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ABSTRACT. This manuscript employs the Adomian decomposition technique (ADT) to develop solutions for the 

fractional space-time nonlinear mKdV system, incorporating an M-truncated fractional order and supposed initial 

conditions. The technique yields a power series expansion solution without the need for linearization, weak 

nonlinear assumptions, or perturbation theory. Software such as Maple or Mathematica was utilized to compute the 

Adomian formulas for the solution expansion. This technique can also be utilized for a range of nonlinear fractional-

order models in mathematical physics. A graphical analysis is provided to demonstrate the behavior of Adomian 

solutions and how variations in non-integer order values influence the results. The technique is straightforward, 

clear, and widely applicable to other nonlinear fractional problems in both physics and mathematics. It is believed 

that these studies significantly advance our understanding of the nonlinear coupled fractional mKdV system and its 

potential applications in physics and engineering. 

 

 

1. Introduction 

 It is widely recognized that nonlinear complex physical phenomena are frequently 

described by nonlinear evolution equations (NLEEs), which are relevant across various fields 

such as mathematical physics and engineering. Investigating exact solutions to these PDEs 
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enhances our understanding of these phenomena [1]. For instance, they are used to model and 

understand complex behaviors in oceanography, optics, biology, chemistry, and physics [1–6].  

Among the various explicit solutions, soliton and solitary wave solutions stand out due to their 

exponential localization in specific spatial and temporal directions, making them crucial for 

accurately representing wave behaviors in diverse applications [7–12]. For instance, solitons 

play a crucial role in understanding pulse propagation in optical fibers, while solitary waves are 

used to model waves in shallow water and plasma physics. Both types of solutions also enhance 

our understanding of reaction-diffusion processes in biological and chemical systems. Several 

techniques have been established to obtain explicit solutions for NLEEs. These methods include 

the Darboux transformation, inverse scattering transform [1], Bäcklund transformation, Hirota 

bilinear technique [2], Painlevé analysis, tanh function technique [10], sine-cosine procedure, 

and homogeneous balance method, among others [7-12]. 

 The ADT is a robust method for obtaining both numerical and analytical solutions to 

integer and fractional differential models commonly encountered in natural phenomena 

modeling. Developed by George Adomian between the 1970s and 1990s, this method utilizes 

the Adomian polynomial [13]. This polynomial ensures the convergence of series solutions 

without requiring linearization or discretization of the nonlinear terms. It derives a Maclaurin 

series expansion around an arbitrary parameter, offering greater flexibility compared to the 

Taylor series method. Unlike traditional numerical methods, the ADT produces closed-form 

solutions based solely on initial conditions. The benefits of the ADM compared to the Taylor 

series technique, homotopy perturbation procedure, and Picard’s technique are examined in 

[14–16]. 

 Adesanya et al. [17] investigated the behavior of Bratu’s model by means of the ADT. 

They discovered that the model has two solutions, both of which are convergent and exhibit 

desirable behavior. In [18], Adesanya applied the ADT to investigate the linear stability of 

hydromagnetic Plane-Poiseuille flow, with results that were in agreement with established 

Multideck asymptotic technique.  Additionally, Ahmed et al. in [19] used the ADT to derive the 

explicit solution for the Biswas-Milowic model, a general form of the nonlinear Schrödinger 

model used in the fiber optics field. Aswhad et al. in [20] applied the ADT to solve Fisher’s 

equations and compared their results. In 2015, Wazwaz et al. [21] discussed the use of the ADT 
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to demonstrate that a class of nonlinear boundary value problems can have two distinct 

solutions. 

Bougoffa et al. in [22] discussed the function of Green to alongside the ADT for solving a linear 

differential equation of fourth-order with varied boundaries. In 2017, Alshaery et al. [23] 

applied the ADT to solve the hyperbolic Kepler’s equation featuring sine hyperbolic 

nonlinearity. The year after, Jaradat et al. [24] addressed issues related to the simple harmonic 

quantum oscillator. Between 2020 and 2021, researchers [25–27] explored advanced ADT 

techniques for singular boundary and initial value problems with both unequal and equal 

partition step sizes, showcasing the convergence of these methods. 

