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Abstract. In this article, we introduce the bipolar fuzzy (BF) level subsets of a lattice, and we prove the characterisation

BF level subset B in terms of L forms a bipolar fuzzy lattice (BFL) and a bipolar fuzzy ideal (BFI). We show that if B

forms a BFL of L, then the support set Supp(B) is a crisp sublattice of L. Also, we show that the converse necessarily

does not hold in general, and we also proved the results for BFI. Moreover, we introduce and explore the concept of

bipolar fuzzy magnified translation (BFMT) of a BFS. Also, we characterize a BFL and a BFI in terms of a BFMT. We

show that the homomorphic image and pre-image of a BFMT of a BFL is also a BFL, and the BFMT of a BFI is also a BFI.

1. Introduction

In fuzzy set (FS) theory, Zadeh [21] defined a fuzzy set µ as a class of objects z along with a grade

of MSh function. This MSh function µ(h̄), h̄ ∈ z, allocates to each object a grade of MSh ranging

between 0 and one. FS allocates a single value to each object. This single value combines the

evidence for h̄ ∈ z and the evidence against h̄ ∈ z without indicating how much there is for each.

The single numbers in FS do not tell us completely about its accuracy. Several decision-makers

and researchers felt that in proper decision-making, the evidence of h̄ belonging to µ and evidence

not belonging to µ are both necessary.

To counter this problem, Gau and Buehrer [7] popularized the vague sets. The Atanassov’s [3]

intuitionistic fuzzy sets and vague sets are mathematically equivalent by Bustince and Burillo [5].

Received: Sep. 6, 2024.

2020 Mathematics Subject Classification. 03G10, 03E72.
Key words and phrases. bipolar fuzzy set; bipolar fuzzy sublattice; bipolar fuzzy level subset; bipolar fuzzy magnified

translation.

https://doi.org/10.28924/2291-8639-22-2024-195
ISSN: 2291-8639

© 2024 the author(s).

https://doi.org/10.28924/2291-8639-22-2024-195


2 Int. J. Anal. Appl. (2024), 22:195

According to Gau and Buehrer, a vague set ’κ’ of a certain universe z is characterized by using a

pair of functions (tκ, fκ) where tκ and fκ are functions from z into [0,1] such that tκ(h̄) + fκ(h̄) ≤ 1

for all h̄ ∈ z. The tκ is called the MSh function and tκ(h̄) gives evidence of how much an element h̄
belongs to κ and fκ is called non-MSh function and fκ(h̄) gives evidence of how much an element

h̄ does not belong to κ. These concepts are applied in decision-making, fuzzy control systems,

knowledge discovery, fault diagnosis, etc. In fact, if z is a set, a function ’κ’ from z to [0,1] is said

to be a fuzzy subset of z. A fuzzy set of a set z is a mapping from z into [0, 1]. A vague set κ of

set z is a pair (tκ, fκ) where tκ from z to [0, 1] is a MSh function and fκ from z to [0, 1] is a non-MSh

function satisfying the condition tκ(h̄) + fκ(h̄) ≤ 1 for all h̄ ∈ z. Thus, the theory of vague sets is a

generalization of the theory of fuzzy sets.

In particular, Ajmal and Thomas [1] both explored the theory of fuzzy sublattice (FL) and

introduced the idea of fuzzy sets to lattice theory. After that, in 2011, Thomas and Nair [19]

presented the idea of intuitionistic fuzzy lattices (IFLs). In 2017, Milles [12] investigated the

characterization of IFIs and IFFs based on lattice operations. Rao [15] later researched rough

vague lattices in 2019. Nageswara Rao et al. [14] introduced vague lattices (VL) in 2020. The

principal IFI and IFF on a lattice were the subject of Boudaoud et al. [4] study in 2020. Milles [13] as

well as studied the lattice of intuitionistic fuzzy topologies (IFT) produced by intuitionistic fuzzy

relations in 2020. On residual lattices, Zhang and Qingguo [22] researched the intuitionistic fuzzy

filter (IFF) theory.

