
Int. J. Anal. Appl. (2024), 22:199

Fractional-Order Mathematical Modeling of Breast Cancer: Comparing Adaptive
Immune Responses and Estrogen Dynamics with Experimental Data

Abeer S. Alnahdi1,∗, Muhammad Idrees2

1Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Riyadh, Saudi Arabia

2Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan

∗Corresponding author: asalnahdi@imamu.edu.sa

Abstract. Breast cancer is a significant global health concern that requires innovative approaches to understand its

behavior and improve treatment strategies. This paper introduces a new fractional-order mathematical model to explain

the complex dynamics of breast cancer progression, including adaptive immune responses and estrogen dynamics.

Utilizing Caputo fractional derivatives, our model reveals insights into the impact of fractional-order dynamics on cancer

cell populations. Simulation results demonstrate a notable increase in cell populations with higher fractional orders,

suggesting heightened aggressiveness, while lower orders correspond to subdued progression. Unlike traditional

integer-order models, fractional-order derivatives offer a more nuanced depiction of nonlinear dynamics, crucial for

capturing the complexities of cancer progression. Importantly, our findings underscore the potential clinical relevance

of fractional-order models in informing personalized treatment strategies, particularly through the modulation of

estrogen levels. By integrating treatment considerations, such as hormone therapy, our model holds promise for

advancing precision medicine approaches tailored to individual patient characteristics.

1. Introduction

Breast cancer is recognized as the most malignant disease affecting women globally [1]. Ac-

cording to data from the World Health Organization (WHO), the global incidence of breast cancer

exceeded 2.3 million cases in 2020 [2]. The incidence of breast cancer varies geographically, with

higher rates observed in developed regions [3]. Age is a significant risk factor, and the majority of

breast cancer cases occur in women aged 50 and above. However, it is important to note that breast

cancer can affect individuals of all ages and awareness of risk factors is vital for early detection.

Various risk factors contribute to the development of breast cancer, including genetic mutations
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(such as BRCA1 and BRCA2), hormonal factors, family history, reproductive factors, and lifestyle

choices [4].

Breast cancer is a malignant and widespread tumor that arises from the cell structure of the breast

[5]. The disease is complex and diverse, with several subgroups distinguished by unique genetic

characteristics and clinical manifestations. This cancer can affect both men and women, although

it is much more common in women. Typically, breast cancer originates in the ducts or lobules of

the breast and has the potential to metastasize to adjacent tissues as it progresses [6]. Determining

the presence or absence of particular receptors, such as human epidermal growth factor receptor 2

(HER2) and hormone receptors, various subtypes of this complex disease exist [7]. Each subtype

has unique clinical features and responses to treatment, necessitating personalized approaches

to therapy. The triple-negative subtype, which lacks these receptors, presents additional hurdles

for developing targeted treatments [8]. Moreover, understanding the tumor microenvironment is

crucial for advancing breast cancer treatments. The interactions among cancer cells, immune cells,

stromal cells, and extracellular matrix components affect tumor growth, spread, and response to

treatment. Grasping these complexities is vital for developing therapies that effectively target

cancer cells while sparing healthy tissue.

The link of breast cancer cells to the immune system is essential in controlling the succession of

the disease [9]. The immune system has properties to recognize and kill cancer cells. At the same

time, cancer cells manage to evade immune recognition and suppression. The breast cancer tumor

microenvironment is a dynamic system comprising a network of breast cancer cells, immune cells,

stromal cells, and extra-cellular matrix constituents. The interactions between cancer cell types

and immune cells, such as T lymphocytes, macrophages, and dendritic cells, are responsible for

the complex immune response within this tumor microenvironment. Immune cells penetrate

tumors, and their presence brings a better prognosis. Nevertheless, this balance between the pro-

tumor and the anti-tumor immune responses is delicate and regulated by cytokines, chemokines,

and immunosuppressive molecules produced by cancer and immune cells. In the context of the

immune response against breast cancer, cytotoxic T lymphocytes (CTLs) have a very important

function on many sides [10]. CTLs, which can recognize and eliminate malignant cells, are

essential to the adaptive immune system. The presence of infiltrating CTLs within the tumor

microenvironment is associated with a more favorable prognosis in breast cancer patients. These

immune cells suppress tumor progression by directly attacking cancer cells and fostering an

anti-tumor inflammatory environment. However, breast cancer cells have evolved mechanisms to

evade CTL-mediated destruction. These evasion methods consist of reduced antigenicity, defective

antigen presentation, and the presence of inhibitory molecules such as programmed death-ligand

1 (PD-L1). As a result, the interaction between cytotoxicity displayed by CTLs and immune

escape mechanisms utilized by breast cancer cells in the tumor microenvironment is remarkably

intricate [11].
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The helper T cells have inhibitory and regulatory roles on other immune cells in a tumor microen-

vironment [12]. In breast cancer, helper T cell cells play a significant part in the generation of

anti-tumor immune response by assisting CTLs in the activation process, which are crucial for

identifying and eliminating cancer cells [13]. In addition, helper T cells turn B cells into cells that

are evenly active in producing antibodies against antigens from cancer cells. In this context, helper

T cell-derived cytokines play a crucial role by modulating the balance between pro-inflammatory

and anti-inflammatory responses within the tumor, thus leading to the desired overall immune

response. Besides, the hormone estrogen acts as a key development and progression factor in

breast cancer [14]. In human breast tissue, estrogen binds to estrogen receptors (ERs) situated on

the cell membrane of breast cells. Estrogen- and progesterone-receptor-positive breast cancers,

i.e., the receptor-positive subtype, are common types of breast cancer, representing a significant

percentage of the total number. The role of estrogen signaling in several domains of breast cancer

biology has been observed, including cell growth and proliferation, survival, and the formation of

new blood vessels, which supply the cancer with nutrients and energy as they grow [15]. Estrogen

production is predominantly regulated by the ovaries in premenopausal women, whereas it is also

synthesized in peripheral tissues, including adipose tissue, in postmenopausal women [16]. The

risk of developing hormone receptor-positive breast cancer is correlated with increased cumula-

tive exposure to estrogen, which can occur through various means such as hormone replacement

therapy, early menarche, or late menopause [17].