 A diverse array of fractional order models—be they nonlinear or linear, and whether 

involving partial or ordinary differential equations—can be effectively and accurately 

addressed using the ADM [28, 29]. This method yields approximations that quickly converge to 

precise solutions. It is especially adept at managing nonlinear physical models, as it sidesteps 

the potential inaccuracies introduced by unnecessary linearization. This study specifically 

investigates solutions derived from the ADM for fractional nonlinear models, including the 

coupled mKdV model with M-truncated fractional order 

 The M-truncated fractional differential equations are used in modeling complex systems 

where memory effects and non-local interactions are significant. They find applications in 

various fields examples include signal processing, control theory, and physics, where they help 

describe phenomena like diffusion processes and wave propagation with non-standard 

behaviors. Their ultimate advantage lies in their ability to capture intricate dynamics that 

traditional integer-order models might miss. Various methods have been utilized to define and 

develop fractional differentials, including the Caputo, Kolwankar-Gangal, Chen's fractal 

differentials, Riemann-Liouville (RL), conformable fractional differentials, modified RL, and 

Cresson’s approaches [30-43]. Building on earlier mathematical discoveries, fractional calculus 

is emerging as the calculus of the twenty-first century. Recent advancements and applications in 

fractional calculus have made it a compelling and increasingly popular field of study. Fractional 

differential models offer accurate and precise representations of many real-world phenomena 

[30-43]. 
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 The research leave is structured as follows: Section 2 presents the M-truncated fractional 

basic equations. Section 3 provides an overview of the ADM. Section 4 discusses the application 

of this technique. Finally, we conclude with a summary and suggestions for future work. 

 

2. M-truncated Fractional derivative 

 In twenty-first-century mathematics, fractional and non-integer calculus have emerged 

as significant extensions of traditional concepts, paving the way for new research and practical 

applications. Fractional calculus, in particular, has established to be a versatile tool with a broad 

range of applications across various fields. This area of study is especially valuable for 

modeling complex real-world phenomena [30- 43]. For example, fractional differential models 

are used to understand anomalous diffusion in porous materials, characterize viscoelastic 

behavior in material science, and describe complex biological processes such as cell growth and 

tumor dynamics. In finance, fractional calculus helps analyze long-term dependencies and 

volatility patterns in time series data. 

 The truncated Mittag-Leffler function (MLF) can be defined as [44]: 

0

( )
( ) , 0, .

( 1)

jl

l

j

s
s s

j







 

=

 =  
 +


                                    

(1) 

Definition 1: Let :[0, )  →  be a function, the local truncated M-fractional differential 
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With ,  represents two  −differentiable functions of a dependent variable, the above 

relations are proved in reference [44]. 

Choosing 1 =  and 1l =  on the two sides of Eq.(1), we have 
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which is exactly the conformable fractional derivative. Simply we write ,

1 MD  as ,

MD  . The 

MFD of some functions [44] 
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The MFD can be used for non-differentiable functions, making it suitable for applications 

involving discontinuous media. 

 

3.  Clarification of the procedure 

 To address the fractional order coupled nonlinear mKdV model, we suppose that the 

space-time fractional partial differential system can be expressed in terms of an operator 

formula as follows: 
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                                         (8) 

with the operators of nonlinear terms are designated by the symbolizations ( , ), ( , )M v u N v u  

and the linear M-truncated differential fractional operators by the representations 
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with 
1(0, ) ( ),u x f x =  and 

1(0, ) ( ),v x g x =  are functions determined by the given initial 

conditions. The ADTassumes that the unknown functions ( , )u t x   and ( , )v t x  can be 

expressed as an infinite series of the form 
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Along with the nonlinear operators, the infinite sequence of Adomian polynomials used to 

express ( , )f v u and ( , )g v u  is 
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With the related Adomian polynomials, 
jM  and 

jN , are derived using the technique 

described in [13]. For the reader’s convenience, we usage the nonlinear term 
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It is simple to use this formulation to tell the computer code to calculate as many polynomials as 

necessary for both the explicit and numerical solutions. We recommend the reader to [22,23] for 

a generic formula of Adomian polynomials and a full discussion of the Adomian decomposition 

technique. 