Many different human decisions are founded on dual or bipolar-judgmental thinking, which has

both a positive (+ve) and a negative (-ve) side. Keeping in view of this importance, in 2000, Lee [10]

introduced the concept of bipolar fuzzy sets (BFSs). A BFS is a pair (µ+,µ−), where µ+ : z→ [0, 1]

and µ− : z→ [−1, 0] are mappings. The BFSs are an extension of fuzzy sets (FSs) whose MSh degree

range is [−1, 1]. In a BFS, the MSh degree 0 of an element expresses that the element is irrelevant

to the corresponding property, the MSh degree (0, 1] of an element expresses that the element

somewhat satisfies the property. The MSh degree [−1, 0) of an element signifies that the element

somewhat satisfies the implicit counter-property. The idea behind such a description is connected

with the existence of bipolar information (e.g., positive information and negative information)

about the given set. Positive (+ve) data represents what is presumed possible, while negative (-ve)

data represents what is presumed impossible.

Let z be a universal set, and κ be a set over z that is defined by a positive MSh function µ+κ and

a negative MSh function µ−κ , where µ+κ : z → [0, 1] and µ−κ : z → [−1, 0].Then κ is called a bipolar

valued fuzzy set over z and can be written in form κ = {< h̄,µ+κ (h̄),µ−κ (h̄) >| h̄ ∈ z}. Anitha et al. [2]

have studied the BF subgroups of a group. Majumder and Sardar [11] studied fuzzy magnified

translation on groups in 2008. Jun et al. [8] introduced BF translations in BCI/BCK algebras.

Sharma [18] studied intuitionistic fuzzy magnified translation on groups in 2012. Majumder and

Sardar [17] studied bipolar-valued fuzzy translation in semigroups in 2012. Udten et al. [20]

explored the study of translation and density of a BFS in UP-algebras. Ria [16] studied BF
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translation, extension, and multiplication on bipolar anti-fuzzy ideals of K-algebras. Kalyani et

al. [9] defined a BFMT of a bipolar fuzzy subgroup of a group.

2. Preliminaries

In this section, we will revisit and elaborate on the essential definitions that form the foundation

of this study. To ensure a comprehensive understanding, we will carefully examine key terms and

concepts, which are crucial for the progression and clarity of our research. This review will not

only reinforce the theoretical framework but also highlight the relevance of these definitions in the

context of our investigation.

Definition 2.1. [6] A poset (L,≤) is called a lattice if sup{p, q} (also denoted by p∨ q) and inf{p, q} (also
denoted by p∧ q) exist for every pair of elements p, q in L.

Definition 2.2. [23] Let z be any non-empty set. A mapping ψ : z→ [0, 1] is called a fuzzy subset of z.

Definition 2.3. [6] Let ψ : z→ [0, 1] be any FS. Then the set {ψ(p) | p ∈ z} is called the image of ψ and
is denoted by Im(ψ). For t ∈ [0, 1],ψt = {p ∈ z | ψ(p) ≥ t} is called a level subset of ψ.

Definition 2.4. [7] A vague set κ in the universe of discourse z is characterized by two MSh functions
given by

(i) a truth MSh function tκ : z→ [0, 1] and
(ii) a false MSh function fκ : z→ [0, 1],

where tκ(p) is a lower bound of the grade of MSh of p derived from the evidence for p and fκ(p) is a lower
bound on the negation of p derived from the evidence against p, with tκ(p) + fκ(p) ≤ 1.

We give below a formation of the definition of vague set in the following way, which makes

Atanassov intuitionistic fuzzy sets [3] and Gau and Buehrer [7] vague sets in a mathematically

equivalent form.

Definition 2.5. [7] Let κ be a vague set of a universe z with true MSh function tκ and false MSh function
fκ. For α, Υ ∈ [0,1] with α ≤ Υ, the (α, Υ)-cut or vague cut of a vague set κ is the crisp subset of z, given
by κ(α,Υ) = {p ∈ z | Vκ(p) ≥ [α, Υ]}, i.e., κ(α,Υ) = {p ∈ z | tκ(p) ≥ α and 1− fκ(p) ≥ Υ}.

Definition 2.6. [7] The α-cut, κα of the vague set κ is the (α,α)-cut of κ and hence given by κα = {p ∈
z | tκ(p) ≥ α}.

Definition 2.7. [10] Suppose z is a universal set. A bipolar fuzzy set (BFS) B in z is an object having the
form B = {< h̄, BP(h̄), BN(h̄) >| h̄ ∈ z} where BP : z → [0, 1] and BN : z → [−1, 0] are a positive and
negative MSh functions, respectively.