Mathematical modeling plays an important role in understanding the complex dynamical rela-

tionship between estrogen, the immune system, and breast cancer. Mathematical models in breast

cancer research provide a quantitative framework to simulate the complex biological processes

underlying tumor growth, progression, and treatment response. Mathematical models contribute

to the identification of potential biomarkers and therapeutic targets, facilitating the development

of innovative and tailored therapies. By integrating data from diverse sources and accounting

for the complexities inherent in breast cancer and immune interactions with estrogen, mathemat-

ical modeling serves as a critical tool in advancing our understanding and improving outcomes

for individuals affected by breast cancer. Researchers use mathematical models to investigate

connections between immune cells, cancer cells, and therapies. Jarrett et al. used mathematical

and experimental models to study trastuzumab’s effect on HER2-overexpressed BC in mice [18].

Moreover, a mathematical model was developed to investigate how MCF-7 BC cells interact with

immune cells [19]. Multiple studies have shown a correlation between immune cells and prog-

nosis in breast tumors. Macrophage density correlates with the prognosis of BC. Helper T-cells

and cytotoxic T-cells are more strongly linked to better prognosis in ER-negative tumors than in

ER-positive tumors, and CD8+ T lymphocytes lower the risk of death from numerous subtypes of

BC. Advanced breast tumors have also been shown to include more regulatory T-cells and a lower

T-helper to regulatory T-cell ratio. These findings indicate that networks of interactions between

immune cells and their relative abundance are essential to the genesis and spread of BC.
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The use of mathematical modeling is a valuable technique for gaining a comprehensive under-

standing of the complex interactions occurring inside the tumor microenvironment [20]. As a

result, researchers have investigated several aspects of the interplay between tumors and the im-

mune system. In [21], a model including delays was presented to investigate the dynamics of

tumor-immune interactions and the regulation of malignant tumor development. In [20], qualita-

tive analyses were performed to investigate the interactions between tumors and cytokines within

the context of treatment circumstances. Furthermore, the study conducted by [22] introduced a

novel mathematical model aimed at tackling the issue of immune surveillance in the context of

tumor development. The research conducted in [23] focused on the optimization of cancer self-

remission and the stability analysis of physiologically feasible equilibrium states. Additionally,

the study investigated the use of chaos theory and optimum control techniques in cancer models

with uncertain parameters [24]. It is expected that immunotherapies will have a significant impact

on the suppression of tumor cell growth. Kuznetsov et al. [25] explored the nonlinear dynamics

of immunogenic tumors, representing a fundamental contribution to this particular research area.

Kirschner and Panetta [26] provided a mathematical exposition on the relationships between tu-

mor cells, immune cells, and IL-2, elucidating the occurrence of oscillations in tumor development

within both short-term and long-term scenarios.

The application of fractional-order theoretical models on the immune system’s dynamics with

breast cancer allows us to obtain a holistic view and better understanding of these complex

biological processes. Most real-world mathematical models use integer-order derivatives and

integrals, which may not adequately capture the complexity of natural process dynamics. In-

corporating non-integer order derivatives into fractional-order models distinguishes them from

conventional models and permits a more detailed representation of concealed characteristics. As

a result, traditional models often face difficulties in accurately representing the complex and per-

petually changing dynamics of the interaction between the immune system and breast cancer.

Fractional-order models offer an alternative approach distinguished by its enhanced flexibility

and realism, facilitating a more comprehensive exploration of these complexities. By taking into

account memory effects and nonlinearity, their capacity to unravel the intricate mechanisms driv-

ing the advancement of breast cancer and the immune response is essential. Idrees et al. [27]

developed a mathematical model of breast cancer based on the Caputo–Fabrizio fractal-fractional

derivative. This research made a valuable contribution by integrating the fractal properties of

tumor development into an innovative mathematical model for breast cancer. Mohammadpoor et

al. [28] discussed the stability of the fractional-order breast cancer model in chemotherapy patients

with cardiotoxicity by applying LADM. It was determined that the days on which the maximum

or minimum of the system solutions are attained are significantly influenced by the magnitude of

the fractional order.
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The interplay between the immune system and estrogen signalling is complex and essential to

comprehend the progression of breast cancer. Fractional-order models provide a flexible method-

ology for accurately representing these intricacies. In addition to offering a versatile framework,

they exhibit a high degree of congruence with experimental data by an additional parameter that

enhances precision by incorporating observed biological processes. This precision is vital for de-

veloping reliable tools to understand and predict the behaviors of immune cells, breast cancer

cells, and estrogen interactions. Additionally, fractional-order models are adept at handling the

heterogeneity typical of diseases like breast cancer, which exhibit diverse subtypes with distinct

behaviors. Advancements in these models bolster predictive abilities, allowing for more accu-

rate forecasts of immune cell behavior, breast cancer dynamics, and estrogen interactions. Such

predictive precision is invaluable for comprehending disease progression and tailoring person-

alized interventions for individual patients, marking a significant advancement in mathematical

modeling for complex biological systems.