The nonlinear formulae given by equation (8) is derived through a recursive relationship 
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when the initial conditions are in which functions 
1( )f x   and 

1( )g x  are derived. It is 

important to remember that the zero component, and being more prominent than the remainder 

components, ( , )ju t x   and ( , ), 1jv t x j   may be fully ascertained, meaning that every term 

can be computed by incorporating the previous terms. Consequently, the series solutions are 

completely established and the components 
0 1 2, , , ....u u u and 

0 1 2, , , ....v v v  are well-known. 

Nevertheless, it is often possible to obtain the explicit solution in a closed form. 

We developed the solutions ( , )u x t   and ( , )v x t  by means of numerical formulae in 

the form 
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and equation (13) represents the recurrent relation. Additionally, in strictly physical contexts, 

the solutions of the decomposition series generally converge relatively quickly. 

 In the next section, we examine the space-time coupled fractional mKdV model to 

demonstrate the application of the ADT previously discussed. 

 

3. Application of the specified technique 

Consider the general space time coupled fractional mKdV model: 
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s x x

s

x x

H v u H D vD u

D v v v D u u u

   

      



=

= =

= + + + + + +


              (38) 

Since 

 , 2 , 2

0 1 2 0 1 2 0

1
( ....) ( ....) ,

!

s

s x xs

d
H D u u u D v v v

s d

   


   

 =
 = + + + + + +       (39) 
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The initial four terms can be expressed as 

, ,

0 0 0

, , , ,

1 0 1 1 0

, , , , , ,

2 0 2 1 1 2 0

, , , , , , , ,

3 0 3 1 2 2 1 3 0

,

,

,

,

x x

x x x x

x x x x x x

x x x x x x x x

H D u D v

H D u D v D u D v

H D u D v D u D v D u D v

H D u D v D u D v D u D v D u D v

   

       

           

               

=

= +

= + +

= + + +

       (40) 

2 , 2 2 , 2

0 1 2 0 1 2

0

( , ) ( ....) ( ....),s x x

s

N v u N u D v u u u D v v v      


=

= = = + + + + + +   (41) 

Since 

 2 2 , 2

0 1 2 0 1 2 0

1
( ....) ( ....) ,

!

s

s xs

d
N u u u D v v v

s d

 


   

 =
 = + + + + + +                    (42) 

The initial four terms can be expressed as 

2 ,

0 0 0

2 , ,

1 0 1 0 1 0

2 , 2 , ,

2 1 0 2 0 0 2 0 1 1

2 , 2 , , ,

3 1 0 2 1 0 3 0 1 2 0 3 1 2 1

,

2 ,

( 2 ) 2 ,

( 2 ) 2 (2 2 ) ,

x

x x

x x x

x x x x

N u D v

N u D v u u D v

N u u u D v u D v u u D v

N u u u D v u D v u u D v u u u u D v

 

   

     

       

=

= +

= + + +

= + + + + +

       (43) 

For a given 

, , ,1 3
( , ) 3 ,

2 2
x x xt x D u D v aD u        = + −                               (44) 

, ,( , ) 3 ,x xt x D v aD v      =− +                                          (45) 

1 ( 1)
(0, ) ( ) tanh ,

2

b kx
u x f x k

k


  



  +
= = +  

 
                                  (46) 

1

1

( 1)
v(0, ) ( ) 1 tanh .