Definition 2.8. [2, 10] Let z be a nonempty set, and let Bϑ, Bω ∈ BPFS(z).
(i) Bϑ is a subset of Bω, denoted by Bϑ ⊆ Bω, if for each h̄ ∈ z, BP

ϑ(h̄) ≤ BP
ω(h̄) and BN

ϑ (h̄) ≥ BN
ω (h̄).

(ii) The complement of Bϑ, denoted by Bc
ϑ = ((Bc

ϑ)
N, (Bc

ϑ)
P), is a BFS in z defined as: for each h̄ ∈ z,

Bc
ϑ(h̄) = (−1−BN

ϑ (h̄), 1−BP
ϑ(h̄)), i.e.,(Bc

ϑ)
P(h̄) = 1−BN

ϑ (h̄),(B
c
ϑ)

N(h̄) = −1−BN
ϑ (h̄).
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(iii) The intersection of Bϑ and Bω, denoted by Bϑ ∩Bω, is a BFS in z defined as: for each h̄ ∈ z,
(Bϑ ∩Bω)(h̄) = (BN

ϑ (h̄)∨BN
ω (h̄), BP

ϑ(h̄)∧BP
ω(h̄)).

(iv) The union of Bϑ and Bω, denoted by Bϑ∪Bω, is a BFS inz defined as: for each h̄ ∈ z,(Bϑ∪Bω)(h̄) =
(BN

ϑ (h̄)∧BN
ω (h̄), BP

ϑ(h̄)∨BP
ω(h̄)).

Definition 2.9. [2, 10] Let B be a bipolar fuzzy set of a universe z. For α ∈ [0, 1] and Υ ∈ [−1, 0], the
(α, Υ) level subset cut of a bipolar fuzzy set κ is the crisp subset of z is given by B(α,Υ) = {h̄ ∈ z | BP(h̄) ≥ α
and BN(h̄) ≤ Υ}.

Definition 2.10. [2, 10] The Support set of a bipolar fuzzy subset B =< BP, BN > denoted by Supp(B)

and is defined by Supp(B) = {h̄ | BP(h̄) , 0 or BN(h̄) , 0}.

Definition 2.11. [20] For any BFS B =< BN, BP > in universe of discourse D, we denote 5 =

−1 − inf{BN(T ) | T ∈ D} and 4 = 1 − sup{BP(T ) | T ∈ D}. Let B =< BN, BP > be a BFS in
D and (θ,ϑ) ∈ [5, 0] × [0,4]. By a bipolar fuzzy (θ,ϑ)-translation of B =< BN, BP >, we mean a
BFS BT

(θ,ϑ)
=< BN

(θ,T), BP
(ϑ,T) >, where BN

(θ,T) : D → [−1, 0] defined by BN
(θ,T)(T ) = BN(T ) + θ and

BP
(ϑ,T) : D→ [0, 1] defined by BP

(ϑ,T)(T ) = BP(T ) + ϑ for all T ∈ D.

Definition 2.12. [16] Let B =< BN, BP > be a BFS in universe of discourse D and (α, β) ∈ [0, 1],
(θ,ϑ) ∈ [5, 0] × [0,4]. By a BFMT of B =< BN, BP >, we mean a BFS M = {< r, BN

(α,θ)
(r), BP

(β,ϑ)
(r) >|

r ∈ D} or simply as M = {< r, BN
M(r), BP

M(r) >| r ∈ D}, where BN
M = BN

(α,θ)
: D→ [−1, 0] and BP

M(r) =

BP
(β,ϑ)

: D→ [0, 1] defined by BN
M(r) = BN

(α,θ)
(r) = αBN(r) + θ and BP

M(r) = BP
(β,ϑ)

(r) = βBP(r) + ϑ

for all r ∈ D.

3. Bipolar fuzzy level subsets of a lattice

Theorem 3.1. Suppose B =< BP,BN > where BP : L → [0, 1] and BN : L → [−1, 0], is a BFS of L.
Then B is a BFL of L if and only if B(α,β),the level subset which is non-empty is a sublattice of L for every
α ∈ [0, 1] and β ∈ [−1, 0].