By utilizing fractional-order mathematical techniques, our study presents an innovative method

for simulating the dynamics of breast cancer. As a result, we make a valuable contribution

to the field of predictive modeling in oncology. By incorporating fractional-order dynamics, a

more comprehensive comprehension of the progression of breast cancer can be achieved, which

includes pivotal elements like estrogen dynamics and adaptive immune responses. By extending

the theoretical underpinnings of cancer modeling, this interdisciplinary framework also carries

substantial practical ramifications for clinical practice. Through a comprehensive analysis of

the complex relationship between fractional-order dynamics and treatment interventions, our

model can provide significant contributions to the understanding of tailored treatment approaches,

specifically in regard to the regulation of estrogen levels.

In contrast to current fractional-order cancer mathematical models, our approach highlights the

potential clinical significance of fractional-order dynamics in informing individualized treatment

approaches, particularly about regulating estrogen levels. This distinctive attribute empowers

us to progress precision medicine methodologies customized to specific patient attributes, thus

augmenting the effectiveness and personalization of treatment regimens for breast cancer. By clar-

ifying the complex relationship between fractional-order dynamics and treatment interventions,

our model can furnish clinicians and researchers with a valuable instrument to enhance patient

care and maximize therapeutic outcomes in breast cancer management.

2. Basic Definitions

This section provides a review of some fundamental definitions of fractional calculus to famil-

iarize the readers with ongoing terms.

Definition 2.1. The Caputo derivative of order α ∈ (0, 1) for an integrable function F(t) is given by [29]

CDαF(t) =
1

Γ(γ− α)

∫ t

0

F(γ)(ξ)

(t− ξ)α−m+1
dξ, γ = [α] + 1.
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The corresponding Caputo fractional integral of the function F(t) is given by

CIαF(t) =
1

Γ(α)

∫ t

0
(t− ξ)F(t)dξ.

Definition 2.2. The Caputo-Fabrizio derivative of order α ∈ (0, 1) for the function F(t) ∈ H1(c, d), where
H1(c, d) is Sobolev space with c > d, is given by [30]

CFDαF(t) =
M(α)

(1− α))

∫ t

c
F′(ξ)e

−α
1−α (t−ξ)dξ,

where M(α) is normalization function with M(0) = M(1) = 1. The corresponding Caputo-Fabrizio
fractional integral is given by

CFIαF(t) =
2(1− α)

(2− α)M(α)
F(t) +

2α
(2− α)M(α)

∫ t

0
F(ξ)dξ.

3. MathematicalModel

A mathematical model representing the intricate interactions within the tumor’s microenvi-

ronment incorporates five time-dependent ordinary differential equations (ODEs). The proposed

ODEs determine a comprehensive framework for comprehending and simulating the progression

of breast cancer in a spatially uniform and well-mixed microenvironment by capturing the intricate

interplay between estrogen, tumor dynamics, and immune responses. The essential components

of the system are represented by the model, which consists of normal cells (N), cancer cells (T),

CTLs (C), helper T cells (H), and estrogen (E). The cell populations’ temporal evolution is denoted

by the time (t) functions for each variable.

The complex structure of breast tissue comprises epithelial cells and is contained inside the

normal cell compartment. The model assumes normal cells grow and die naturally, led by un-

changed DNA regulating all biological functions. According to the competition model proposed

by [31], normal and cancer cells compete for limited nutrients and other resources. The following

equations represent the dynamics of normal cells.

dN
dt

= b1N(1− b2N) − b3NT − b4NE. (3.1)

The first term signifies the logistic growth of normal cells with the rate b1 (unit: per day) and

inverse carrying capacity b2 (unit: per number of cells), emphasizing the growth and limitation

factors intrinsic to the breast tissues composed of epithelial cells. The second term shows the

intricate interplay of genetic alterations of normal cells into cancer cells with the rate b3 (unit:

number of cells−1day−1). This term describes how genetic alterations in normal cells affect cancer

formation, altering cell cycle control and potentially promoting the development of cancer cells.

This alteration is linked to the presence of cancer cells exhibiting an uncontrolled proliferation,

as highlighted in previous research [32]. The final term presents the notion of gene transacti-

vation, proposed as a growth factor that is associated with estrogen-induced growth of breast

cancer. Consequently, this stimulation may cause DNA harm, eventually decreasing the normal
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cell population, which then transforms into cancerous cells with the rate b4 (unit: number of

cells−1day−1).

The dynamics of cancer cells are predominantly influenced by proliferation and cell death, partic-

ularly through interactions with CTLs. Cancer cells exhibit logistic growth without an immune

response with a growth rate b5 (unit: per day) and an inverse carrying capacity b6 (unit: per

number of cells). Tumor escape is approximated as the system approaches its carrying capacity.

Upon immune stimulation, the interaction between cancer cells and CTLs is modeled as occurring

at a rate proportional to the product of their cell numbers, with a constant of proportionality b7

(unit: number of cells−1day−1). These interactions contribute to cancer cell death. By integrating

these processes, we suggest the following equation to describe the temporal progression of the

cancer cells.

dT
dt

= b5T(1− b6T) − b7CT + b4NE. (3.2)

Tumor cells generate a complex chain of processes that activate and proliferate CTLs in the

immune system. It commences with the recognition of specific tumor antigens, abnormal proteins

expressed on the surface of cancer cells. Dendritic cells, specialized antigen-presenting cells, play

a pivotal role in capturing and presenting these tumor antigens. Upon processing and presenting

tumor antigens on their surface in association with major histocompatibility complex (MHC)

molecules, dendritic cells signal T cells, including naive CTLs, to recognize and interact with the

presented antigens. Activation of naive CTLs involves intricate signaling cascades and molecular

interactions, leading to their proliferation and differentiation. The CTLs that are activated undergo

clonal expansion, a critical step in the production of a more significant number of similar cells.