2

a k kx
x g x b

b


  



    +
= = + +   

  
                             (47) 

The residue components ( , )su x t   and ( , )sv x t  , s > 0 can be calculated using the recursive 

relations with constant values of 
1 1a k b= = =  in the subsequent way, considering the 

theoretical aspects of Eqs. (28) and (29) 

0

1 ( 1)
tanh ,

2

x
u





  +
= +  

 
                                                 (48) 

0

( 1)
1 tanh ,

x
v





  +
= +  

 
                                                      (49) 
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2

1

( 1) ( 1)
1 tanh ,

4

x t
u

  

 

   +  +
= − +  

  
                                                 (50) 

2

1

( 1) ( 1)
1 tanh ,

4

x t
v

  

 

   +  +
= − +  

  
                                                 (51) 

2 2
3

2 2

( 1) ( 1) ( 1)
tanh tanh ,

16

x x t
u

    

  

     +  +  +
= − +    

    
                 (52) 

2 2
3

2 2

( 1) ( 1) ( 1)
tanh tanh ,

16

x x t
v

    

  

     +  +  +
= − +    

    
                 (53) 

and so on. This allows for the complete determination of the remainder components ( , )su x t   

and ( , )sv x t  , s > 0, with each term being determined based on the preceding one. 

The ADT solutions of ( , )u t x   and ( , )v t x   are obtained in power series form by 

substituting the expressions 
0 1 2, , , ....v v v  and 

0 1 2, , , ....u u u into the summation 
0

( , )s

s

u x t 


=

  

and 
0

( , )s

s

v x t 


=

 , we have 

2

2

3

1 ( 1) ( 1) ( 1)
( , ) tanh 1 tanh

2 4

( 1) ( 1) ( 1)
tanh tanh ...,

4

x t x
u x t

t x x

  
 

  

  

  

  

  

     +  +  +
= + + − +    

    

       +  +  +
+ − + +      
      

    (54) 

2

2

3

( 1) ( 1) ( 1)
( , ) 1 tanh 1 tanh

4

( 1) ( 1) ( 1)
tanh tanh ...,

4

x t x
v x t

t x x

  
 

  

  

  

  

  

     +  +  +
= + + − +    

    

       +  +  +
+ − + +      
      

    (55) 

This is compactly expressed as 

( )
1 ( 1)

( , ) tanh ,
2

u t x t x   




 + 
= + + + 

 
                                     (56) 

( )
( 1)

( , ) 1 tanh ,v t x t x   




 + 
= + + + 

 
                                       (57) 
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where is an arbitrary constant known as the phase shift. That is represented solitary wave 

solution. A solitary wave is a type of wave that maintains its shape while traveling at a constant 

speed. Unlike typical wave solutions which may disperse or change shape over time, solitary 

waves are localized, meaning they are confined to a specific region in space and do not spread 

out. A solitary wave retains its shape as it moves, which is a defining feature. It does not change 

in width or amplitude as it travels through a medium. Solitary waves often occur in nonlinear 

systems where the medium’s response to disturbances is nonlinear. This nonlinearity allows the 

wave to sustain itself without dispersing. Solitary waves can be observed in shallow water 

where they manifest as waves that travel without changing shape. In plasmas, solitary waves 

are often referred to as "solitons" and can describe certain types of localized disturbances in the 

plasma.  A special class of solitary waves, known as solitons, are solutions to integrable 

nonlinear equations. Solitons not only maintain their shape and speed but can also interact with 

other solitons and emerge from collisions unchanged. solitary waves are crucial for 

understanding many physical phenomena where wave-like disturbances remain stable and 

localized over time, providing valuable insights into nonlinear wave dynamics.  