Proof. Suppose that B =< BP,BN >∈ BFL(L). Let h̄, s ∈ B(α,β). Then BP(h̄) ≥ α,BP(s) ≥
α and BN(h̄) ≤ β,BN(s) ≤ β. Now, BP(h̄ ∨ s) ≥ min{BP(h̄),BP(s)} ≥ α and BP(h̄ ∨ s) ≤
max{BN(h̄),BN(s)} ≤ β. Thus, h̄ ∨ s ∈ B(α,β). Now, BP(h̄ ∧ s) ≥ min{BP(h̄),BP(s)} ≥ α and

BN(h̄∧ s) ≤ max{BN(h̄),BN(s)} ≤ β. Thus, h̄∧ s ∈ B(α,β). Hence, B(α,β) is a sublattice of L.

Conversely, assume that B(α,β) is a sublattice of L. Suppose h̄, s ∈ L. Then BP(h̄),BP(s) ∈ [0, 1]

and BN(h̄),BN(s) ∈ [−1, 0]. Choose α = min{BP(h̄),BP(s)} and β = max{BN(h̄),BN(s)}. Then

BP(h̄) ≥ α,BP(s) ≥ α,BN(h̄) ≤ β,BN(s) ≤ β, so h̄, s ∈ B(α,β). As B(α,β) is a sublattice of L,

we have h̄ ∨ s ∈ B(α,β) and h̄ ∧ s ∈ B(α,β). Hence, BP(h̄ ∨ s) ≥ α,BN(h̄ ∨ s) ≤ β and BP(h̄ ∧
s) ≥ α,BN(h̄ ∧ s) ≤ β. Thus, BP(h̄ ∨ s) ≥ min{BP(h̄),BP(s)}, BP(h̄ ∧ s) ≥ min{BP(h̄),BP(s)},
BN(h̄∨ s) ≤ max{BP(h̄),BP(s)}, BN(h̄∧ s) ≤ max{BP(h̄),BP(s)}. �

Theorem 3.2. Consider L andB =< BP,BN > whereBP : L→ [0, 1] andBN : L→ [−1, 0] is a BFS of
L. If B forms a BFL of L, then Supp(B) forms a crisp sublattice of L.
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Proof. Suppose B = {< h̄,BP(h̄),BN(h̄) >| h̄ ∈ L} ∈ BFS(L) and h̄, s ∈ Supp(B). Suppose that

BP(h̄) , 0 or BN(h̄) , 0. Given B is a BFSL of L. Then BP(h̄ ∨ s) ≥ min{BP(h̄),BP(s)}. Thus,

BP(h̄∨ s) , 0. Likewise, we can obtain BN(h̄∨ s) , 0,BP(h̄∧ s) , 0,BN(h̄∧ s) , 0. This gives us

h̄∨ s ∈ Supp(B) and h̄∧ s ∈ Supp(B). Hence, Supp(B) is a crisp sublattice of L. �

Remark 3.1. The converse part of Theorem 3.2 does not hold in general. Let B = {< 1, 0.5,−0.1 >

,< 2, 0.7,−0.2 >,< 5, 0.8,−0.05 >,< 10, 0.4,−0.01 >} be a BFS in L = {1, 2, 5, 10} with divisors of
10. Then Supp(B) = {1, 2, 5, 10} is a crisp sublattice of L. But BP(2 ∨ 5) = BP(10) = 0.4 <

min{BP(2),BP(5)} = 0.7 and BP(2 ∧ 5) = BP(1) = 0.5 < min{BP(2),BP(5)} = 0.7, which is a
contradiction to the property of B is a BFSL of L.

Definition 3.1. Suppose B =< BP,BN > where BP : L → [0, 1] and BN : L → [−1, 0] is a BFS
of L is a BFS in L and (α, β) ∈ [0, 1]. We denote 5 = −1 − inf{BN(T ) | T ∈ D} and 4 = 1 −

sup{BP(T ) | T ∈ D}. Let (θ,ϑ) ∈ [5, 0] × [0,4]. By a BFMT of B =< BP,BN >, we mean a BFS
M = {< r, BP

(β,ϑ)
(r), BN

(α,θ)
(r) >| r ∈ L} or simply as M = {< r, BP

M(r), BN
M(r) >| r ∈ L}, where BP

M(r) =

BP
(β,ϑ)

: L → [0, 1] and BN
M = BN

(α,θ)
: L → [−1, 0] and defined by BP

M(r) = BP
(β,ϑ)

(r) = βBP(r) + ϑ for

all r ∈ L and BN
M(r) = BN

(α,θ)
(r) = αBN(r) + θ.