This increase is essential for generating an effective force of CTL effectors to destroy tumor cells.

The process of CTL activation and expansion in response to cancer cells is denoted by the term

b8TC (Lotka-Volterra form suggested by [33]), where b8 (unit: number of cells−1day−1) represents

the growth parameter. The natural decay of CTLs is modeled by the rate b9 (unit: per day).

Helper T cells are stimulated upon encountering tumor antigens, leading to clonal expansion and

differentiation. This activation is facilitated by the interaction between the T-cell receptor on the

helper T cells and the tumor antigen presented by dendritic cells. Activated helper T cells release

signaling molecules, such as cytokines, that play a crucial role in orchestrating and amplifying the

immune response. Importantly, these cytokines, particularly interleukins, stimulate the activation

and proliferation of CTLs. Activated CTLs are then equipped to specifically recognize and engage

with breast cancer cells presenting the same tumor antigens. The coordinated action of helper

T cells is essential for the full activation and effectiveness of CTLs in targeting and eliminating

cancerous cells. The process of CTLs activation and proliferation in response to helper T cells

is denied by the term b10CH, where b10 (unit: number of cells−1day−1) represents the growth

parameter. By combining these components, the following equation is derived to depict the
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dynamics of CTLs.

dC
dt

= b8TC− b9C + b10CH. (3.3)

Our proposed model focuses on the mechanisms that regulate the development of helper T cells

in the tumor microenvironment in breast cancer. The evidence suggests that helper T cells are

primarily influenced by three key factors: infiltration from the lymph nodes, proliferation induced

by the presence of tumor cells, and natural cell death. The influx of helper T cell populations

from the lymph nodes occurs at a constant rate denoted as b11 (unit: number of cells per day),

while their natural cell death is characterized by b13 (unit: per day) rates. Notably, we account

for the continuous production of naive T cells by hematopoietic stem cells, resulting in a constant

population of these cells in the circulating bloodstream. Assuming a constant blood flow, we

incorporate direct stimulation of T cells in the tumor microenvironment and a steady influx of

primed T cells from the circulating blood. This assumption implicitly accommodates a consistent

pool of memory T cells even in the absence of antigen stimulation, aligning with established

approaches in similar models to consider a baseline level of circulating T cells [33]. In our model,

we further propose that the tumor exerts a suppressive effect on the proliferation of helper T

cells, indirectly impacting CTLs. Specifically, we propose that the proliferation rate of helper

T cells exhibits biphasic dependence on the number of cancer cells governed by a constant of

proportionality denoted as b12 (unit: per day). The following equation can illustrate this thorough

description of the controlling regulatory mechanisms of helper T cells.

dH
dt

= b11 + b12TH − b13H. (3.4)

It is important to understand the complex interaction between estrogen and the immune system

via mathematical modeling to enhance our comprehension of breast cancer. Estrogen, a key

hormone, plays a pivotal role in the development and progression of breast cancer, particularly in

hormone-receptor-positive cases where cancer cells express receptors for hormones like estrogen.

Mathematical models provide a quantitative means to capture and simulate the complex dynamics

between estrogen levels and the behavior of breast cancer cells. An increased estrogen level can

cause the rapid growth of cancerous cells. Furthermore, it acts as a mitogen in breast tissue by

stimulating cell proliferation [34]. Estrogen acts as a carcinogen by causing direct damage to DNA,

which increases the likelihood of healthy epithelial cells becoming cancerous [35]. The following

equation gives the dynamics of estrogen in which b14 (unit: number of cells per day) represents the

continuous replenishment of excessive estrogen, while b15 (unit: per day) represents the natural

decay

dE
dt

= b14 − b15E. (3.5)

Combining all, we proposed the following set of ODEs to describe the time evolution of breast

cancer cells along CTLs, helper T cells, and estrogen.
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dN
dt

= b1N(1− b2N) − b3NT − b4NE, (3.6)

dT
dt

= b5T(1− b6T) − b7CT + b4NE, (3.7)

dC
dt

= b8TC− b9C + b10CH, (3.8)

dH
dt

= b11 + b12TH − b13H, (3.9)

dE
dt

= b14 − b15E, (3.10)

where b1, b2, b3, ..., b15 are positive parameters. The above mathematical model consists of five

variables having different units. It is necessary to create a dimensionless mathematical model when

working with variables that have different units. This necessity arises from the aim of achieving

universal applicability, allowing researchers from diverse fields and locations to readily employ

and understand the model without the encumbrance of unit conversions. The simplification

of mathematical expressions is another crucial aspect of dimensionless modeling. By removing

specific units, the model becomes more transparent and easier to analyze, facilitating a focused

examination of the inherent relationships between variables without the burden of unit-related

complexities.

The mathematical model (3.6)-(3.10) is non-dimensionalized using the following transformation

(suggested by [25, 33, 36])

y1 =
N
N0

, y2 =
T
T0

, y3 =
C
C0

, y4 =
H
H0

, y5 =
E
E0

, τ = b7T0t.