 A Graphical analysis for the ADM evolutionary behavior of the solution of u described 

by equation (56), is conducted by varying fractional order values  and the parameter   with 

suitable choose of the phase shift . Figure (1) illustrates the kink-type wave solution of the 

function u for 1,0.98,0.96,0.92,0.9 = , 1 =  and 20 = − . Figure (1-b) is the 2-dimensional 

space representation of u when t=15. Figure (2) illustrates the kink-type wave solution of the 

function u for 1 = , 2,1.5,1,0.9,0.7,0.5 =  and 20 = − . Figure (2-b) is the 2-dimensional 

space representation of u when t=5. Figure (3) illustrates the kink-type wave solution of the 

function u for 1 = = , 0.9,0.8,0.7,0.6,0.5  and 20 = − . Figure (3-b) is the 2-dimensional 

space representation of u when t=5. 
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Fig (1) the evolution behavior of the function u when 1,0.95,0.9,0.85,0.8,0.7 = and 1 =   

with 20 = − . b) is the cross section when t=15. 

 

 

Fig (2) the evolution behavior of the function u when 2,1.5,1,0.9,0.7,0.5 = and 1 =   with 

20 = − . b) is the cross section when t=5. 



14 Int. J. Anal. Appl. (2024), 22:222 

 

 

Fig (3) the evolution behavior of the function u when 1,0.9, 0.8,0.7,0.6 = = with 20 = − . b) 

is the cross section when t=15. 

From the figures we can say that, the kink type wave solution arises in nonlinear systems where 

the wave equation supports such localized structures. It is a localized, smooth transition 

between two distinct states or values, often observed in various physical and mathematical 

contexts. The nonlinearity of the system allows for the formation of these distinctive wave 

profiles. It is a type of solitary wave solution often found in nonlinear integer or fractional 

partial differential equations, particularly in models describing phenomena like fluid dynamics, 

plasma physics, or quantum mechanics. The kink wave has a distinctive profile where it 

smoothly transitions between two different levels. This transition typically looks like a sharp 

bend or "kink" in the wave, hence the name. The wave profile is often similar to a step function 

but with a smooth, continuous transition. It smoothly transitions from one constant value to 

another, often resembling a steep, localized change in the wave amplitude. Kink waves occur in 

nonlinear systems where the wave equation allows for such localized and stable structures. The 

nonlinearity enables the wave to maintain its shape and transition characteristics over time. So 

the kink-type wave solutions are important in various physical and mathematical contexts, 

providing insight into the behavior of nonlinear systems and the formation of localized wave 

structures. In particle physics and field theory, kink solutions represent domain walls or 
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topological defects, which can describe transitions between different vacuum states. Kink waves 

can model domain walls or magnetic defects in ferromagnetic materials. Kink-type waves can 

also describe certain types of shock waves or other localized disturbances in fluids. Kink waves 

often model transitions or boundaries between different phases or states in a system. For 

example, in a ferromagnetic material, a kink wave might represent the boundary between 

regions of different magnetization.  Kink waves are significant in both theoretical and applied 

contexts for their ability to represent sharp, localized transitions in a variety of nonlinear 

systems. 

 Remark that all the results obtained in [29] are recovered when 1 = . In addition, all the 

results given in [45] are recovered when 1 = = . 

 

4. Conclusions and discussion 

 It has been found that non-classical calculus techniques, like fractional calculus and non-

integer order calculus, are useful in explaining key physical phenomena, partly due to the rapid 

progress in advanced applied sciences. This work explores the Adomian decomposition 

approach as a potential analytical tool for examining these systems. The symbolic computation 

of this method in non-integer calculus, including Maple packages and additional numerical 

methods derived from Adomian decomposition, will be considered. The authors suggest that 

the Adomian decomposition approach might eventually be as significant as classical calculus. 

Future work will involve developing a Matlab or Maple software application to solve fractional 

differential models using this technique. It is believed that these studies significantly advance 

our understanding of the nonlinear coupled fractional mKdV system and its potential 

applications in physics and engineering. 
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