Example 3.1. Let L = {1, 2, 3, 6} of divisors of 6 and let B = {< 1, 0.3,−0.2 >,< 2, 0.4,−0.3 >,<

3, 0.5,−0.1 >,< 6, 0.3,−0.1 >}. Let θ ∈ [−0.9, 0] and ϑ ∈ [0, 0.5]. Let α = 0.1, β = 0.2,θ = −0.8,ϑ =

0.2. Hence, the BFMT M = {< 1, 0.26,−0.8 >,< 2, 0.36,−0.83 >,< 3, 0.3,−0.81 >< 6, 0.26,−0.81 >}.

Theorem 3.3. Let B =< BP,BN > where BP : L→ [0, 1] and BN : L→ [−1, 0] be a BFS of L. Then B
forms a BFL of L if and only if the BFMT M of B is a BFL of L.

Proof. Assume that B is BFL of L and M is a BFMT of B. Suppose h̄, s ∈ L. Now,

BP
(β,ϑ)(h̄∨ s) = βBP(h̄∨ s) + ϑ

≥ βmin{BP(h̄),BP(s)}+ ϑ

= min{βBP(h̄) + ϑ, βBP(s) + ϑ}

= min{BP
(β,ϑ)(h̄), BP

(β,ϑ)(s)},

BP
(β,ϑ)(h̄∧ s) = βBP(h̄∧ s) + ϑ

≥ βmin{BP(h̄),BP(s)}+ ϑ

= min{βBP(h̄) + ϑ, βBP(s) + ϑ}

= min{BP
(β,ϑ)(h̄), BP

(β,ϑ)(s)},

BN
(α,θ)(h̄∨ s) = αBN(h̄∨ s) + θ

≤ αmax{BN(h̄),BN(s)}+ θ

= max{αBN(h̄) + θ,αBN(s) + θ}

= max{BN
(α,θ)(h̄), BN

(α,θ)(s)},
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BN
(α,θ)(h̄∧ s) = αBN(h̄∧ s) + θ

≤ αmax{BN(h̄),BN(s)}+ θ

= max{αBN(h̄) + θ,αBN(s) + θ}

= max{BN
(α,θ)(h̄), BN

(α,θ)(s)}.

Hence, the BFMT of a BFL is again a BFL of L.

Conversely, assume that the BFMT M of B is a BFL of L. Then

BP(h̄∨ s) =
1
β
(BP

(β,ϑ)(h̄∨ s) − ϑ)

≥
1
β
(min{BP

(β,ϑ)(h̄), BP
(β,ϑ)(s)} − ϑ)

= min{
1
β
(BP

(β,ϑ)(h̄) − ϑ),
1
β
(BP

(β,ϑ)(s) − ϑ)}

= min{BP(h̄),BP(s)},

BP(h̄∧ s) =
1
β
(BP

(β,ϑ)(h̄∧ s) − ϑ)

≥
1
β
(min{BP

(β,ϑ)(h̄), BP
(β,ϑ)(s)} − ϑ)

= min{
1
β
(BP

(β,ϑ)(h̄) − ϑ),
1
β
(BP

(β,ϑ)(s) − ϑ)}

= min{BP(h̄),BP(s)}.

In a similar way, we can prove thatBN(h̄∨ s) ≤ max{BN(h̄),BN(s)}andBN(h̄∨ s) ≤ max{BN(h̄),BN(s)}.
Hence, B is BFL of L. �

Now, we explore the theory of BFLs under lattice homomorphism.

Definition 3.2. Let ϕ : L → L1 be a mapping from lattices L to L1 and B = (BP,BN) where
BP : L → [0, 1] and BN : L → [−1, 0] be a BFS in L. Then the image ϕ(B) is defined as ϕ(B) =

{< s,ϕ(BP)(s),ϕ(BN)(s) >| s ∈ L1
},

ϕ(BP)(s) =

sup{BP(h̄) | h̄ ∈ ϕ−1(s)} if ϕ−1(s) , ∅,
0 otherwise

and

ϕ(BN)(s) =

inf{BN(h̄) | h̄ ∈ ϕ−1(s)} if ϕ−1(s) , ∅,
0 otherwise.