The dimensionless model, after replacing τ by t, is given below

dy1

dt
= a1y1(1− a2y1) − a3y1y2 − a4y1y5, (3.11)

dy2

dt
= a5y2(1− a6y2) − y3y2 + a7y1y5, (3.12)

dy3

dt
= a8y2y3 − a9y3 + a10y3y4, (3.13)

dy4

dt
= a11 + a12y2y4 − a13y4, (3.14)

dy5

dt
= a14 + a15y5. (3.15)

where

a1 =
b1

b7N0
, a2 = b2N0, a3 =

b3

b7
, a4 =

b4

b7
, a5 =

b5

b7T0
, a6 = b6T0, a7 =

b4N0

b7T0
, a8 =

b8

b7
,

a9 =
b9

b7T0
, a10 =

b10

b7T0H0
, a11 =

b11

b7T0H0
, a12 =

b12

b7
, a13 =

b13

b7T0
, a14 =

b14

b7T0E0
, a15 =

b15

b7T0
.
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Analyzing mathematical models associated with breast cancer is crucial for improving understand-

ing of their assessment, existence of solutions, stability, and regulation. Classical approaches to

mathematical modeling often fail to achieve the requisite precision for accurately representing the

dynamics of these diseases. Fractional differential equations have been introduced to address this

challenge, offering a more competent framework for handling such complex problems [27]. The

application of fractional differential equations extends to various applied fields, including produc-

tion problems, optimization, artificial intelligence, medical diagnoses, robotics, and cosmology.

Over the past few decades, fractional calculus has emerged as a valuable tool in the mathemat-

ical modeling of biological phenomena. This is primarily due to its capacity to more accurately

elucidate and process materials’ retention and hereditary properties than traditional integer-order

models. Consequently, researchers have extended classical calculus to the fractional-order domain

through fractional-order modeling, employing diverse mathematical techniques. The proposed

fractional-order mathematical model under Caputo fractional derivative of order α is given by

Dα
t (y1) = F1(t, Y) = a1y1(1− a2y1) − a3y1y2 − a4y1y5, (3.16)

Dα
t (y2) = F2(t, Y) = a5y2(1− a6y2) − y3y2 + a7y1y5, (3.17)

Dα
t (y3) = F3(t, Y) = a8y2y3 − a9y3 + a10y3y4, (3.18)

Dα
t (y4) = F4(t, Y) = a11 + a12y2y4 − a13y4, (3.19)

Dα
t (y5) = F5(t, Y) = a14 + a15y5, (3.20)

where Y ⊆ {y1, y2, y3, y4, y5} and initial conditions are y1(0) = y0
1, y2(0) = y0

2, y3(0) = y0
3, y4(0) =

y0
4, y5(0) = y0

5.

4. Model Analysis

4.1. Boundedness and Positivity of Solutions. The dimensionless system (3.11)-(3.15) has posi-

tive initial conditions of the form:

y1(0) = y0
1, y2(0) = y0

2, y3(0) = y0
3, y4(0) = y0

4, y5(0) = y0
5. (4.1)

The dynamics of each population are determined by its growth rate, interactions with other

populations, and external factors, thereby ensuring biological significance. The formulation of

these interactions is designed to preclude the occurrence of negative values, which is consistent

with the characteristics of cellular populations. We have the following theorems to prove the

boundedness and positivity of solutions.

Theorem 4.1. The solution of the system (3.11)-(3.15) is non-negative and remains in the region Ω =

{(y1, y2, y3, y4, y5) : yi ∈ R
+
∀ i = 1, 2, ..., 5}.

Proof. From equation (4.1) and (3.11), we have

dy1

dt
≤ a1y1 − a1a2y2

1. (4.2)
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By using the Bernoulli method, we have

y1(t) ≤
y0

1

a2y0
1 + (1− a2y0

1)e
−a1t

, (4.3)

y1(t) ≤
1
a2

as t −→ ∞. (4.4)

Hence, y1(t) > 0 for t > 0. Consequently, it can be shown that y2(t) > 0, y3(t) > 0, y4(t) > 0,

y5(t) > 0, for all t > 0. This completes the proof. �

4.2. Stability Analysis. The equilibrium points for the system (3.11)-(3.15) can be obtained by

setting dy1
dt = 0, dy2

dt = 0, dy3
dt = 0, dy4

dt = 0, dy5
dt = 0, and we get three equilibrium points as given by

Tumor-free equilibrium point (E0):

E0 =
(
0, 0, 0,

a11

a13
,

a14

a15

)
.

Tumor-dominant equilibrium point (E1):

E1 =
(
0,

1
a6

, 0,
a11a6

a6a13 − a12
,

a14

a15

)
.

Interior equilibrium point (E2):

E2 =
(
y∗1, y∗2, y∗3, y∗4, y∗5

)
.

The local stability of these equilibrium points can be determined by the Lyapunov linearization

method and given by the following theorems.

Theorem 4.2. The tumor-free equilibrium point (E0) of the system (3.11)-(3.15) is unstable.

Proof. The Jacobian matrix for the system (3.11)-(3.15) at E0 is given by

J(E0) =



a1 −
a4a14
a15

0 0 0 0
a7a14
a15

a5 0 0 0

0 0 a10a11
a13
− a9 0 0

0 a12a11
a13

0 −a13 0

0 0 0 0 −a15


. (4.5)

The characteristic polynomial of J(E0) is

(
a1a15 − a4a14

a15
− λ)(a5 − λ)(

a10a11 − a9a13

a13
− λ)(−a13 − λ)(−a15 − λ) = 0.

