
= d(Ta(gBl),Tﬁ(%O) < KL
= d (T[Jé, Tﬁ) < Ld(a,ﬁ) (4.18)

for all a,p € Z. Therefore, T is strictly contractive mapping on Z with Lipschitz constant L.

Replacing (1, B2, ¥3) by (B1,B1,P1) in (4.15),
t
M2y (5) > 1.9 (27) (4.19)
With the help of (4.16) when i = 0, it follows from (4.19), then
t
= g ()2 600
= d(TZ,2)<L=L""<c. (4.20)
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Again replacing ‘B by % in (4.19), the result is
N > 19, B 0 421
#Z@])_@Z(%)(T) Ny 3 3 (27) (4.21)
With the help of (4.16) when i = 1, it follows from (4.21), then
3 \(T) = E(Br, T
#Z(%)_@Z(%)( )2 (P, T)
= dZTZ)<1=L"=L" (4.22)
Then from (4.20) and (4.22), it can be concluded that
d(Z,TZ) < L° < o0
It follows that there exists a fixed point 7 of T in Z such that
. Hzskpy) .
tor(p) (T) = lim — —(T), VP1€F,T >0 (4.23)
i
Replacing (%1, B2, Bs) by (85PB1, 612, 8{P3) in (4.15),
k
HéLsz(éfﬂsl,afﬂsz,éﬁ*Bs) (7) 2 Tokp1,092,04 %3 (51' T) (4.24)
for all By, Vo, B3 € F and all 7 > 0.
By fixed point alternative, since .27 is unique fixed point of T in the set
A={ZeZd(Z o) < oo},
therefore <7 is a unige function such that
Bz () -z (1) (KT) = E(P1,T) (4.25)
and
d(Z, ) < %d(z, T2)
L1
<
= d(Z,4) < 1T
L1
= Hz($)-o (B) (ﬁrf) > &($1,T) (4.26)
m]
Corollary 4.2. Let the function Z : §* — J” satisfies the inequality
na(7T),
Mg, (T 5#3;
B85) (T) > = (4.27)
HGZ(%1,%2,%53) atee, e (T S# 3

1.
AT s+ X2 ||wi||3s)(7)' S# 3/

i=1 i=1
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Then there exists a unique additive function </ : §* — J* then

oo (T
Ny (77),
AD-29
Hzeu)-o 80 (T) S e (7), (4.28)
2|2- 235
nA\I‘J31\I35( 4 )(T),
2 |@_93S|
forall By € F and all T > 0.
Proof. Let
na(T),
T
Ty flnﬂ-ns( )
Mp1,9295(T) = 7),
o T\ ﬁlnfﬂins( )
T),
nA(f[ ||‘Hf||5+i ||7‘(i||35) )
i=1 i=1
for all B4, By, B3 € F and all 7 > 0. O

5. CoNcLUSION

In this research, a novel system of additive FE (1.1) has been proposed. The generalised Ulam-
Hyers stability for these equations are then investigated in fuzzy and random normed spaces using
direct and fixed point techniques. This kind of effective stability analysis for a novel system of
equations has not been attempted before, which makes the results of the study quite unique and
important to the study of FEs. Some applications of the results derived for the newly proposed
FEs have also been explored to introduce the readers to the practical applications of the results.
The Hyers-Ulam stability for these equations (1.1) can also be determined in the future in various

normed spaces.
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