Similarly, if C = (CP, CN) is a BFS in L1, then ϕ−1(C) = {< h̄,ϕ−1(CP(h̄)),ϕ−1(CN(h̄)) >| h̄ ∈ L},
where ϕ−1(CP(h̄)) = CP(ϕ(h̄)) and ϕ−1(CN(h̄)) = CN(ϕ(h̄)).

Theorem 3.4. Let ϕ : L→ L1 be a lattice epimorphism. If B =< BP,BN > where BP : L→ [0, 1] and
BN : L→ [−1, 0] is a BFL of L, then ϕ(B) is a BFL of L1.



Int. J. Anal. Appl. (2024), 22:195 7

Proof. Let B = (BP,BN) be a BFL of L. Let s, w ∈ L1. Then

ϕ(BP)(s∨w) = sup{BP(h̄) | h̄ ∈ ϕ−1(s∨w)}

≥ sup{BP(u∨ ξ) | u ∈ ϕ−1(s), ξ ∈ ϕ−1(w)}

≥ sup{min{BP(u),BP(ξ)} | u ∈ ϕ−1(s), ξ ∈ ϕ−1(w)}

= min{sup{BP(u) | u ∈ ϕ−1(s)}, sup{BP(ξ) | ξ ∈ ϕ−1(w)}}

= min{ϕ(BP)(s),ϕ(BP)(w)},

ϕ(BP)(s∧w) = sup{BP(h̄) | h̄ ∈ ϕ−1(s∧w)}

≥ sup{BP(u∧ ξ) | u ∈ ϕ−1(s), ξ ∈ ϕ−1(w)}

≥ sup{min{BP(u),BP(ξ)} | u ∈ ϕ−1(s), ξ ∈ ϕ−1(w)}

= min{sup{BP(u) | u ∈ ϕ−1(s)}, sup{BP(ξ) | ξ ∈ ϕ−1(w)}}

= min{ϕ(BP)(s),ϕ(BP)(w)},

ϕ(BN)(s∨w) = inf{BN(h̄) | h̄ ∈ ϕ−1(s∨w)}

≤ inf{BN(u∨ ξ) | u ∈ ϕ−1(s), ξ ∈ ϕ−1(w)}

≤ inf{max{BN(u),BN(ξ)} | u ∈ ϕ−1(s), ξ ∈ ϕ−1(w)}

= max{inf{BN(u) | u ∈ ϕ−1(s)}, inf{BN(ξ) | ξ ∈ ϕ−1(w)}}

= max{ϕ(BN)(s),ϕ(BN)(w)},

ϕ(BN)(s∧w) = inf{BN(h̄) | h̄ ∈ ϕ−1(s∧w)}

≤ inf{BN(u∧ ξ) | u ∈ ϕ−1(s), ξ ∈ ϕ−1(w)}

≤ inf{max{BN(u),BN(ξ)} | u ∈ ϕ−1(s), ξ ∈ ϕ−1(w)}

= max{inf{BN(u) | u ∈ ϕ−1(s)}, inf{BN(ξ) | ξ ∈ ϕ−1(w)}}

= max{ϕ(BN)(s),ϕ(BN)(w)}.

Hence, ϕ(B) is a BFL of L1. �

Theorem 3.5. Letϕ : L→ L1 be a homomorphism from L to L1. If C =< CP, CN >where CP : L→ [0, 1]

and CN : L→ [−1, 0] is a BFL of L1, then ϕ−1(C) is a BFL of L.

Proof. Let C =< CP, CN > be a BFL of L1. Let h̄, s ∈ L. Then

ϕ−1(CP)(h̄∨ s) = CP(ϕ(h̄∨ s))

= CP
{(ϕ(h̄)∨ϕ(s)}

≥ min{CP(ϕ(h̄)), CP(ϕ(s))}

= min{ϕ−1(CP)(h̄),ϕ−1(CP)(s)},
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ϕ−1(CP)(h̄∧ s) = CP(ϕ(h̄∧ s))