It can be seen that one eigenvalue (λ = a5) is positive. Hence, according to the Lyapunov

linearization method, the equilibrium point E0 is unstable. �

Theorem 4.3. The tumor-dominant equilibrium point (E1) of the system (3.11)-(3.15) is locally asymptot-
ically stable if the inequalities a6a13 > a12, a4a6a14 + a3a15 > a1a6a15, and a2

6a9a13 + a8a12 > a2
6a10a11 +

a6a8a13 + a6a9a12 hold.
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Proof. The Jacobian matrix for the system (3.11)-(3.15) at E1 is given by

J(E1) =



a1 −
a3
a6
−

a4a14
a15

0 0 0 0
a7a14
a15

−a5 −
1
a6

0 0

0 0 a8
a6
+ a10a11a6

a6a13−a12
− a9 0 0

0 a12a11a6
a6a13−a12

0 a12
a6
− a13 0

0 0 0 0 −a15


. (4.6)

The characteristic polynomial of J(E1) is

(
a1a6a15 − a4a6a14 − a3a15

a6a15
− λ)(−a5 − λ)(

a8

a6
+

a10a11a6

a6a13 − a12
− a9 − λ)(−

a6a13 − a12

a6
− λ)(−a15 − λ) = 0.

According to the Lyapunov linearization method, the equilibrium point E1 is locally asymptotically

stable if all eigenvalues (roots of the characteristic polynomial) are negative. It can be seen that

two eigenvalues (λ = −a5 and λ = −a15) are negative and other eigenvalues will be negative

if a6a13 > a12, a4a6a14 + a3a15 > a1a6a15, and a2
6a9a13 + a8a12 > a2

6a10a11 + a6a8a13 + a6a9a12. This

completes the proof. �

Theorem 4.4. The interior equilibrium point (E2) of the system (3.11)-(3.15) is locally asymptotically stable
if ci > 0 (i = 1, 2, ..., 13), c1c5c9c12 + c1c6c10c11 + c9c4c2c12 > c1c6c8c12, and c1c5c9 + c2c4c9 > c1c6c8.

Proof. The Jacobian matrix for the system (3.11)-(3.15) at E2 is given by

J(E1) =



−c1 −c2 0 0 −c3

c4 −c5 −c6 0 c7

0 c8 c9 c10 0

0 c11 0 c12 0

0 0 0 0 −c13


, (4.7)

where c1 = 2a1a2y∗1 + a3y∗2 + a4y∗5 − a1, c2 = a3y∗1, c3 = a4y∗1, c4 = a7y∗5, c5 = 2a5a6y∗2 + y∗3 + a5,
c6 = y∗2, c7 = a7y∗1, c8 = a8y∗3, c9 = a8y∗2 + a10y∗4 − a9, c10 = a10y∗3, c11 = a12y∗4, c12 = a12y∗2 − a13,
c13 = a15. By using Gaussian elimination, the Eq. (4.7) can be reduced into following form:

J(E1) =



−c1 −c2 0 0 −c3

0 −
c5c1+c4c2

c1
−c6 0 c7c1−c4c3

c1

0 0 c1c5c9−c8c1c6+c2c4c9
c5c1+c4c2

c10
c8(c7c1−c4c3)

c5c1+c4c2

0 0 0 c1c5c9c12−c1c6c8c12+c11c1c6c10+c2c4c9c12
c1c5c9−c8c1c6+c2c4c9

c9c11(c7c1−c4c3)
c1c5c9−c8c1c6+c2c4c9

0 0 0 0 −c13


. (4.8)

The characteristic polynomial of J(E2) is

(−c1 − λ)(−
c5c1 + c4c2

c1
− λ)(

c1c5c9 − c8c1c6 + c2c4c9

c5c1 + c4c2
− λ)(

c1c5c9c12 − c1c6c8c12 + c11c1c6c10 + c2c4c9c12

c1c5c9 − c8c1c6 + c2c4c9
− λ)(−c13 − λ) = 0.

According to the Lyapunov linearization method, the equilibrium point E1 is locally asymptotically

stable if all eigenvalues (roots of the characteristic polynomial) are negative. It can be seen that

three eigenvalues (λ = −c1, λ = − c5c1+c4c2
c1

, and λ = −c13) are negative and other eigenvalues
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will be negative if c1c5c9c12 + c1c6c10c11 + c9c4c2c12 > c1c6c8c12 and c1c5c9 + c2c4c9 > c1c6c8. This

completes the proof. �

5. Methodology of Numerical Simulation

Different numerical methods are proposed to solve fractional-order differential equations. A

comprehensive analysis of these methodologies can be found in [37–39]. In this study, we use the

generalized Adams-Bashforth-Moulton method to solve the proposed mathematical model. To

understand the procedure, we have the following nonlinear equation

Dα
t (z(t)) = f (t, z(t)), 0 ≤ t ≤ T,

z(q)(0) = z(q)0 , q = 0, 1, 2, 3, ..., ν, ν = [η].

The above equation can be written in the form of a Volterra integral equation as follows

z(t) =
ν−1∑
q=0

zq
0

tq

q!
+

1
Γ(η)

∫ t

0
(t− ξ)η−1 f (ξ, z(ξ))dξ (5.1)

Tuan et al. [40] used the Adams-Bashforth-Moulton method to integrate the above equation.