= CP
{(ϕ(h̄)∧ϕ(s)}

≥ min{CP(ϕ(h̄)), CP(ϕ(s))}

= min{ϕ−1(CP)(h̄),ϕ−1(CP)(s)},

ϕ−1(CN)(h̄∨ s) = CN(ϕ(h̄∨ s))

= CN
{(ϕ(h̄)∨ϕ(s)}}

≤ max{CN(ϕ(h̄)), CN(ϕ(s))

= max{ϕ−1(CN)(h̄),ϕ−1(CN)(s)},

ϕ−1(CN)(h̄∧ s) = CN(ϕ(h̄∧ s))

= CN
{(ϕ(h̄)∧ϕ(s)}

≤ max{CN(ϕ(h̄)), CN(ϕ(s))}

= max{ϕ−1(CN)(h̄),ϕ−1(CN)(s)}.

Hence, ϕ−1(C) is a BFL of L. �

Theorem 3.6. Let L and L1 be any two lattices, and κ be a homomorphism from L to L1. Then the
homomorphic image of a BFMT M of a BFL B of L forms a BFL of L1.

Proof. Let V = κ(M). Now, for κ(r) and κ(s) in L1, we have

VP(κ(r)∨κ(s)) = VP(κ(r∨ s))

≥ BP
M(r∨ s)

= βBP(r∨ s) + ϑ

≥ β(min{BP(r),BP(s)}) + ϑ

= min{βBP(r) + ϑ, βBP(s) + ϑ}

= min{VP(κ(r), VP(κ(s)}.

Thus, VP(κ(r) ∨ κ(s)) ≥ min{VP(κ(r), VP(κ(s)}. Similarly, we can prove the remaining three

conditions. Thus, the homomorphic image of a BFMT M of a BFL B of L is a BFL of L1. �

Theorem 3.7. Let L and L1 be any two lattices. Then the homomorphic pre-image of a BFMT of a BFL B
of L1 forms a BFL of L.

Proof. The proof is similar to Theorem 3.5. �

Theorem 3.8. Let I =< IP, IN > be a BFS of L. Then I is a BFI of L if and only if the nonempty level
subset I(α,β) is an ideal of L for each α ∈ [0, 1] and β ∈ [−1, 0].
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Proof. Suppose that I =< IP, IN > is a BFI of L. Let h̄, s ∈ I(α,β) and l ∈ L. Then I(α,β) is a sublattice

of L as I(α,β) forms a BFI of L. Now, for l ∈ L, IP(h̄ ∧ l) ≥ max{IP(h̄), IP(l)} ≥ IP(h̄) ≥ α and

IN(h̄∧ l) ≤ max{IN(h̄), IN(l)} ≤ IN(h̄) ≤ β. Thus, h̄∧ l ∈ I(α,β). Hence, I(α,β) forms an ideal of L.

Conversely, assume that I(α,β) is an ideal of L. Then IP(h̄), IP(s) ∈ [0, 1] and IN(h̄), IN(s) ∈ [−1, 0].

We must show that I is a BFI of L. We know that every ideal is a sublattice of L. Thus, I(α,β)

is a sublattice of L. By Theorem 3.1, I is a BFL of L. Choose α = min{IP(h̄), IP(s)} and β =

max{IN(h̄), IN(s)}. Thus, IP(h̄) ≥ α, IP(s) ≥ α, IN(h̄) ≤ β, IN(s) ≤ β, so h̄, s ∈ I(α,β). As I(α,β) is an ideal

of L, we have h̄∨ s ∈ I(α,β) and h̄∧ s ∈ I(α,β). Hence, IP(h̄∨ s) ≥ α, IN(h̄∨ s) ≤ β and IP(h̄∧ s) ≥ α,

IN(h̄∧ s) ≤ β. Thus, we obtain IP(h̄∨ s) ≥ min{IP(h̄), IP(s)}. Similarly, other conditions of BFI are

also valid. Hence, I is a BFI of L. �

Theorem 3.9. Let L be a lattice andB be a BFS of L. IfB is a BFI of L, then Supp(B) forms a crisp ideal
of L.

Proof. Suppose B is a BFI of L and h̄, s ∈ Supp(B). Assume that BP(h̄) , 0 or BN(h̄) , 0. Given B

is a BFI of L. Then BP(h̄∨ s) ≥ min{BP(h̄),BP(s))}, so BP(h̄∨ s) , 0. Similar to above, we can get

BN(h̄∨ s) , 0,BP(h̄∧ s) , 0, andBN(h̄∧ s) , 0. This gives us h̄∨ s ∈ Supp(B) and h̄∧ s ∈ Supp(B).