Following this methodology, we set h = T
N , tn = nh, n = 0, 1, 2, 3, ..., N ∈ Z+ and we can write the

system (3.16)-(3.20) as follows:

y(n+1)
1 =y0

1 +
hαλ1−α

Γ(α+ 2)

[
a1y(n+1)

1p (1− a2y(n+1)
1p ) − a3y(n+1)

1p y(n+1)
2p − a4y(n+1)

1p y(n+1)
5p

]
+

hαλ1−α

Γ(α+ 2)

n∑
i=0

a(n+1)
i

[
a1y(i)1 (1− a2y(i)1 ) − a3y(i)1 y(i)2 − a4y(i)1 y(i)5

]
, (5.2)

y(n+1)
2 =y0

2 +
hαλ1−α

Γ(α+ 2)

[
a5y(n+1)

2p (1− a6y(n+1)
2p ) − y(n+1)

3p y(n+1)
2p + a7y(n+1)

1p y(n+1)
5p

]
+

hαλ1−α

Γ(α+ 2)

n∑
i=0

a(n+1)
i

[
a5y(i)2 (1− a6y(i)2 ) − y(i)3 y(i)2 + a7y(i)1 y(i)5

]
, (5.3)

y(n+1)
3 =y0

3 +
hαλ1−α

Γ(α+ 2)

[
a8y(n+1)

2p y(n+1)
3p − a9y(n+1)

3p + a10y(n+1)
3p y(n+1)

4p

]
+

hαλ1−α

Γ(α+ 2)

n∑
i=0

a(n+1)
i

[
a8y(i)2 y(i)3 + a9y(i)3 + a10y(i)3 y(i)4

]
, (5.4)

y(n+1)
4 =y0

4 +
hαλ1−α

Γ(α+ 2)

[
a11 + a12y(n+1)

2p y(n+1)
4p − a13y(n+1)

4p

]
+

hαλ1−α

Γ(α+ 2)

(n)∑
i=0

a(n+1)
i

[
a11 + a12y(i)2 y(i)4 − a13y(i)4

]
, (5.5)
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y(n+1)
5 =y0

5 +
hαλ1−α

Γ(α+ 2)

[
a14 + a15y(n+1)

5p

]
+

hαλ1−α

Γ(α+ 2)

n∑
i=0

a(n+1)
i

[
a14 + a15y(i)5

]
, (5.6)

where

y(n+1)
1p = y0

1 +
λ1−α

Γ(α)

n∑
i=0

Φ(n+1)
i

[
a1y(i)1 (1− a2y(i)1 ) − a3y(i)1 y(i)2 − a4y(i)1 y(i)5

]
, (5.7)

y(n+1)
2p = y0

2 +
λ1−α

Γ(α)

n∑
i=0

Φ(n+1)
i

[
a5y(i)2 (1− a6y(i)2 ) − y(i)3 y(i)2 + a7y(i)1 y(i)5

]
, (5.8)

y(n+1)
3p = y0

3 +
λ1−α

Γ(α)

n∑
i=0

Φ(n+1)
i

[
a8y(i)2 y(i)3 − a9y(i)3 + a10y(i)3 y(i)4

]
, (5.9)

y(n+1)
4p = y0

4 +
λ1−α

Γ(α)

n∑
i=0

Φ(n+1)
i

[
a11 + a12y(i)2 y(i)4 − a13y(i)4

]
, (5.10)

y(n+1)
5p = y0

5 +
λ1−α

Γ(α)

n∑
i=0

Φ(n+1)
i

[
a14 + a15y(i)5

]
. (5.11)

Also, for j = 1, 2, 3,

a(n+1)
i =


nαk+1

− (n− αk)(n + 1)αk i = 0

(n− i + 2)αk+1 + (n− i)αk+1
− 2(n− i + 1)αk+1 1 < i < n

1 i = n + 1

and

Φ(n+1)
i =

hαk

αk
((n− i + 1)αk − (n− i)αk) , 0 ≤ i ≤ n. (5.12)

6. Results and Discussion

We developed an intricate mathematical framework by utilizing Caputo fractional derivatives

in order to obtain the impact of fractional-order derivatives on the dynamics of breast cancer. The

proposed mathematical model is simulated in MATLAB and the results are shown graphically in

Figures 1 and 2.

In our fractional-order mathematical model, the α parameter denotes the fractional order of dif-

ferentiation. The determination of the suitable α value involves an examination of its impact on

the experimental data, taking into account the memory effects and long-range dependencies that

are intrinsic to the dynamics of breast cancer progression and adaptive immune responses. In our

numerical experiments, we present results for α values of 0.85, 0.9, and 0.95. These values were
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chosen based on their relevance to capturing the fractional-order dynamics observed in biological

systems. However, by comparing the dynamics of the proposed model to experimental data, one

can determine an appropriate value. Furthermore, the results’ robustness against fluctuations in

the α parameter can be evaluated through sensitivity analyses. Table 1 details the values of the

model parameters utilized in our numerical simulations.

We have obtained remarkable insights into the behavior of our fractional-order mathematical

model through multiple values of fractional orders via intensive simulations and research. Signif-

icantly, an upward trend in the values of the cell populations is observed as the fractional order (α)

increases. This discovery implies that increasing fractional orders leads to heightened dynamics

within the system, potentially signaling a proliferation of cancer cells with more aggressive char-

acteristics. Conversely, the model forecasts that diminishing fractional order values correspond to

a decrease in cell populations. This decline in fractional orders could suggest a more subdued or

less assertive trajectory of cancer proliferation, as evidenced by the observed reduction.

The study’s findings have substantial and wide implications, underscoring the need for fractional-

order models when modeling complex biological systems such as breast cancer. Compared to

the integer order model, the fractional order approach provides a relatively adaptable framework

that simulates the nonlinear intricacies of biological processes, which poses the risk of simplifying

dynamics and disregarding vital details. Our analysis revealed that the category of divergent

models expands significantly when integer order derivatives are utilized; this is particularly true

for chaotically nonlinear systems, such as tumor development. Conventional approaches may fail

to detect a divergence pattern due to the intrinsic complex nonlinearity in cancer processes. On

the contrary, fractional-order derivatives exhibit a greater capacity for accurately simulating these

dynamics at a higher order.

Due to their ability to accurately simulate the behavioral patterns of biological systems with

varying degrees of complexity, fractional-order models can be utilized effectively in clinical and

biomedical practice. Fractional order enables the identification of latent patterns that facilitate

the advancement of cancer, thereby reducing the development of more rational therapeutic in-

terventions. No additional variables regarding the treatment alternative were incorporated into

the current model. However, our model’s application of treatment techniques might be evaluated

more positively, particularly via regulating estrogens. The fractional-order model’s clinical signif-

icance and utility value can be enhanced by incorporating a system of treatment strategies, such

as hormone therapy or targeted therapies that regulate estrogen levels. Our model’s functional

applicability is currently restricted, and treatment considerations must be adopted, which will

also play a part in therapeutic methods and clinical decision-making. Through simulating various

treatment alternatives and assessing their capacity to modify the advancement of cancer, we devise

customized therapeutic options that cater to the specific needs of every patient in terms of tumor

characteristics and cellular composition.
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It is critical to validate our fractional-order model for breast cancer dynamics to evaluate its practical

utility and predictive effectiveness. To this end, we obtained experimental data on the number of

cancer cells from [41], extracting the relevant information using the MATLAB function ’GRABIT.’

Following that, a comparative analysis was performed between the forecasts produced by our

model and the actual number of cancer cells extracted from [41]. This comparison was facilitated

by plotting the number of cancer cells predicted by our model, considering the parametric values

(α5 = 0.629 andα7 = 0.173) alongside the experimental data, as illustrated in Figure 3. Our analysis

revealed that the model’s predictions, particularly when utilizing a fractional-order parameter of

α = 0.9, closely aligned with the experimental data, demonstrating a superior fit compared to the

integer-order case (α = 1). This successful validation underscores the practical applicability of our

fractional-order model in accurately predicting breast cancer dynamics, as evidenced by its close

correspondence with observed data points. These findings affirm the model’s ability to capture the

complexities of breast cancer progression and highlight its potential as a valuable tool for guiding

clinical decision-making and treatment optimization.

The dynamics of the fractional-order model are more closely aligned with experimental data

than the traditional derivative model, as illustrated in Figure 3. This comparison demonstrates

that the fractional-order model is more capable of capturing the intricate dynamics of breast

cancer progression. We emphasize the practicality of fractional calculus in biological modeling

by providing numerical outcomes demonstrating the benefits of employing the fractional-order

approach in achieving congruence with experimental observations. Furthermore, Figure 3 shows

the advantages of using the fractional-order model over the traditional derivative model. A

comparative analysis of different alpha values with experimental data makes it possible to clarify

that the fractional-order model provides a more precise portrayal of breast cancer dynamics.
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(a) Dynamics of cancer cells at different values of α.
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(b) Dynamics of CTLs at different values of α.

Figure 1. Dynamics of cancer cells and CTLs at different values of α.
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Table 1. Description of parameters and their values.

Symbols Definitions Values References

α1 Logistic growth rate of normal cells 0.2-0.8 Varies

α2 Inverse carrying capacity of normal cells 10−3 Assumed

α3 Mutation rate of normal cells into cancer cells 0.001-0.005 Assumed

α4 Mutation rate of normal cells into cancer cells

due to estrogen

0.001-0.005 Assumed

α5 Logistic growth rate of cancer cells 0.4-0.8 [42, 43]

α6 Inverse carrying capacity of cancer cells 10−3 Assumed

α7 Growth rate of cancer cells due to estrogen 0.05-0.2 Varies

α8 Growth rate of CTLs 0.04 [33]

α9 Natural degradation rate of CTLs 0.8729 [43, 44]

α10 Growth rate of CTLs due to helper T cells 0.001-0.015 [33]

α11 Supply of helper T cells 102-103 Varies

α12 Growth rate of helper T cells due to cancer cells 0.015-0.02 [33]

α13 Natural degradation rate of helper T cells 0.055 [33]

α14 Supply of estrogen 102-103 Varies

α15 Natural degradation rate of estrogen 0.03-0.07 [34, 43]
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(a) Dynamics of helper T cells at different values of

α.
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Figure 2. Dynamics of helper T cells and estrogen at different values of α.



18 Int. J. Anal. Appl. (2024), 22:199

0 10 20 30 40

Time (days)

100

200

300

400

500

600

C
a

n
ce

r 
C

el
ls

Experimental Data

=1

=0.90

 10
4

Figure 3. Comparison of cancer cells at different values of α with experimental

data.

7. Conclusions

We emphasize the significance of incorporating fractional calculus into biological modeling

using a fractional-order mathematical framework that enhances understanding of breast cancer

dynamics. The variations in cell populations highlight the importance of fractional-order dynamics

in understanding the complex nonlinear aspects of cancer advancement. Our results emphasize the

potential practical use of fractional-order models in directing individualized treatment approaches,

mainly by adjusting estrogen levels. Incorporating treatment considerations into our framework

presents an avenue for refining therapeutic approaches and informing clinical decision-making.

By leveraging the capabilities of fractional-order modeling, we aim to advance precision medicine

initiatives to combat breast cancer and improve patient outcomes.
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