Now, let l ∈ L and h̄ ∈ Supp(B). Then BP(h̄ ∧ l) ≥ max{BP(h̄),BP(l)} ≥ BP(h̄) , 0. Thus,

h̄∧ l ∈ Supp(B). Hence, Supp(B) is a crisp ideal of L. �

Remark 3.2. The converse part of the above theorem does not necessarily hold in general. Consider
B = {< 1, 0.5,−0.1 >,< 2, 0.7,−0.2 >,< 5, 0.8,−0.05 >,< 10, 0.4,−0.05 >} is a BFS in L =

{1, 2, 5, 10}. Then Supp(B) = {1, 2, 5, 10} is a crisp sublattice of L. But BP(2 ∨ 5) = BP(10) =

0.4 < min{BP(2),BP(5)} = 0.7, which is a contradiction to the property of BFI of L.

Theorem 3.10. SupposeB is a BFS of L. ThusB is a BFI of L if and only if the BFMT M ofB is a BFI of
L.

Proof. Assume that B is BFI of L and M is a BFMT of B. Let h̄, s ∈ L. Then

BP
(β,ϑ)(h̄∨ s) = βBP(h̄∨ s) + ϑ

≥ βmin{BP(h̄),BP(s))}+ ϑ

= min{βBP(h̄) + ϑ, βBP(s)) + ϑ}

= min{BP
(β,ϑ)(h̄),B

P
(β,ϑ)(s))},

BP
(β,ϑ)(h̄∧ s) = βBP(h̄∧ s) + ϑ

≥ βmax{BP(h̄),BP(s))}+ ϑ

= max{βBP(h̄) + ϑ, βBP(s)) + ϑ}

= max{BP
(β,ϑ)(h̄),B

P
(β,ϑ)(s))},
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BN
(α,θ)(h̄∨ s) = αBN(h̄∨ s) + θ

≤ αmax{BN(h̄),BN(s))}+ θ

= max{αBN(h̄) + θ,αBN(s)) + θ}

= max{BN
(α,θ)(h̄),B

N
(α,θ)(s))},

BN
(α,θ)(h̄∧ s) = αBN(h̄∧ s) + θ

≤ αmin{BN(h̄),BN(s))}+ θ

= min{αBN(h̄) + θ,αBN(s)) + θ}

= min{BN
(α,θ)(h̄),B

N
(α,θ)(s))}.

Hence, the BFMT of a BFL is again a BFL of L.

Conversely, assume that the BFMT M of B is a BFI of L. Then

BP(h̄∨ s) =
1
β
(BP

(β,ϑ)(h̄∨ s) − ϑ)

≥
1
β
(min{BP

(β,ϑ)(h̄),B
P
(β,ϑ)(s))} − ϑ)

= min{
1
β
(BP

(β,ϑ)(h̄) − ϑ),
1
β
(BP

(β,ϑ)(s)) − ϑ)}

= min{BP(h̄),BP(s))},

BP(h̄∧ s) =
1
β
(BP

(β,ϑ)(h̄∧ s) − ϑ)

≥
1
β
(max{BP

(β,ϑ)(h̄),B
P
(β,ϑ)(s))} − ϑ)

= max{
1
β
(BP

(β,ϑ)(h̄) − ϑ),
1
β
(BP

(β,ϑ)(s)) − ϑ)}

= max{BP(h̄),BP(s))}.

Similarly, we can prove BN(h̄ ∨ s) ≤ max{BN(h̄),BN(s))} and BN(h̄ ∨ s) ≤ min{BN(h̄),BN(s))}.
Hence, B is BFI of L.

�

4. Conclusion

This study introduces BF level subsets in a lattice, establishing that such subsets, denoted as

B, can form BFLs and BFIs. We prove that if B forms a BFL within a lattice L, then its support

set Supp(B) is a crisp sublattice of L, though the converse is not always true. We further explore

BFMT and demonstrate that both the homomorphic image and pre-image of a BFMT preserve the

structures of BFLs and BFIs, offering new insights into the interaction between lattice theory and

fuzzy logic in bipolar systems.
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